频率步进雷达多目标ISAR成像方法

ISSN1004‐9037,CODEN SCYCE4

Journal of Data Acquisition and Processing Vol.30,No.4,Jul.2015,pp.810-815DOI:10.16337/j.1004‐9037.2015.04.012

眗2015by Journal of Data Acquisition and Processing

http://sjcj.nuaa.edu.cn E‐mail:sjcj@nuaa.edu.cn Tel/Fax:+86‐025‐84892742

 

频率步进雷达多目标ISAR成像方法

崔应留1,2 罗文茂1 王德纯1,3

(1.南京理工大学电子工程与光电技术学院,南京,210094;2.南京审计学院工学院,南京,211815;3.南京电子技术研究所,南京,210039)

摘 要:针对频率步进雷达同一波束内多个运动目标在径向上重叠而无法分辨时的ISAR成像问题,提出了一种基于调频傅里叶变换的ISAR多目标成像新方法。在构建频率步进雷达多目标回波信号模型的基础上,采用调频傅里叶变换精确估计各个目标的速度参数,结合Clean方法实现对多目标回波信号的分离,完成多目标ISAR成像。仿真实验结果进一步验证了文章所采用方法的有效性。

关键词:多目标成像;频率步进;调频傅里叶变换;速度估计

中图分类号:TN95 文献标志码:A

Stepped Frequency ISAR Imaging of Multiple Targets

Cui Yingliu1,2,Luo Wenmao1,Wang Dechun3

(1.School of Electionic and Optical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China;2.School of Technology,Nanjing Audit University,Nanjing,211815,China;3.Nanjing Research Institute of Electronics Technolo‐gy,Nanjing,210039,China)

Abstract:Aiming at the stepped frequency ISAR imaging problems of multiple moving targets in the same antenna beam overlapped over the range,a new method of stepped frequency ISAR imaging of mul‐tiple targets is proposed,based on the chirp‐Fourier transform(CFT).On the basis of the multi‐target echoes model of stepped frequency radar,the velocities of each target can be estimated accurately by the CFT.Then the multiple target echo signals can be separated by combining CFT and clean idea,thus the ISAR imaging is finished.The simulation results also prove the validity of the proposed method.Key words:imaging of multiple targets;stepped‐frequency;chirp‐Fourier transform;speed estimation

引 言

多目标成像方法的研究,特别是对编队飞行目标识别或成像方法的研究具有十分重要意义[1‐4]。由于编队飞行的目标间距小,多个目标可能位于同一波束,对于低分辨雷达而言无法在距离或方位上进行分辨。频率步进雷达信号作为高距离分辨信号,在雷达目标识别和成像方面得到广泛应用[5,6]。另外,逆合成孔径雷达(ISAR)成像技术可以观察到目标的精细结构。基于频率步进信号ISAR成像技术为识别多目标提供可能。目前对于基于频率步进信号的ISAR研究的主要是对单一目标进行成像,而对

基金项目:国家自然科学基金(61170105)资助项目。

收稿日期:2014‐03‐17;修订日期:2014‐12‐05

雷达原理复习

1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角,仰角 在圆柱坐标系中表示为:水平距离D,方位角,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标: 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出功率变化小于1bB的工作频带宽度。 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发

频率步进雷达多目标ISAR成像方法

ISSN1004‐9037,CODEN SCYCE4 Journal of Data Acquisition and Processing Vol.30,No.4,Jul.2015,pp.810-815DOI:10.16337/j.1004‐9037.2015.04.012 眗2015by Journal of Data Acquisition and Processing http://sjcj.nuaa.edu.cn E‐mail:sjcj@nuaa.edu.cn Tel/Fax:+86‐025‐84892742   频率步进雷达多目标ISAR成像方法 崔应留1,2 罗文茂1 王德纯1,3 (1.南京理工大学电子工程与光电技术学院,南京,210094;2.南京审计学院工学院,南京,211815;3.南京电子技术研究所,南京,210039) 摘 要:针对频率步进雷达同一波束内多个运动目标在径向上重叠而无法分辨时的ISAR成像问题,提出了一种基于调频傅里叶变换的ISAR多目标成像新方法。在构建频率步进雷达多目标回波信号模型的基础上,采用调频傅里叶变换精确估计各个目标的速度参数,结合Clean方法实现对多目标回波信号的分离,完成多目标ISAR成像。仿真实验结果进一步验证了文章所采用方法的有效性。 关键词:多目标成像;频率步进;调频傅里叶变换;速度估计 中图分类号:TN95 文献标志码:A Stepped Frequency ISAR Imaging of Multiple Targets Cui Yingliu1,2,Luo Wenmao1,Wang Dechun3 (1.School of Electionic and Optical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China;2.School of Technology,Nanjing Audit University,Nanjing,211815,China;3.Nanjing Research Institute of Electronics Technolo‐gy,Nanjing,210039,China) Abstract:Aiming at the stepped frequency ISAR imaging problems of multiple moving targets in the same antenna beam overlapped over the range,a new method of stepped frequency ISAR imaging of mul‐tiple targets is proposed,based on the chirp‐Fourier transform(CFT).On the basis of the multi‐target echoes model of stepped frequency radar,the velocities of each target can be estimated accurately by the CFT.Then the multiple target echo signals can be separated by combining CFT and clean idea,thus the ISAR imaging is finished.The simulation results also prove the validity of the proposed method.Key words:imaging of multiple targets;stepped‐frequency;chirp‐Fourier transform;speed estimation 引 言 多目标成像方法的研究,特别是对编队飞行目标识别或成像方法的研究具有十分重要意义[1‐4]。由于编队飞行的目标间距小,多个目标可能位于同一波束,对于低分辨雷达而言无法在距离或方位上进行分辨。频率步进雷达信号作为高距离分辨信号,在雷达目标识别和成像方面得到广泛应用[5,6]。另外,逆合成孔径雷达(ISAR)成像技术可以观察到目标的精细结构。基于频率步进信号ISAR成像技术为识别多目标提供可能。目前对于基于频率步进信号的ISAR研究的主要是对单一目标进行成像,而对 基金项目:国家自然科学基金(61170105)资助项目。 收稿日期:2014‐03‐17;修订日期:2014‐12‐05

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

合成孔径雷达点目标成像仿真

合成孔径雷达点目标成像仿真 a) 一个点目标的机载SAR正侧视回波仿真 i. 距离徙动不超过1个单元 b) 简单二维脉压成像 原始数据仿真方法: 1. 设计分辨率,飞行参数,雷达参数 (1)分辨率越低、作用距离越小、波长越小,则距离徙动越小。 (2)不用考虑天线方向图加权,按照矩形天线方向图计算。 (3)天线波束宽度按照多普勒带宽反算,多普勒带宽按照分辨率反算即可。 (4)prf和fs按照带宽1.2倍。 (5)确定距离向最近采样斜距和采样点数。 仿真实例 雷达载频:5.3GHz 雷达速度:150m/s 发射信号带宽:150MHz 方位天线尺寸:2m 参考点斜距:20km 距离过采样率:1.8 方位过采样率2.3 距离徙动最大1.6m,2.8个距离单元 正侧视SAR在二维时域的距离徙动可以表示为: R(η)=√R02+V r2η2 其中η表示方位向慢时间,V r表示SAR在方位向上的速度,R0表示目标的最短斜距,对上式进行Taylor展开,并忽略高次项,可以得到: R(η)≈R0+V r2 2R0 η2 由上式可以看出,距离徙动与R0,V r有关,按照实验要求给出的数据,得到的回波如下左图图所示,对其边缘局部放大,可以得到如下右图。

显然,此时距离徙动已经超过一个距离单元。为了达到距离徙动不超过一个距离单元的目的,现对数据进行修改:令最短斜距R0=10km,带宽B= 100MHz。然后重新生成回波,如下图所示: 由上图可以看出,调整参数后,距离徙动在一个距离单元内。 任意截取方位向和距离向的一个信号,如下图所示: 可以看出,方位向和距离向都是线性调频信号。然后在距离向进行脉冲压缩,可到下左图,然后再任意截取方位向和距离向的一个信号,如下右图,显然,此时距离向是一个压缩后的脉冲,而方位向仍是线性调频信号。

雷达成像技术保铮版第二章距离高分辨和一维距离像

第二章距离高分辨和一维距离像 雷达采用了宽频带信号后,距离分辨率可大大提高,这时从一般目标(如飞 机等)接收到的已不再是“点”回波,而是沿距离分布开的一维距离像。 雷达回波的性质可以用线性系统来描述,输入是发射脉冲,通过系统(目标) 的作用,输出雷达回波。系统的特性通常用冲激响应(或称分布函数)表示,从 发射波形与冲激响应的卷积可得到雷达回波的波形。 严格分析和计算目标的冲激响应是比较复杂的,要用到较深的电磁场理论, 不属于本书的范围。简单地说,雷达电波作用的目标的一些部件对波前会有后向 散射,当一些平板部分面向雷达时还会有后向镜面反射;这些是雷达回波的主要 部分;此外还有谐振波和爬行波等。因此,目标的冲激响应(分布函数)可以用 散射点模型近似,即目标可用一系列面向雷达的散射点表示,这些散射点位于后 向散射较强的部位。由于谐振波和爬行波的滞后效应,有时也会有少数散射点在 目标本体之外。如上所述,目标的散射点模型显然与雷达的视线向有关,例如当 飞机的平板机身与雷达射线垂直时有很强的后向镜面反射,而在偏离不大的角度 后,镜向反射射向它方,不为雷达所接收。目标的雷达散射点模型随视角的变化 而缓慢改变,且与雷达波长有关,分析和实验结果表明,在视角变化约10°的 范围里,可认为散射点在目标上的位置和强度近似不变。顺便提一下,前面曾提 到微波雷达对目标作ISAR成像,目标须转动3°左右,在分析时用散射点模型 是合适的。 虽然目标的散射点模型随视角 快得多。可以想像到,一维距离像是 三维分布散射点子回波之和,在平面 波的条件下,相当三维子回波以向量 和的方式在雷达射线上的投影,即相 同距离单元里的子回波作向量相加。 我们知道,雷达对目标视角的微小变 化,会使同一距离单元内而横向位置

实时三维频率步进式探地雷达技术介绍及应用案例分析

实时三维频率步进式探地雷达技术介绍及应用案例分析 ◆最快的步进频率雷达:利用数字频率信号源, 可以产生0.5-10 毫秒的扫描周期,一个同相接收机,使得整个扫描周期(一般为几个毫秒)100%可被有效利用。 ◆天线阵技术,可容纳21个天线阵子:覆盖范围从100MHz 到3GHz。实际工作时,用户无需更换天线就可采集从100MHz 到3GHz频率的数据。 ◆CMP(共中点)采集模式:这套系统可以设置为CMP(共中点)采集模式,可实时显示各层的厚度和对应的介电常数,并基于路基材料的介电常数与其密实度,含水量的相关曲线,评定路基质量。 ◆空前的区域勘察速度(工作效率):极其高的勘察效率和有效的采样方法使得 GeoScope TM采用2.4m天线阵可以以80km/h车速提供7.5×7.5cm网格完全三维图像。生产效率高达20亩/小时。 ◆数据采集过程中的三维实时显示技术:浏览器即可调用采集数据,实现实时三维显示(包括横向剖面、纵向剖面,水平切面)。 ◆软件处理能力超强:完整而快速的进行数据后处理,可加入注解及地理图像,且可以进行二次开发。 挪威3D-Radar公司成立于2001年,为国防、航空和安全高技术产品全球制造商——美国Chemring Sensors and Electronic Systems (Chemring SES)集团的子公司。3D-Radar公司拥有高质量三维雷达技术,从传统的脉冲信号雷达转为新的频率步进雷达,且具有丰富的GPR数据处理经验。 与市场上广泛使用的单通道脉冲式探地雷达系统相比,挪威3D-Radar公司的GeoScopeTM三维探地雷达系统具有如下特点: 频率步进雷达技术、实时三维显示、多通道天线阵技术、软件超强的处理能力 应用领域: ◆公路检测:面层厚度和质量、垫层和基层、桥梁检测 (脱空/剥离) ◆桥梁面板检测 ◆铁路路基检测:垫层厚度和质量、基层、电缆和管道 ◆机场跑道检测:沥青层厚度和质量、基层、脱空、电缆和管道 ◆地下公用设施 (管线/电缆):地下公用设施 ◆考古 ◆地雷和未爆炸物探测

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

雷达成像技术(保铮整编)第一章概论

前言 雷达成像技术是上个世纪50年代发展起来的,它是雷达发展的一个重要里程碑。从此,雷达不仅仅是将所观测的对象视为“点”目标,来测定它的位置与运动参数,而是能获得目标和场景的图像。同时,由于雷达具有全天候、全天时、远距离和宽广观测带,以及易于从固定背景中区分运动目标的能力,雷达成像技术受到广泛重视。 雷达成像技术应用最广的方面是合成孔径雷达(Synthetic Aperture Radar,简称SAR)。当前,机载和星载SAR的应用已十分广泛,已可得到亚米级的分辨率,场景图像的质量可与同类用途的光学图像相媲美。利用SAR的高分辨能力,并结合其它雷达技术,SAR还可完成场景的高程测量,以及在场景中显示地面运动目标(GMTI)。 SAR的高分辨,在径向距离上依靠宽带带信号,几百兆赫的频带可将距离分辨单元缩小到亚米级;方向上则依靠雷达平台运动,等效地在空间形成很长的线性阵列,并将各次回波存贮作合成的阵列处理,这正是合成孔径雷达名称的来源。合成孔径可达几百米或更长,因而可获得高的方位分辨率。 雷达平台相对于固定地面运动形成合成孔径,实现SAR成像。反过来,若雷达平台固定,而目标运动,则以目标为基准,雷达在发射信号过程中,也等效地反向运动而形成阵列,据此也可对目标成像,通称为逆合成孔径雷达(ISAR)。ISAR显然可以获取更多的目标信息。 最简单的雷达成像是只利用高距离分辨(HRR)的一维距离像。当距离分辨

率达米级,甚至亚米级时,对飞机、车辆等一般目标,单次回波已是沿距离分布的一维距离像,它相当目标三维像以向量和方式在雷达射线上的投影,其分布与目标相对于雷达的径向结构状况有关。同时,高距离分辨率有利于分辨距离接近的目标,以及目标回波的直达波和多径信号。 本书将对当前已经广泛应用和具有应用潜力的内容作较为全面的介绍。 本书是《雷达技术丛书》中的一册,主要对象为从事雷达研制工作的技术人员,因此,本书编著时考虑到读者已有《雷达原理》和《雷达系统》方面的基础,对雷达各部件的基本情况也已比较熟悉,与上述内容有关的部分,本书均作了省略。对这些内容不熟悉的读者,可以从本丛书的其它各册里找到。 国内外有关雷达成像的专著和专籍已经不少,一般着重于原理的叙述和分析,其中有许多学术性很强的佳作。本书作为《雷达技术丛书》中的一册,力求写出自己的特色。由于本书的主要对象为雷达技术人员,而雷达成像又为雷达技术中较新的内容,为便于他们易掌握雷达成像的内容,我们的设想是用雷达技术工作者熟悉的概念、方法和术语对新的问题进行研究;而且根据雷达的实用性来安排本书的体系结构,例如雷达的高分辨一维距离像,在原理方面比较简单,但在雷达里很实用,并有许多实际问题需要研究,本书将其专门列为一章。又如与合成孔径雷达相结合的地面动目标显示(GMTI),严格说在原理上不属于雷达成像,但对军用雷达来说,是不可或缺的重要内容,本书也将它列为介绍的重点。 编著本书时,还考虑到雷达成像技术的迅速发展,成像技术已不仅用于专门的成像雷达,而成像已作一种新的功能用于各种雷达,如在机载对地警戒雷达,以及对地火控和轰炸雷达里加装合成孔径和/或逆合成孔径成像功能,而在对空警戒和跟踪的地基雷达中加装逆合成孔径成像功能。可以说,成像已成为一般雷

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

雷达点目标

点目标仿真 一. S AR 简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。 SAR 回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:2r r C B ρ=,式中r ρ表示雷达的距离分辨率,r B 表示雷达发射信号带宽,C 表示光速。同样,SAR 回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:a a a v B ρ=,式中a ρ表示雷达的方位分辨率,a B 表示雷达方位向多谱勒带宽,a v 表示方位向SAR 平台速度。 二. S AR 空间几何关系 根据SAR 波束照射的方式,SAR 的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 图2.1:SAR 典型的成像模式 标与SAR 的垂直斜距,重写2.1式为: (;)PT R s r = = (;)R s r 就表示任意时刻s 时,目标与雷达的斜距。一般情况下,0v s s r -<<,于是2.2式可近似写为: 2 20(;)()2v R s r r s s r =≈+- (2.3) 可见,斜距是s r 和的函数,不同的目标,r 也不一样,但当目标距SAR 较远时,在观测带内,可近似认为r 不变,即0r R =。

合成孔径雷达SAR的点目标仿真成像

合成孔径雷达(SAR)的点目标仿真成像 电子与通信工程 侯智深 MF0923008 一. S AR 原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。 SAR 回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:2r r C B ρ=,式中r ρ表示雷达的距离分辨率,r B 表示雷达发射信号带宽,C 表示光速。同样,SAR 回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:a a a v B ρ=,式中a ρ表示雷达的方位分辨率,a B 表示雷达方位向多谱勒带宽,a v 表示方位向SAR 平台速度。 二. S AR 的成像模式和空间几何关系 根据SAR 波束照射的方式,SAR 的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 SAR 典型的成像模式 这里分析SAR 点目标回波时,只讨论正侧式Stripmap SAR ,正侧式表示SAR 波束中心和SAR 平台运动方向垂直,如图2.2,选取直角坐标系XYZ 为参考坐标系,XOY 平面为地平面;SAR 平台距地平面高h ,沿X 轴正向以速度V 匀速飞行;P 点为SAR 平台的位置矢量,设其坐标为(x,y,z); T 点为目标的位置矢量,设其坐标为(,,)T T T x y z ;由几何关系,目标与SAR 平台的斜距为: (PT x =由图可知:0,,0T y z h z ===;令x vs =?, 其中v 为平台速度,s 为慢时间变量(slow time ),

激光雷达与激光成像雷达

激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 人通过感觉器官感知,认识外部世界的一切。用耳朵听音乐、话音、机器的轰隆声、钟声、铃声等一切通过声音传递的信息;用手感觉温度、物体的硬软以及物质的存在;用眼睛观察外部世界的形状、颜色、运动状态、速度、位置、识别物体的种类等等。人的眼睛之所以可以看见外部世界,是因为太阳光谱中的可见光照射在物体上反射的结果。那么除了“可见光谱”之外还存在别的“不可见的光谱”吗?事实上,广义的光谱按频段的不同,有大家所熟悉的电磁波、远红外、近红外、可见光、紫外光谱,而可见光谱区中,红色的光波长最长,紫色的波长最短。而且人们已经发现不同的物质辐射不同的谱线,在特定的条件下还可以只辐射某一单一波长的谱线,当其人们发现不可见光谱区中的单一的光谱谱线具有可贵的特性的时候,就力图去产生、开发、利用这种单一光谱谱线,由此产生了激光及用于不同场合的激光系统。 视觉引发人们的形象思维,眼睛从外界事物所获取的信息量大,直接而快速,是其他感觉器官所不能代替的,这也就是古人所说的“眼见为实”的深切内涵。正是因为这个道理,人们不愿受限于“可见光”的可见,而想去探求自然光条件下所看不见的东西,如想在漆黑的夜晚,去观察外部世界,就开发出了“夜视仪”。被动“红外热成像仪”也不是依赖于可见光的反射特性去观察变幻莫测的外部世界的,而是依赖于物体本身的热辐射,无论白天或黑夜都可以用以观察人类世界的一切,而且已经是超视距的。目前最新的热成像仪,1ms内热敏成像。红外成像高速测温用来检测来复枪,其射出的弹头在弹道上飞行速度为840m/s,弹头距枪口0.914 4m处的热成像还能分辨出弹头上不同部位摩擦热的温差。 遥感仪则可以依据物体本身的辐射谱线,包括电磁波段与红外光区,远距离成像,把肉眼原本看不见的自然变化,转化为可见,以照片的形式或屏幕显示的图像,甚至动态图像的形式展现出来,这就是当今人们感兴趣的可视化技术。人们力图从各个领域做这方面的研究和开发应用。 通过眼睛人们能够确定方向——定位,作为控制手的动作的依据,当然这是受限于“视距”之内的,通过望远镜可以延伸视距;但是“定位”的精度达不到人们通用目的需要,所谓“差之毫厘,失之千里”。雷达满足了远距离定位和精度的要求,雷达源于英文Radio Detection And Ranging的缩写RADAR,于1935年问世。 当其“激光”这种波长处于红外光谱波段的“激光光源”被研究出来之后,人们自然想到利用微米波段(红外光谱波段)的光波作为信息的载体去探测、获取其他手段难于探测、观测到的目标的信息。激光雷达研制成功后,相继激光成像雷达应运而生。激光雷达的英文名字“LADAR”是Laser Detection And Ranging的缩写。激光雷达的研究是从目标探测和测距入手的,早期(1962~1976年)的研究系统被称为光雷达(Optical RADAR),并命名为LIDAR(Light Detection And Ranging)。可以说军事应用对测量系统精确度的要求日

相关文档
最新文档