运动微分方程推导

运动微分方程推导
运动微分方程推导

以应力表示的黏性流体运动微分方程的推导

1. 黏性流体的内应力

黏性流体在运动时,表面力不仅有法向应力,还有切向应力,因此黏性流体的表面力不垂直于作用面。

如在任一点取一微小的正六面体,如图所示,作用在平面ABCD 上的力

有法向应力

xx

p ,与切向应力xy

τ和xz τ。应力符号的第一个字母表示作

用面的外法线方向,第二个脚标表示应力方向。

流体场内任一点的应力状况,即该点流体微团在任一方向的作用面上的应力,都可以用通过该点的三个相互垂直的作用面上的九个应力分量来表示。

2. 以应力表示的运动微分方程

在黏性流体中取一边长为dx,dy,dz 的长方体。各表面应力的方向如图所示。为清晰起见,其中两个面上的应力符号未标。各应力的值均为代数值,正直表示应力沿相应坐标系的正向,反之亦然。由于流体不能承受拉力,因此,

xx p yy p ,zz

p 必为负值。

由牛顿第二定律,x 方向的运动微分方程为:

Xdxdydz ρ+xx p dydz +[-(xx

p -

xx

p x

??dy )dydz ]+

yx τdxdz +[-(yx τ-

yx

y

τ??dy )dxdz ]+

zx τdxdy +[-(zx τ-

zx

z

τ??dz )]x

du dxdy dxdydz

dt ρ=

等式两边分别除以

ρ,然后分别对x,y,z 求偏导,得到:

1

1

(

)zx

x XX

du P yx

X X

y

z dt

τρρ

τ??+

+

+=????

(1)

同理,在y 方向,由牛顿第三定律得:

[()][)][()]

yy

yy

yy

xy

xy

xy

zy

zy

zy

y

Ydxdydz dxdz dy dxdz y

dydz dx dydz x

dxdy dz dxdy z

dxdydz

dt

p

p

p

du ρρττ

τ

ττ

τ

+

+--

+

?+--

+

?+

+--

?=???

等式两边同时除以

ρ,然后分别对x,y,z 求偏导得:

1

1

(

)yy

zy

xy

y

Y y z

x

dt

p

du ρρ

ττ+

++

=

?????? (2)

同理,在z 方向,由牛顿第二定律得:

[(

)][()][()]

zz

zz

zz

yz

xz

xz

yz

yz

yz

z

zdxdydz dxdy dz dxdy z

dydz dx dydz x dxdz dy dxdz y

dxdydz

dt

p

p

p

du

ρρτ

ττττ

τ

+

++--

+

?+--+?+--

?=???等式两边分别除以

ρ,并分别对想x,y,z 求偏导得:

1

1

()yz

xz

zz

z

Z z

x

y

dt

p

du

ρρ

ττ

+

+

+

=

??????

考研数学三(常微分方程与差分方程)-试卷4

考研数学三(常微分方程与差分方程)-试卷4 (总分:58.00,做题时间:90分钟) 一、选择题(总题数:3,分数:6.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 解析: 2.设函数y 1 (x),y 2 (x),y 3 (x)线性无关,而且都是非齐次线性方程(6.2)的解,C 1,C 2为任意常数,则该非齐次方程的通解是 (分数:2.00) A.C 1 y 1 +C 2 y 2 +y 3. B.C 1 y 1 +C 2 y 2 -(C 1 +C 2 )y 3. C.C 1 y 1 +C 2 y 2 -(1-C 1 -C 2 )y 3. D.C 1 y 1 +C 2 y 2 +(1-C 1 -C 2 )y 3.√ 解析:解析:对于选项(D)来说,其表达式可改写为 y 3 +C 1 (y 1 -y 3 )+C 2 (y 2 -y 3 ),而且y 3是非齐次方程(6.2)的一个特解,y 1 -y 3与y 2 -y 3是(6.4)的两个线性无关的解,由通解的结构可知它就是(6.2)的通解.故应选(D). 3.已知sin 2 x,cos 2 x是方程y""+P(x)y"+Q(x)y=0的解,C 1,C 2为任意常数,则该方程的通解不是(分数:2.00) A.C 1 sin 2 x+C 2 cos 2 x. B.C 1 +C 2 cos2x. C.C 1 sin 2 2x+C 2 tan 2 x.√ D.C 1 +C 2 cos 2 x. 解析:解析:容易验证sin 2 x与cos 2 x是线性无关的两个函数,从而依题设sin 2 x,cos 2 x为该方程的两个线性无关的解,故C 1 sin 2 x+C 2 cos 2 x为方程的通解.而(B),(D)中的解析式均可由C 1 sin 2 x+C 2 cos 2 x恒等变换得到,因此,由排除法,仅C 1 sin 2 2x+C 2 tan 2 x不能构成该方程的通解.事实上,sin 2 2x,tan 2 x都未必是方程的解,故选(C). 二、填空题(总题数:1,分数:2.00) 4.当y>0时的通解是y= 1. (分数:2.00) 填空项1:__________________ (正确答案:正确答案:[*]) 解析:解析:将原方程改写成,然后令y=ux,则y"=u+xu".代入后将会发现该变形计算量较大.于 是可转换思维方式,将原方程改写成分离变量,然后积分得 三、解答题(总题数:25,分数:50.00) 5.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00) __________________________________________________________________________________________ 解析: 6.求微分方程x(y 2 -1)dx+y(x 2 -1)dy=0的通解. (分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:用(x 2 -1)(y 2 -1)除方程的两端,则原方程化为由此可见这是一个变量可

最新微分方程与差分方程

微分方程与差分方程

第八章微分方程与差分方程 一、作业题 1.?Skip Record If...? ?Skip Record If...? ?Skip Record If...?,?Skip Record If...?为任意常数 (2)?Skip Record If...? 设?Skip Record If...?,?Skip Record If...?,?Skip Record If...? (代入上式) ?Skip Record If...? ?Skip Record If...?,?Skip Record If...? ?Skip Record If...?,?Skip Record If...? (3)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? (4)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 满足?Skip Record If...?的特解为?Skip Record If...? (5)设?Skip Record If...?代入(1)式中, ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?满足初始条件的特解为?Skip Record If...? (6)特征方程为?Skip Record If...?,解得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢70

习题详解-第10章微分方程与差分方程初步

习题10-1 1. 指出下列方程的阶数: (1)4620x y y x y '''''-+=. (2)2 2 d d 0d d Q Q Q L R t c t ++=. (3)2d cos d ρ ρθθ +=. (4)2()d 2d 0y x y x x y -+=. 解:(1)三阶(2)二阶(3)一阶(4)一阶 2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =. (2)2(+1)d d x y y x =, +1y x =. (3)20y y y '''++=, x y x e -=. (4)22d 0.4d s t =-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可; (3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=; (4)是,代入,2 12d d 0.4,0.4d d s s t C t t =-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程 222d 0d x k x t += 的通解. 解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足2 22 d 0d x k x t +=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解. 4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t +=的通解,求满足初始条件 x | t 2 x | t 的特解. 解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠ 习题10-2 1. 求下列微分方程的通解: (1)()2 310y y x '++=; (2) 2 +'=x y y ; (3) d d sin xcos y y sin y cos x x =; (4) 2 d d d d x xy y y x y y +=+; (5) 22 d d d d y y y x xy x x +=; (6) d d y x y x x y -= +; (7) 22 d d y y x xy x =+; (8) )2(tan 21 2y x y +='. 解:(1)这是可分离变量方程,分离变量得 () 2 31d =d y y x x +- 两端分别积分:

第3章--振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。 解:系统具有一个自由度,选复摆转角?为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =? 其中 )(22 a g P J C O += ρ 得到复摆运动微分方程为 ?? ρcos )(22 Pa a g P C =+ 或 0cos )(22 =-+?? ρga a C 3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。 解:系统具有一个自由度,选θ为广义坐标。 半圆柱体在任意位置的动能为: 222 1 21ωC C J mv T += 用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2 C C m J ρ= 故 222222 1)cos 2(21θρθθ C m Re R e m T +-+= 系统具有理想约束,重力的元功为 题3-1图 题3-2图

θθδd mge W sin -= 应用动能定理的微分形式 W dT δ= θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd m g e d m R e d m R e d R e m C s i n s i n c o s 2)(2222-=+-++ 等式两边同除dt , θθθθθθθθθθ ρ s i n s i n c o s 2)(2222m g e m R e m R e R e m C -=+-++ 0≠θ ,等式两边同除θ 故微分方程为 0s i n s i n )c o s 2(2222=+++-+θθθθρθ m g e m R e Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为 0])[(22=++-θθρge r R C 要点及讨论 (1)本题也可以用平面运动微分方程求解。系统的受力图与运动分析图如图(b )所示。列写微分方程 ??? ??--=-=-=④③② θ θθρsin )cos (2Ne e R F m mg N y m F x m C C C 上述方程包含C x ,C y ,θ ,F ,N 五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标θ之间的关系 ?? ?-=-=θθ θcos sin e R y e R x C C , ???=-=θθθθθ sin cos e y e R x C C 所以 ?????+=+-=⑥ ⑤22cos sin sin cos θθθθθθθθθ e e y e e R x C C 运动学方程式⑤⑥与方程②③④联立,消去未知约束力N ,F ,就可以得到与式①相同的系统运动微分方程。 因为在理想约束的情况下,未知约束力在动能定理的表达式中并不出现,所以用动能定理解决已知力求运动的问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统的动能 222222 1)c o s 2(21θρθθ C m Re R e m T +-+=

微积分(B)常微分方程与差分方程 练习题

For personal use only in study and research; not for commercial use 2013-2014(2) 大学数学(B) 练习题 第六章 For personal use only in study and research; not for commercial use 一、选择题 1. 微分方程xy y 2='的通解为 ( ) A. C e y x +=2 ; B. 2 x Ce y =; For personal use only in study and research; not for commercial use C. 2 C x y e =; D. x Ce y =. 2. 函数221x c y c e +=是微分方程20y y y '''--=的 ( ) A. 通解; B. 特解; C. 不是解; D. 是解, 但既不是通解, 也不是特解. 3. 设线性无关的函数321,,y y y 都是二阶非齐次线性微分方程)()()(x f y x q y x p y =+'+''的解, 21,C C 是任意常数,则该方程的通解是 ( ) A. 32211y y C y C ++; B. 3212211)(y C C y C y C +-+; C. 3212211)1(y C C y C y C ---+; D. 3212211)1(y C C y C y C --++. 4. 微分方程22y x y y x += +'是 ( ) A. 可分离变量的微分方程; B. 齐次微分方程; C. 一阶线性齐次微分方程; D. 一阶线性非齐次微分方程. 二、填空题 1. 微分方程y y y x ln ='的通解是 . 2. 方程x y y sin 2='的奇解为_______________.

流体的平衡微分方程及其积分

流体的平衡微分方程及其积分 一、流体平衡微分方程——欧拉平衡方程 如图所示,在平衡流体中取一微元六面体,边长分别为d x ,d y ,d z ,设中心点的压强为p (x,y,z )=p ,对其进行受力分析: 根据平衡条件,在x 方向有0F x =∑,即: 0zX y z y x p 21z y )21=+)+-((d dxd d d dx p d d dx x p p ρ????- 01X =-x p ??ρ 式中:X ——单位质量力在x 轴的投影 流体平衡微分方程(即欧拉平衡微分方程): ?????????=??-=??-=??- 010101z p Z y p Y x p X ρρρ 物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量力分量彼此相等。 压强沿轴向的变化率(z p y p x p ??????,,)等于轴向单位体积上的质量力的分量(ρX ,ρY ,

ρZ )。 二、平衡微分方程的积分 将欧拉平衡微分方程中各式,分别乘以dx 、dy 、dz ,整理: Zdz)Ydy (Xdx dz z p dy y p x ++=??+??+??ρdx p 因为p = p (x,y,z ) ∴ Zdz)Ydy (Xdx dp ++=ρ ρ为常量; Xdx +Ydy +Zdz 应为某函数W =F (x ,y ,z )的全微分: dz z W dy y W dx x W dz dy dx d ??+??+??=++=)Z Y (X W dW dp =ρ 平衡流体中压强p 的全微分方程 积分得:p=ρW +c 假定平衡液体自由面上某点(x 0,y 0,z 0)处的压强p 0及W 0为已知,则: c =p 0-ρW 0 ∴ p=p 0+ρ(W-W 0) 欧拉平衡微分方程的积分 三、帕斯卡定律 处于平衡状态下的不可压缩流体中,任意点M 处的压强变化值△p 0,将等值地传递到此平衡流体的其它各点上去。 说明:只适用于不可压缩的平衡流体; 盛装液体的容器是密封的、开口的均可。 四、等压面 平衡流体中压强相等的各点所组成的面。 等压面:dp =ρ(Xdx +Ydy +Zdz )=0 ρ为常量,则:Xdx +Ydy +Zdz =0 即:质量力在等压面内移动微元长度所作的功为零。 等压面的特征:平衡流体的等压面垂直于质量力的方向 只有重力作用下的等压面应满足的条件: 1.静止; 2.连通; 3.连通的介质为同一均质流体;

常微分方程和差分方程解法归纳

常微分方程解法归纳 1. 一阶微分方程部分 ① 可分离变量方程(分离变量法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为) ()(),(y h x g y x f =的形式,我们称)()(y h x g dx dy =为可分离变量的方程。 对于这类方程的求解我们首先将其分离变量为 dx x g y h dy )() (=的形式,再对此式两边积分得到 C dx x g y h dy +=??)()(从而解出)()(y h x g dx dy =的解,其中C 为任意常数。 具体例子可参考书本P10—P11的例题。 ②一阶线性齐次、非齐次方程(常数变易法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为 y x P x Q y x f )()(),(-=的形式,我们称由此形成的微分方程)()(x Q y x P dx dy =+为一阶线 性微分方程,特别地,当0)(≡x Q 时我们称其为一阶线性齐次微分方程,否则为一阶线性非齐次微分方程。 对于这类方程的解法,我们首先考虑一阶线性齐次微分方程 0)(=+y x P dx dy ,这是可分离变量的方程,两边积分即可得到?=-dx x P Ce y )(,其中C 为任意常数。这也是一阶线性 非齐次微分方程的特殊情况,两者的解存在着对应关系,设)(x C 来替换C ,于是一阶线性 非齐次微分方程存在着形如?=-dx x P e x C y )()(的解。将其代入)()(x Q y x P dx dy =+我们就可 得到)()()()()()()()()(x Q e x C x P e x C x P e x C dx x P dx x P dx x P =?+?-?'---这其实也就是 ? ='dx x P e x Q x C )()()(,再对其两边积分得C dx e x Q x C dx x P +? =? )()()(,于是将其回代入 ? =-dx x P e x C y )()(即得一阶线性微分方程)()(x Q y x P dx dy =+的通解? ? ? ??+??=?-C dx e x Q e y dx x P dx x P )()()(。 具体例子可参照书本P16—P17的例题。

第10章 微分方程与差分方程

第十章 微分方程与差分方程 A 级自测题 一、选择题(每小题5分,共20分) 1.下列方程中为可分离变量方程的是( ). A .xy y e '=. B .x xy y e '+=. C .22()()0x xy dx y x y dy +++=. D .0yy y x '+-=. 2.下列方程中为可降阶的方程是( ). A .1y xy y '''++=. B .2()5yy y '''+=. C .x y xe y ''=+. D .2(1)(1)x y x y ''-=+. 3.若连续函数()f x 满足关系式30()()ln 33 x t f x f dt =+?,则()f x 等于( ). A .ln 3x e . B .3ln 3x e . C .ln 3x e +. D .3ln 3x e +. 4.函数28x x y A =?+是差分方程( )的通解. A .21320x x x y y y ++-+=. B .12320x x x y y y ---+=. C .128x x y y +-=-. D .128x x y y +-=. 二、填空题(每小题5分,共20分) 1.微分方程2sin d d ρρθθ +=的阶数为 . 2.一阶线性微分方程()()y g x y f x '+=的通解为_________. 3.微分方程0y y e '+=满足初始条件(1)0y =的特解为_________. 4.差分方程12x x y y +-=的通解为 . 三、求下列微分方程的通解(每小题5分,共40分) 1.240ydx x dy dy +-=; 2.()220x y dx xydy +-=;

平衡微分方程与切应力互等定理

第二章应力状态分析 一. 内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。 应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二. 重点

1.应力状态的定义:应力矢量;正应力与切应力;应力分量; 2.平衡微分方程与切应力互等定理; 3.面力边界条件; 4.应力分量的转轴公式; 5.应力状态特征方程和应力不变量 三.知识点 体力、应力矢量、应力分量、平衡微分方程、面力边界条件、主平面与主应力、主应力性质、截面正应力与切应力、三向应力圆、八面体单元、偏应力张量不变量、面力、正应力与切应力、应力矢量与应力分量、切应力互等定理、应力分量转轴公式、平面问题的转轴公式、应力状态特征方程、应力不变量、最大切应力、球应力张量和偏应力张量 §2.1 体力和面力 学习思路: 本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

微分方程与差分方程 详解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点内容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+? ? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

常微分方程与差分方程知识点

常微分方程与差分方程知识点 考试纲要 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 微分方程的简单应用 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 考试要求 1、了解微分方程及其阶、解、通解、初始条件和特解等概念 2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法 3、会解二阶常系数齐次线性微分方程 4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程 5、了解差分与差分方程及其通解与特解等概念 6、了解一阶常系数线性差分方程的求解方法 7、会用微分方程求解简单的经济应用问题 重要知识点 1、微分方程通解中任意常数的个数与微分方程的阶数相同 2、变量可分离微分方程解法 g(y)dy f (x)dxg(y)dy f(x)dx G(y) F(x) C 3、齐次微分方程解法 dy(y)T殳u y- dU dx T再用y代替u dx x x (u) u x x 附:可化为齐次的方程 c C| 0,可化为齐次微分方程 a b . . a1 bi dy ax by c dx ax by c c或c o a b a b x X h 0,设h,带入原方程解出h,k,可化为齐次微分方程y Y k 设印b,dy ax by c ,令ax a b dx (ax by) c 则可化为史的变量可分离微分方程 dx by v, 0,

7、二阶常系数非齐次线性微分方程的解法 齐次方程y t 1 ay t 0的通解为y t C a ,其中C 是一个任意常数。 若给定初始条件y 0 C o ,则y 0 C 0 a t 即为满足该初始条件的特解。 对于非齐次方程 y t 1 ay t f (t),其通解也是非齐次方程的一个特解 y t*与对应齐次方程通解之和。即: ? t y t y t C a 。

最新常微分方程和差分方程

常微分方程和差分方 程

第十章常微分方程和差分方程在实际问题中,我们研究的对象――变量往往是以函数关系的形式建立了变量间的客观联系,但却很难直接得到所研究的变量之间的函数关系,反而更容易建立这些变量、它们的导数或微分之间的关系,即得到一个关于未知函数的导数或微分的方程,我们称此方程为微分方程.通过求解这样的微分方程,我们同样可以建立所研究的变量之间的函数关系,这样的过程称为解微分方程.现实世界中的许许多多问题都可以在一定的条件下抽象为微分方程,例如人口的增长问题、经济的增长问题等等都可归结为微分方程的问题;这时的微分方程习惯上称为所研究问题的数学模型,如人口模型、经济增长模型等.因此微分方程是数学联系实际并应用于实际的重要途径和桥梁,是数学及其他学科进行科学研究的强有力的研究工具. 微分方程是一门独立的数学学科,有完整的理论体系.我们在这一章主要介绍微分方程的一些基本概念,几种常用的一阶、二阶微分方程的求解方法,线性微分方程的解的理论及求解方法. 但是在经济管理和许多的实际问题中已知的数据大多数是按等时间间隔周期统计的,因而相关变量的取值是离散变化的.如何 仅供学习与交流,如有侵权请联系网站删除谢谢56

仅供学习与交流,如有侵权请联系网站删除 谢谢56 寻求它们之间的关系及变化规律呢?差分方程是研究这样的离散型数学问题的有力工具,本章在最后介绍差分方程的一些基本概念及常用的求解方法. §10.1 微分方程的基本概念 先看一个例子. 例1设有某种新产品要推向市场,t 时刻的销量为)(t x ,由于产品性能良好,每个产品都是一个宣传品,因而t 时刻产品的销售的增长率 dt dx 与)(t x 成正比;同时考虑到市场的容量是有限的,假设市场的容量为N ,统计数据表明dt dx 与尚未购买产品的潜在顾客的数量)(t x N -也成正比;则可建立如下的微分方程: )(x N kx dt dx -=, 其中k 为比例系数.可以求出该微分方程的解为kNt Ce N t x -+= 1)(,其中C 为积分常数. 10.1.1 微分方程的概念 含有自变量、自变量的未知函数及未知函数的(若干阶)导数或微分的方程称为微分方程.

变质量物体的运动微分方程研讨(doc 6页)

变质量物体的运动微分方程研讨 (doc 6页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

变质量物体的运动微分方程及火箭运动 专业:物理学 学号: 0840******** 姓名: 秦瑞锋

变质量物体的运动微分方程及火箭运动 秦瑞锋 (物理与电气工程系09级物理学专业,0840********) 摘要:我们已经了解了一定质量的系统的运动学方程和动力学方程,但在实际问题中,系统的质量往往是变化(按一定规律减少或增加)的,我们所学的一定质量的物体的运动学或动力学方程却不适用于变质量系统,下面我们将研究变质量系统的运动学和动力学的若干方程,以及变质量物体的运动规律. 关键字: 变质量系统 运动微分方程 火箭 动能定理 动量定理 一、变质量物体的基本运动微分方程 在以前的学习中,我们接触到的质点或者质点组系统运动过程中,本身的质量不会发生变化。但在实际生活和自然现象中,在某时刻有一部分质量进入或者离开我么们所要研究的对象,经常有变质量系统的运动情况,例如,地球的质量由于陨石的降落而增加,飞行中的喷气飞机和火箭随着燃料的减少质量减少,浮冰由于溶化而减少质量,运动着的传送带在某时可添加或取走货物,下降的陨石由于空气的作用发生破碎或者燃烧使质量减少……这些质点系在运动过程中,不断发生系统外的质点并入,或系统内的质点分离,以致系统的总质量随时间不断改变,我们称这些系统为变质量系统。那么该用怎样的方法研究变质量系统的运动情况呢? 我们可以假设在任何时刻,系统的分离或并入的质量是小量,两次发生分离或并入的时间间隔是小量,在这些理想的假设下,离开质点系的质量 )(m 2 t 和进入质点系的质量 )(1 t m 是时间的连续可微函数,如果系统的质量m t 在t=0时刻为m 0 ,则它随着时间的 变化规律为)()()(2 1 t t t m m m m +-= ,那对应的关于质量的一些物理量也是对时间的 可微函数,得到微分方程后,进行积分,问题可解决。 设变质量质点的质量m 是时间t 的函数,即m =m (t )。在瞬时t ,质点的质量为 m (t ),质点对于定坐标系Oxyz 的速度为v (图1),即将与之合并的微粒的质量为d m (t ),其对Oxyz 的速度为u 。在瞬时t +d t ,微粒与质点合并。于是质点的质量变为(m +d m ),其对Oxyz 的速度成为v +d v 。对于质量分出的情况则d m <0,即 dt dm 为负。 m 和d m 所组成的质点系在瞬时t 的动量为m v +u d m ;在瞬时t +d t 的动量为 (m +d m )(v +d v )。在d t 时间内,动量的增加t F p d ??=ρ ρ为: p d ρ=(m +d m ))(v d v ρρ+-(m v ρ+u ρ d m )。

考研数学三-无穷级数、常微分方程与差分方程(二).doc

考研数学三-无穷级数、常微分方程与差分方程(二) (总分:100.00,做题时间:90分钟) 一、Section Ⅰ Use of Eng(总题数:1,分数:10.00) What's your earliest childhood memory? Can you remember learning to walk? Or talk? The first time you heard thunder or watched a television program? Adults seldom (1) events much earlier than the year or so before entering school, (2) children younger than three or four (3) retain any specific, personal experiences. A variety of explanations have been (4) by psychologists for this "childhood amnesia". One argues that the hippo-campus; the region of the brain which is (5) for forming memories, does not mature until about the age of two. But the most popular theory (6) that, since adults don't think like children, they cannot (7) childhood memories. Adults think in words, and their life memories are like stories or (8) one event follows (9) as in a novel or film. But when they search through their mental (10) for early childhood memories to add to this verbal life story, they don't find any that fit the (11) . It's like trying to find a Chinese word in an English dictionary. Now psychologist Annette Simms of the New York State University offers a new (12) for childhood amnesia. She argues that there simply aren't any early childhood memories to (13) . According to Dr. Simms, children need to learn to use someone else's spoken description of their personal (14) in order to turn their own short-term, quickly forgotten (15) of them into long-term memories. In other (16) , children have to talk about their experiences and hear others talk about (17) --Mother talking about the afternoon (18) looking for seashells at the beach or Dad asking them about their day at Ocean Park. Without this (19) reinforcement, says Dr. Simms, children cannot form (20) memories of their personal experiences. Notes: childhood amnesia 儿童失忆症。 (分数:10.00) (1).[A] figure [B] interpret [C] recall [D] affirm(分数:0.50) A. B. C. D. (2).[A] now that [B] even if [C] as though [D] just as(分数:0.50) A. B. C. D. (3).[A] largely [B] rarely [C] merely [D] really(分数:0.50) A. B. C. D. (4).[A] refuted [B] defied [C] proposed [D] witnessed(分数:0.50) A. B. C. D. (5).[A] responsible [B] suitable [C] favorable [D] available(分数:0.50)

[考研类试卷]考研数学三(常微分方程与差分方程)模拟试卷12.doc

[考研类试卷]考研数学三(常微分方程与差分方程)模拟试卷12 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 方程y'sinx=ylny满足定解条件=e的特解是 2 若C,C1,C2,C3是任意常数,则以下函数中可以看作某个二阶微分方程的通解的是 (A)y=C1x2+C2x+C3. (B)x2+y2=C. (C)yIn(C1x)+ln(C1sinx). (D)y=C1sin2x+C2cos2x. 3 设C1和C2是两个任意常数,则函数y=e x(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解. (A)y''-2y'+5y=4cosx-2sinx (B)y''-2y'+5y=4sinx-2cosx (C)y''-5y'+2y=4cosx-2sinx (D)y''-5y'+2y=4sinx-2cosx 二、填空题 4 当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量 △y=,且y(0)=π,则y(1)=_______.

三、解答题 解答应写出文字说明、证明过程或演算步骤。 5 设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若 求f(x). 6 已知xy'+p(x)y=x有解y=e x,求方程满足y|x=ln2=0的解. 7 已知方程,求满足条件的φ(x). 8 设f(x)在[0,+∞)上连续,且满足方程 求f(t). 9 设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y'+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k为常数. 10 求下列一阶常系数线性差分方程的通解:(Ⅰ)4y t+1+16y t=20; (Ⅱ)2y t+1+10y t- 5t=0;(Ⅲ)y t+1-2y t=2t; (Ⅳ)y t+1-y t= 11 求下列方程满足给定条件的特解:(Ⅰ)y t+1-y t=2t,y0=3; (Ⅱ)y t+1+4y t=y0=1. 12 已知方程y''+p(x)y'+g(x)y=0,求证: (I)若p(x)+xq(x)≡0,则y=x是方程的一个特解; (Ⅱ)若m2+mp(x)+1(x)≡0,则y=e mx是方程的一个特解. 13 求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx; (Ⅱ)(1+y2)dx=(arctany-x)dy;(Ⅲ)y'+2y=sinx; (Ⅳ)e y y'-=x2(Ⅴ)(Ⅵ)(x2-3y2)x+(3x2-y2)=0;

微分方程习题

微分方程和差分方程作业题 专业:土规1101班 姓名:刘迈克 学号:2011306200521 微分方程模型作业: 1.用matlab 求解微分方程组 00dx x y dt dy x y dt ?++=????+-=?? (1)求在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. (2)分别用 ode23、ode45 求此微分方程组初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异. 解: 程序: [x,y]=dsolve('Dx+x+y=0','Dy+x-y=0', ... 'x(0)=1', 'y(0)=0', 't') ezplot(x,y,[0,5]); (1) =x t t t t e e e e 22224242212 1+-+ 4242 22t t e e y -= (2) 先编写函数文件 verderpol.m function xprime=verderpol(t,x)

xprime=[-x(1)-x(2); -x(1)+x(2)]; 再编写脚本文件 vdpl.m,在命令窗口直接运行该文件 clear; y0=[1;0]; [t,x]=ode45(23)('verderpol',[1,40],y0); plot(t,x(:,1),'or-'); ode45求解器微分方程组初值问题的数值解(近似解) Ode23求解器微分方程组初值问题的数值解(近似解) 两种求解器之间的差异: 由图像可知,Ode45求解器的图像中点数比较多,更加精确。 2.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升

相关文档
最新文档