船体结构波激振动及其疲劳损伤

船体结构波激振动及其疲劳损伤
船体结构波激振动及其疲劳损伤

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

第十章船舶主柴油机在船上的安装

第十章船舶主柴油机在船上的安装 柴油机的质量除取决于设计、材料和制造工艺外,更重要的是取决于装配或安装与校中质量,并直接影响柴油机的可靠性与经济性。 本章主要介绍作为船舶主机的大型低速柴油机主要零部件在船上的安装与校中主,要包括:机座的定位与安装;机架、气缸体和贯穿螺栓的安装;固定件相互位置的校中;活塞运动部件的平台检验;运动件与固定件相互位置的校中等;这部分内容对轮机员日常检修、故障分析和驻厂的监修与监造均很重要,是必不可少的安装工艺知识。 通常,在主柴油机定位安装前,船体建造应完成以下内容: (1)船舶主甲板以下,机舱至船尾的船体结构的焊装工作; (2)船舶主甲板以下,机舱至船尾所有舱室的试水工作; (3)船体基线测量并应符合规定的技术要求; (4)机舱至船尾范围内的较大设备均已吊装完毕。 §10-1 机座(Bedplate )的安装 机座是整台柴油机的安装基础,机座的定位与安装十分重要,其质量不仅直接影响整台柴油机的质量和可靠运转,而且直接影响船舶推进系统的质量和可靠性。所以,机座的定位与安装是柴油机在船上安装的关键。

机座的作用:柴油机的基础(★承重;★受力;★集油)。

1机座定位的技术要求 1.1机座在机舱中位置的确定 机座在机舱中的位置是根据轴系校中方法和轴系两端轴的安装顺序来确定的轴系按合理校中安装时,以曲轴与轴系连接法兰上的偏中值定位。轴系按直线校中安装时,机座定位依两端轴安装顺序不同有两种方法:先装尾轴后装主机时,以曲轴和轴系连接法兰上的偏中值定位;先装主机后装尾轴时,以轴系理论中心线定位。 1)轴系按合理校中安装 船舶建造时,在船台上安装尾轴管装置、尾轴和螺旋桨后,一般在船舶下水后定位主机机座, 按轴系合理校中计算书中计算出的轴系第一节中间轴首法兰与曲轴输出端法兰偏中值定位允许误差:偏移值S不大于±0.1mm ;曲折值?不大于±0.1mm /m或开口值S不大于10-4D (D为法兰外径,mm )。 2)轴系按直线校中安装 (1)船舶建造时,在船台上先安装尾轴管装置、尾轴和螺旋桨及中间轴,在船台上或船下水后安装主机、以轴系第一节中间轴首法兰与曲轴输出端法兰的偏中值:偏移值SW0.10mm、曲折值 ?w0.15mm/m 定位机座、 (2)在船台上先安装主机,后安装尾轴等。主机机座按轴系理论中心线定位:机座首、尾位置(轴向)依照机舱布置图确定,即以机座上曲轴首(尾)法兰或机座某个地脚螺栓孔相对于船体某号肋位的距离来确定;高低、左右位置依轴系理论中心线确定。 为了保证轴系准确安装,要求所加工制造的中间轴中有一节中间轴的长度由安装实测尺寸确

船体结构分析

第一章绪论 §1-1船舶结构力学的内容与任务 船舶是一个复杂的水上工程建筑物。它航行于江河湖海,担负着运输、生产、战斗及其他各种任务。我国有漫长的海岸线,无数的内河湖泊,还有广阔富饶的海疆,为此就需要大量的、各种类型的船舶来从事各方面的工作,为社会主义革命和建设服务。 为了保证船舶能很好地完成上述任务,船舶应具有良好的航行性能、工作性能和具有一定的强度。 船舶具有一定的强度,是指船体结构在正常的使用过程和一定的使用年限中具有不破坏或不发生过大的变形的能力,以保证船舶能正常地工作。由于一般船舶的经常工作状态是航行状态,因此设计人员应首先保证船舶在航行状态有足够的强度。 船在海洋中航行,它所受到的外力是相当复杂的。这个外力除了船的载重和装备等重量以外,主要就是水作用于船体的力。除非船是静置于水中,否则船上受到的力总是动力。动力包括水动压力、冲击力以及船在运动中的惯性力等等。这些力显然取决于海面的情况,波浪的大小(即所谓环境条件),并且还是随机性的,这样就使得船体外力的确定显得相当复杂了。 尽管如此,人们通过长期的生产实践,分析了船体受力和变形的主要特征,认为在考虑船体强度问题时,首先把船整体当作一根梁来研究是合理的。这时将船——或者如一些文献中所说,将“船体梁”’(ship hull girder)静置于静水中或波浪上,计算在船纵向(船长方向)分布的重力与浮力作用下的弯曲变形与应力。这种将船作为一整体来研究的强度问题就叫做船体的“总纵强度”或简称为“总强度”问题,如图1-l,图中(a)称为“中拱状态”(hogging condition);(b)称为“中垂状态”(sagging conation)。长期以来,总强度一直是船体强度校核的主要方面。 除了总纵强度以外,船体的横向构件(如横梁、肋骨、肋板等)及船体的局部构件(如船底板及底纵桁等)也会因局部荷重而发生变形或受到破坏,因此亦需研究这些横向构件或局部构件的强度问题。这类问题通常称为“横向强度”问题或“局部强度”问题,如图1-2及图1-3,以便与前述的总纵强度问题有所区别。 把船舶静置于波浪上或静水中,按简单梁的弯曲理论来研究总纵强度当然是初步的。因此随着时间的推移,人们的认识在总强度的基础上逐步提高,从而使船体强度的计算更接近 于实际。首先提出来的是稳定性问题。十九世纪后期,由于船舶尺度的增加,发现船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)常常会因为受压过度而丧失稳定性,这样就大大减低了船体抵抗总弯曲的能力。因此在总强度计算的同时,稳定性问题就被提了出来。亦就是说,我们在研究船体总强度的时候,必须要考虑受压构件是否有失稳现象,并要分析构件失稳后的应力再分配问题,这样才能正确地反映船体总强度的承载能力。

船体结构与强度设计总结

1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载 荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。 2、船体强度计算包括: (1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷 (2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。响应 (3)确定合适的强度标准,并检验强度条件。衡准(结构的安全性衡准都普遍采用确定性的许用应力法) 3、通常将船体强度分为总强度和局部强度来研究。 4、结构的安全性是属于概率性的。 5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏 的能力,通常成为总强度。总强度就是研究船体梁纵弯曲问题。从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。 6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。 按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。 7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。 局部性载荷是指引起局部结构、构件变形或破坏的载荷。 冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。 8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接 方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。 9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。 10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。 11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。但是,减小结构 尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。因此,应该研究怎样才能达到降低结构重量和降低初始成本这两个目标的最佳配合。 1、船体重量按分部情况来分可以分为:总体性重量、局部性重量。 按变动情况分可以分为:不变质量和变动质量。 2、对于船体总纵强度的计算状态,选取满载:出港、到港;压载:出港、到港;以及装载 手册中所规定的各种工况作为计算状态。 3、计算波浪弯矩的船体标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4、计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种, 直接法又称为麦卡尔法。 5、史密斯修正:计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对 浮力曲线所做作的修正,称为波浪浮力修正,或称史密斯修正。 6、船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船 体梁。 7、船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体抵抗总纵弯 曲的能力,成为总纵强度(简称纵强度)。 8、波浪附加剪力、波浪附加弯矩完全是由波浪产生的附加浮力(相对于静水状态的浮力增 量)引起的,简称波浪剪力和波浪弯矩。

船体结构开孔及补强规则

船体结构开孔及补强规则 1 范围 本标准规定了船体构件上的应力区域,船体结构开孔(含开口、切口)规则及补强形式。 本标准适用于钢质海船(船长≥20m)建造过程中管系、电缆穿过船体构件时的开孔规则及补强形式, 其它类型船舶及海上工程设施可参照执行。 2. 船体结构开孔规则 2.1 开孔基本原则 2.1.1 开孔形状一般为圆形或腰圆形,孔长轴应沿结构跨度方向或船长方向布置,如需矩形开孔时,其四角需有足够大的圆角,圆角半径R≥h/8(h为孔高)且R≥30。 2.1.2 开孔应远离流水孔、透气孔、减轻孔、人孔、型材贯穿孔等。 2.1.3 开孔边缘应光顺,无影响强度的缺口。 2.1.4 在强构件腹板上开孔时,其开孔位置应尽可能设置在构件的中和轴处或偏近骨架带板(即甲板、壁板或外板)一边,避免在近面板处开孔。 2.1.5 所有肋板、旁桁材上均应开人孔; 所有肋板、旁桁材、纵骨均应有适当的流水孔、透气孔,并应考虑泵的抽吸率;除轻型肋板外,开孔的高度应不大于该处双层底高度的50%, 否则应予加强。各肋板开孔位置在船长方向应尽量按直线排列, 以便利人员出入。在肋板的端部和横舱壁处的 1 个肋距内的旁桁材上, 不应开人孔和减轻孔, 否则开孔边缘应予加强,肋板及旁桁材在支柱下的部分一般不应开孔, 否则应作有效加强。 2.1.6 船中 0.75L 区域内双层底中桁材不允许开孔,特殊情况下必须开孔时,应予以有效加强;船中0.75L 以外中桁材上开孔高度不应大于该处中桁材高度的40%。 2.1.7高强度钢构件尽量少开孔,若开孔应采用圆形或腰圆形。 2.1.8 开孔边缘不要靠近板缝,至少离开50mm;开孔与板缝相交时,孔边缘离板缝不小于75mm,孔中心与板缝距离要尽量小,见图1。 图1 2.1.9 当梁上有密集的小开孔且间距又不满足对开孔间距的要求时,则开孔的宽度和长度的计算值应以全部开孔的最大外轮廓尺寸作为开孔计算的宽度和长度,密集小孔可扩为一腰圆孔。 2.1.10 开孔总长度不能超过0.6 肋距(或0.6 纵骨间距),开孔应分散,不能同时密集在邻近的肋距(或纵骨间距)内。 2.1.11 在船舯0.5L 区域内的强力甲板上开孔,其圆角半径为开口宽度的1/24(Rmin≥300mm)。如舱口围板为套环形式时,圆角半径Rmin≥150mm。 1

船体结构修理工艺

船体结构修理工艺 一,常见的几种施工工艺 1. 结构更换:更换损坏了或蚀耗了的部件,使之恢复成原有的形式; 2. 结构部分更换:考虑到整个结构更换比换困难,涉及面广,其中有的部件的蚀耗还未到非换不可的程度,征得验船师的同意,可以进行结构部分更换; 3. 结构矫正:在更换外板、甲板时采用,主要包括冷加工矫正和就地热矫正; 4. 结构拆下、矫正、装复:有时外板变形严重,无法就地矫正修复,则将外板拆下送到车间,利用机械设备进行矫正,待在外板原来的部位的内部骨架就地矫正结束后,再将外板原位装复,必要时亦可将骨架一起拆下送车间矫正; 5. 结构拆除:有时船体经过改装后,有一些结构已无存在的必要,须予以拆除; 6. 焊接工艺:(1)焊接前,接缝处应批出斜坡口,以消除夹缝空档。常见的坡口按焊接的要求有V形、Y形、X形和K形;(2)焊接表面冷却后有一层灰色的焊渣,必须铲除干净,防止夹渣。焊缝要求均匀平整,如焊坑、咬边或者烧穿钢板,均为不合格,应当刨除重焊;(3)对于旧焊缝的修理,不可直接在原有的焊缝上面加焊,应将待修的旧焊缝及其两端各延长5-8mm长度全部刨掉,批出整齐的斜坡口,然后焊接,要特别注意新、旧焊缝接合处的质量;(4)对于构件本体裂缝的焊接,必须先在裂缝的两端各钻一个止裂孔,以便使其内应力在此处向各个方向分散,然后批槽堆焊。如果焊接大尺寸的铜制构件的裂缝,除必须钻止裂孔及批槽外,还应当预先用慢火将构件烘热,保持在一定温度上焊补;(5)对于地环、羊角等的焊接,如带底座者,应按复板焊接的工艺要求进行焊接;如天底座者,其脚部应批成锥形然后堆焊,不可采用仅在圆钢角部堆焊一圈的方法。 二,船体渗漏及其修理工艺 1. 产生原因: 由于金属遭受腐蚀,其完整性就逐渐遭到破坏,在焊缝处局部强度逐渐下降,加上船舶在海面上经常收到水的压力和波浪冲击,以及船舶主机、辅机工作时引起的船舶振动,还有不正确的货物装载与移动,船舶在波浪上时而中拱,时而中垂等,在这些外力的作用下,船舶产生纵向和横向的弯曲,使船体发生变形,在腐蚀严重处就造成焊缝纹路增大,从而产生渗漏现象,这在船体外板、甲板和水密舱壁的接缝处常可见到。 2. 修理工艺:

船体结构规范计算书

目录 1.计算说明 (3) 2.本船主尺度及计算参数 (3) 3.外板 (3) 4.甲板 (4) 5.单层底结构 (5) 6.舷侧骨架 (6) 7.甲板骨架 (7) 8.支柱 (9) 9.平面横舱壁 (10) 10.平面纵舱壁 (12) 11.浮箱结构计算 (13) 12.泵舱结构计算 (16)

1. 计算说明: 本船为无人的非自航的箱形驳船,在甲板上承载新下水船舶。并通过下潜、使新船下水。港内作业,属遮蔽航区。主船体采用纵骨架式结构,滑道部位特殊加强。浮箱采用横骨架式结构。全船结构设计依据中国船级社1996年《钢质海船入级与建造规范》(以下简称“规范”)第2篇之第2章“船体结构”、第5章“油船”及第12章“驳船”部分的要求进行计算。同时,满足中国船级社1992年《浮船坞入级与建造规范》中的有关要求。 2. 本船主尺度及计算参数: 1)船长L=60 m; 2)船宽B=35 m; 3)型深D=6 m; 4)计算吃水d=4 m; 5)方形系数C b= ▽/(L*B*d)≈1; 6)L/D=10, B/D=5.83; 7)纵骨间距S=0.0016L+0.5=0.6m=600mm; 8)肋板、强横梁及强肋骨间距S=2m 。 9)甲板负荷P 及甲板计算压头h: ①一般部位:P1=10t/m2=100kP a ,h1=0.14P1+0.3=14.03m; ②滑道部位:P2=25t/m2=250KP a,h2=0.14P2+0.3=35.3m; 3. 外板 3.1船底板 3.1.1 据规范5.2.1.1,船中部0.4L区域内的船底板厚度应不小于: t1=0.056sf b(L1+170)=0.056×0.6×1×(60+170) =7.728mm t2=6.4sf b d=6.4×0.6×1×6=9.41mm

船体振动学

1.系统的自由度:确定振动系统运动所需的独立坐标数目即为系统的自由度数。 2.广义坐标:这种确定系统在空间位置的独立参变量称为广义坐标。 3.线性振动:在这些条件下,系统的振动可以用常系数线性微分方程来描述,称为线性振动。 4.自由振动:系统对初始激励的响应通常称为自由振动。 5.强迫振动:对外部作用力的响应称为强迫振动。 6.干摩擦阻尼力:当系统与外界的固体相接触运动时,即产生摩擦阻力,称为干摩擦阻尼力。 7.粘性阻尼力:它是系统与外界粘性流体接触时,在速度不高的情况下所产生的阻尼力。 8.流体动力阻力:当系统与外界的粘性流体接触,且速度较高,并在粘性较小的流体中运动 时,即发生与速度平方成正比的阻力,称为流体动力阻力。 9.材料内阻尼力:是因为实际材料并不是完全弹性而引起的,又称材料的非弹性阻尼。 10.结构内阻尼力:是因为系统本身结构装配或连接而引起的。 11.准周期振动:这种由于振动系统受到阻尼力作用,造成能量损失而使振幅逐渐减小的振动 称为衰减振动,或称为准周期振动。 12.均匀直梁弯曲自由振动的特性:(1)均匀直梁是具有分布质量及抗弯刚度的无限自由度系 统(2)固有频率和固有振形是结构的固有特性,不仅与材料的性质、结构的刚度等因数有关,而且还和边界条件有关(3)当梁作任一主振动时,类似于单自由度系统的振动(4)在所讨论的线性振动范围内,均匀直梁弯曲自由振动是无限多个主振动的线性叠加,梁中任一点的运动则是各主振动所引起运动的总和。(5)固有振形具有正交性,即各固有振形之间是相互独立的。 13.Timoshenko梁理论:一般的梁单元,是基于初等力学中的平截面变形假定,在这个假定中, 实际上认为弯曲变形是主要的变形,剪切变形是次要的变形,因而可以不计,这对于高度远小于跨度的实腹梁来说,不会引起显著的误差,但对于有些空腹梁或都高跨比不是很小的梁来说,就不太精确了,所以有必要计及剪切变形,Timoshenko梁就是能考虑剪切变形的梁。 14.转动惯量和剪切变形对梁固有频率的影响:从物理意义上说,剪切的作用使系统的刚度下 降,转动惯量使系统的有效质量增加,这两方面的影响均使系统的固有频率降低。其中剪切的影响大于转动惯量的影响。 15.船体总振动:整个船体的振动称为总振动,这时将船体视为一根两端自由支持的变截面空 心梁。包括:(1)垂向振动:在船体的纵中剖面内的垂向弯曲振动(2)水平振动:在船体的水线面内的弯曲振动(3)扭转振动:船体横剖面绕纵向轴线的振动(4)纵向振动:船体横剖面沿其纵向轴线作纵向抗压的往复振动。 16.局部振动:船体局部结构,如板架、梁、板等对于整个船体所作的附加振动称为局部振动。 (1)垂向振动:平行于垂向轴的的直线振动(2)横向振动:平行于左右方向的水平振动(3)纵向振动:平行于首尾方向的水平振动。 17.随机振动:这种在任何未来时刻表征振动物理量的瞬时值不能预先精确地加以判断的非周 期性的持续振动;波击振动:当波浪的遭遇频率与船体的首谐垂向固有频率相等时,会出现由波浪对船体的非冲击性水动力作用引起的全船稳态垂向垂向两节点振动;浪击振动:是非周期性的振动,是船体受波浪冲击而出现的弯曲振动现象。 18.节点:船体总振动时振幅为零的横截面(较高谐调的主振动具有较多的节点,较高的频率, 较短的周期;较低谐调的主振动具有较少的节点,较低的频率,较长的周期。) 19.船体总振动阻尼的特点:当激振力的频率与船体振动的某一固有频率相等时,船体将发生 共振,第一谐调共振时,峰值最高而且曲线很陡,随着阶数的增加,共振时峰值越来越小,曲线也越来越平坦,船体总振动的阻尼与振动频率有关,频率越高,阻尼越大。 20.船体总振动减少的原理:改变结构的固有频率或激励频率以避免共振;减小激励的幅值与 减小激励的传递以降低强迫振动的程度;增加结构刚度和阻尼以降低响应等。

船舶与海洋工程结构振动分析中的设备实用建模方法

船舶与海洋工程结构振动分析中的设备实用建模方法 摘要:随着现代化科学技术的迅猛发展,各行业都步入了一个全新且迅速的发展阶段,尤其是对于海洋领域的探索与征服。自改革开放以来,我国在船舶的研究和技术的革新等方面都已经有了全面的发展,并经过多年来的努力已经取得了非常大的进步,这对于推动我国海洋技术的发展来说是具有极大意义。本文将在海洋工程的研究基础上,对设备的合理运行进行了深入性研究,在设备应用建模上进行了相应的探讨。 关键词:船舶和海洋工程;建筑模型;技术创新 前言:科技的进步促进了船舶技术的迅速发展,为了能够更好的满足于现代化的发展现状,人们在海洋行业进行了更深入性的探索,进行了进一步的发展与创新。然而,受外界等各项因素的影响,严重的阻碍了探索的进程。而随着科学技术的不断发展,人们运用计算机网络系统可以实现人们无法完成的工程。在海洋探索方面,运用计算机建立建筑模型是新兴的,也是对于进一步探索的重要的关键的一步。下文中我们将进行进一步的探索。 1目前海洋探索以及船舶技术的模型种类 就目前我国海洋探索以及船舶技术的模型种类进行分析,其中有种模型是以建筑为中心,并进行进一步的具体分析,这种模型的特点是把不同的设备进行不同的分配,使得各个物件都可以得到充分的利用,为了更好的呈现出这种模型,人们大多用具体的图表进行演示。运用这种形式是为了更好地研究相关的货物以及设备的分布情况,从而方便决策者进一步的进行科学的决策。运用电子计算机网络系统对于相关的设备结构进行模拟,而模拟的方法是通过网络系统构造出的无数条框架结构结合成相一致的设备,这样可以方便进行更好的模拟,此外,通用的技术还有根据不同的形状大小进行分类,探究各种设备如何能够保持均匀有效的分布,合理进行分配,对于宝贵的空间资源进行充分的合理利用,更好地增加工作效率。除了相关的抽象的模型之外,有些信息还是需要通过具体的数据表现出来的,这种通过具体的数字表现出来的模型的形式也是有多种分类的。例如根据不同的信息种类也可以把模型分为以质量为主,以形状为主或者是通过具体的数字反应出准确的信息等多种形式。但是根据长期的经验来看,上文中所提到的这些常见的模型方式都存在着这样或者那样的问题,所造成最后模拟出来的信息并不是十分准确,一定程度上影响了正常的工作效率。有时候一个微小的误差都会造成严重的后果,如何解决这些问题成为了现阶段发展研究的重中之重。 2为了解决误差而提出一种新的模型方式以及这种方式的优点 现在新介绍的这种建筑模型的方式,依旧是以计算机电子网络为基础。都知道进行以上的种种研究,采取多种方法的最终目的都是为了增加船舶在航行过程中的安全系数,使得能够更加安全地航行。而为了安全航行首先所要考虑到的就是如何减轻船舶在海洋环境下的震动频率。所谓的这种频率,其摆动的大小是受多种因素共同作用影响,其中,影响最大的就是船舶本身的重量以及船的坚硬程度所决定的。对于研究同一艘船而言,船本身的重量一定是保持不变的,所要研究的就是如何增加杆的硬度,这样才能更加安全地保持行驶。而增加坚硬程度也是有多种因素的影响,这是由一个具体的公式推算出来的。我们要通过这个模型以及公式建立表格,对于表格中所提及的数据进行具体准确的分析,由此来找出

第十章第二节船体结构

1. ______ is not a longitudinal structural member结构构件. A.sideshell 船侧外板B.bottom shell plating船底壳板 C.inner bottom plating 内底板D.transverse bulkhead 2. ______ is not a static load. A.Actual weight of the ship's structure,outfitting,equipment and machinery B.Ballast load(weight) C.Cargo load D.Slamming and sloshing load 3. A block and tackle is rove to advantage.This means that the ______. A.blocks have been overhauled B.hauling parts of two tackles are attached C.hauling part leads through the movable block D.hauling part leads through the standing block 4. A carling is used aboard ship ______. A.As a connecting strap between the butted ends of plating B.To stiffen areas under points of great stress between beams C.To prevent the anchor from fouling when the brake is released D.To provide an extra heavy fitting in a heavy lift cargo rig 5. A continuous watertight bulkhead is normally also a(n)______.连续的 水密舱壁通常也是。 A.Structural bulkhead 主(结构)舱壁B.Exterior bulkhead C.Centerline bulkhead 中纵舱壁D.Joiner bulkhead 6. A deck fitting,used to secure line or wire rope,consisting of a single body with two protruding horns is called a ______. A.Bitt B.Bollard C.Capstan D.Cleat羊角 一个甲板装置,用于固定绳索或钢丝绳,由具有两个突出角的单体组成的叫 。 7. A design modification of an anchor chain which prevents kinking is the ______. A.Detachable link B.Stud link C.Kenter link 可拆卸链环 D.Connecting link 为防止变形而改进的锚链是。 8. A set of interior steps on a ship leading up to a deck from below is known as ______. A.A companion way B.Tween-decks C.Stairs D.Any of the above are acceptable 船上一个由底层向上一直通到甲板的内部梯子的装置被称为。9. A term applied to the bottom shell plating in a double-bottom ship is

船舶机械振动及控制

船舶机械振动及控制 对船舶的机械有害振动的控制措施主要有防振和减振两个方面,防振是指在船舶设计阶段就考虑到振动的容许标准而采取降低振动的措施,减振则是指使营运船舶的振动下降到容许的标准。 防振措施和减振措施仅仅是对象的差异及处理的角度有些不同,其基本原理是一样的,即: (1)避免共振。改变结构的固有频率或激励频率防止共振的产生。 (2)减小激励力。进行动平衡或结构改型减小激励幅值。 (3)减小振动或激励力的传递。增加阻尼以防止吸收振动能量,装设减振装置以达到减小幅值的目的。 一柴油机振动控制 柴油机时引起船体振动的主要激励源之一,因此在船舶设计初期,选择什么样的机型是至关重要的。在满足功率等指标的情况下,应注意选择具有较小不平衡力和不平衡力矩的柴油机做主机。柴油机的缸数越多,其一般平衡性就越好。 (一)防止共振 选择主机时应配合螺旋桨考虑是否与船体发生低阶共振的可能性,尤其应避免在主机常用转速下的低阶共振问题。在设计阶段,先计算船体总振动的几个主要谐次的固有频率,以避免与柴油机和螺旋桨的各阶激励力共振。主机的选型应与减速齿轮箱、螺旋桨在一起考虑,在改变主机营运转速较困难时,也可改变变齿轮箱减速比或改变螺旋桨页数以达到改变激励频率的目的。 (二)减小激励力 对于存在外部不平衡力或者不平衡力矩柴油机,可以通过安装平衡补偿装置来减小振动激励力。这是一种普遍应用的防止有害振动的措施。

平衡补偿装置是使偏心质量以与主机激励频率相同的转速旋转,产生补偿力或者力矩以抵消柴油机的不平衡力,减少他们对振动的影响。按运转驱动方式可将平衡器分为两大类:一是由电动机驱动,或称电动平衡器;二是由曲轴驱动直接附装在主机上。按被平衡激励的形式又可以分为一次力矩平衡器、二次力矩平衡器和组合平衡器。 电动平衡器一般安装在船体垂向振动振幅相当大的舵机底甲板上。 (三)减小振动传递 1,隔振器 对于不平衡的主机或辅机可以在机座下装设隔振器,以减小主机激励力对船体的传递。 所要求的减震器应该柔软些,这通常只有对高速柴油机才能实现。 目前国内常用的减震器主要有橡胶减震器和金属弹簧减震器。 另外,钢丝网隔减震器在工程上的应用也得以发展。 2防振支撑 近代船用大型柴油机因采用长冲程和超长冲程,其机架横向振动是一个突出问题,成为船体激励源振动之一。当横向振动比较大时,可在主机上部与船舷左右侧间设横向防振支撑于船体连接。它通常能使机架横向振动减小50%以上,固有频率提高5%~50%。 目前常用的防振支撑主要有机械式、摩擦式、液压式三种。 (1)机械式支撑 机械式支撑使主机的刚性得到明显的增加,机架的固有频率上升,下降。但另一方面,机架的部分振动能量讲通过支撑传递至全体,有可能加剧船体的振动。(2)摩擦式支撑 摩擦式支撑的断面形状为U型。

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较难在耐波性、快速性方面作大幅度改进。应用新技术研究开发新船型,成为军事大国提高国防工业和海军作战水平的重要途径之一。 新的船型开发离不开先进的船体结构设计技术。船型研发周期长、成本高、舰船使用期长、环境和载荷恶劣,在其使用期内可能遭遇到多种随机事故或战斗伤害,损害一旦发生,将对结构产生不利影响,导致整个船体结构失去工作或战斗能力,也造成很大的经济损失。因此,要求船体结构设计技术不断进步、领先,船体线型最优化、构件尺寸合理,工况和承载能力计算和校核精确,以支撑先进可靠的船型开发。 2 国外研究现状 船型与船体结构设计技术在国防工业领域的研究和发展突出体现在海军舰艇的需求不断升级,促使一些先进船型的开发、试验和发展,对船舶设计技术的要求也不断提高。 多体船型主要有双体船、三体船、四体船和五体船等,同单体船相比,多体船具有更加优越的浮性和稳性、耐波性、机动性和隐身性,能够大量装载,抗打击能力强,在民用和军用领域得到了广泛的应用,其各船型也是各军事大国研究的热点。小水线面双体船(SWATH)、穿浪双体船是高性能船舶中发展较快、趋于成熟的船型。美国多年来一直大力开发小水线面双体船,在小水线面双体船的线型、流体、结构、耐波性、操纵性等基础理论与研究试验方面取得了一系列成果,并拥有相当的技术储备。自1973年到21世纪初,美国开发了“卡玛利诺”号、“海影”号、“胜利”号、“搜索”号、“海刀锋”号和“无瑕”号等6型小水线面双体船型的水声监听船、试验船等。2005年,法国研制出一种SWATH型近海巡逻舰,该舰排水量2000吨,采用全电力推进系统,航速12节时续航力达5000海里,并可在6级海况下正常作业。澳大利亚INCAT公司租借给美海军的Incat 050型“联合探险”号、Incat 060型“矛头”号,以及Incat 061型等穿浪双体高速船舶用于进行系列试验、评估及操作使用。英国海军2000年

《船体结构与强度设计》习题题目练习

《船体结构与强度设计》复习题 一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 6、在材料力学中,多数是根据剪力方程与弯矩方程或根据载荷、剪力与弯矩三者之间的微积分关系来画剪力图与弯矩图,在结构力学中也是一样。(×) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行计算。(√) 9、求解静不定梁往往是利用弯曲要素表,并通过变形协调条件来进行,而不能利用“初参数法”。(×) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 14、在船体结构计算中,常将甲板纵骨与船底纵骨视作连续梁,而甲板横梁与船底肋板作为它们的弹性支座。(×) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 16、位移法中关于弯曲要素正负号的规定与力法中的规定一样。(×) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 18、在弯矩分配法基本结构下,连接于节点的各杆杆端的固端弯矩一般来说相互平衡,即作用于节点上的固端弯矩之和等于零。(×) 19、和位移法相比,弯矩分配法可以使问题简单化,因为绕过了求节点转角这一步而直接求出杆端弯矩。(×) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 22、最小变形能定理,又称最小功原理,是莫尔定理的特殊情况。(×) 23、广义位移应理解为杆件在变形中广义力作用点处沿力作用方向的位移,广义力与广义位移永远成线性关系。(×) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 25、若杆件横断面对于两个主对称轴的惯性矩不同,则杆在失稳时总是在刚度最大的平面中弯曲。(×) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以区别弹性范围内失稳的欧拉力。(√) 27、对于高强度钢与普通钢,虽然具有相同的弹性模量,但具有不同的屈服极限,因此用这两种材料做成的杆件,尽管其断面形式相同、跨度相同、固定情况相同,他们的欧拉力是不同的。(×) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨单独时的欧拉力。(√)

航海英语1002第二节 船体结构

第二节船体结构 0287. The upward slope of a vessels bottom from the keel to the bilge is called ___D___. 船底从龙骨到舭部向上的斜坡叫() A.Camber 梁拱B.Sheer 舷弧C.Rake倾角D.Rise of bottom 底部升高 0995. ____D__ is not a longitudinal structural member. 下列哪一项不是纵向强度结构() A.sideshell 船壳边板B.bottom shell plating 船壳底板C.inner bottom plating 内底板D.transverse bulkhead 横舱壁 0996. ____D__ is not a static load. 下列哪种情况不是稳定装载状态() A.Actual weight of the ship's structure,outfitting,equipment and machinery 船舶结构、舾装、设备及机械等的实际重量 B.Ballast load(weight)压载C.Cargo load 载货 D.Slamming(猛撞)and sloshing load(泼溅)自由液面 0998. A carling is used aboard ship ___B___.[49] 在船上纵梁有什么用途() A.As a connecting strap between the butted(使接合)ends of plating 用于连接壳板的铁条 B.To stiffen areas under points of great stress between beams 用来加强受力的横梁之间的区域 C.To prevent the anchor from fouling when the brake is released 当松开刹车后,用来防止锚链绞缠 D.To provide an extra heavy fitting in a heavy lift cargo rig 在重吊吊吊杆中增加承重构件 0999. A continuous watertight bulkhead is normally also a(n)___A___.[71] 连续的水密舱壁一般同时也是() A.Structural bulkhead 结构舱壁B.Exterior bulkhead 外壳舱臂 C.Centerline bulkhead 船中央舱臂D.Joiner bulkhead 连接舱壁 1000. A deck fitting,used to secure line or wire rope,consisting of a single body with two protruding horns is called a ____D__.[77] 甲板上由两个突出的角状结构组成的,用来挽、系绳索或缆绳的设备叫() A.Bitt单柱系缆桩B.Bollard系缆桩C.Capstan绞盘D.Cleat 羊角 1002. A set of interior steps on a ship leading up to a deck from below is known as __A___.[182] 在船体内部,从下层甲板到上层甲板之间的台阶叫做() A.A companion way升降口通道B.Tween-decks 双层甲板C.Stairs 楼梯 D.Any of the above are acceptable 以上均可

波激振动和砰击颤振对船体结构疲劳强度影响计算指南 (1)

中 国 船 级 社 波激振动和砰击颤振对船体结构疲劳强度影响 计算指南 北京 2015年1月 指导性文件 GUIDANCE NOTES GD01-2015

简要编写说明 船舶在海浪环境的波浪力作用下会产生波激振动和砰击颤振现象(对该现象的介绍见正文第1章),这种现象将对船舶结构疲劳寿命产生影响。 本社就波激振动和砰击颤振对船体结构疲劳强度的影响进行了相关研究,该研究包括模型水池试验研究和理论计算分析。研究表明:波激和砰击诱导船体梁振动所产生的垂向波浪弯矩高频分量对船体结构疲劳损伤有一定的贡献。 基于上述研究并参考国内外该领域的研究成果,本社编制了《波激振动和砰击颤振对船体结构疲劳强度影响计算指南》,本指南旨在为评估波激和砰击诱导的船舶振动对结构疲劳的影响提供计算指导性文件。 本指南采用载荷直接计算、水弹性分析和疲劳损伤等效的方法算得波激振动和砰击颤振对疲劳强度影响相关的垂向波浪弯矩的影响系数。本指南应与本社的相关疲劳评估指南或规范一并使用进行船舶结构的疲劳评估。

目 录 第1章 波激振动和砰击颤振现象 (1) 1.1 波激振动现象 (1) 1.2 砰击颤振现象 (1) 第2章 一般要求 (2) 2.1 适用范围 (2) 2.2 基本假定 (3) 2.3 波激振动和砰击颤振计算要求 (3) 2.4 波激振动和砰击颤振对疲劳强度影响计算流程 (3) 2.5 符号规定 (4) 第3章 基本条件 (5) 3.1 装载工况 (5) 3.2 波浪环境 (6) 3.3 S-N曲线 (6) 第4章 线性波激振动对船体结构疲劳强度影响计算 (6) 4.1 疲劳损伤计算 (6) 4.2 线性波激振动对疲劳损伤的贡献度 (10) 第5章 非线性砰击颤振和波激振动对船体结构疲劳强度影响计算 (10) 5.1 应力响应 (10) 5.2 疲劳损伤计算 (10) 5.3 非线性砰击颤振和波激振动对疲劳损伤的贡献度 (11) 第6章 船体结构疲劳强度评估 (11) 6.1 计及线性波激振动影响的疲劳强度评估 (11) 6.2 计及非线性砰击颤振和波激振动影响的疲劳强度评估 (12) 附录波激振动和砰击颤振计算参数 (13)

相关文档
最新文档