传感器原理及工程应用作业

传感器原理及工程应用作业
传感器原理及工程应用作业

目录

第三章 (5)

3-1.什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解释金属电阻应变片和半导体应变片的工作原理。 (5)

3-2.试述应变片温度误差的概念,产生原因和补偿方法。 (5)

3.试用应变片传感器实现一种应用。 (6)

第四章 (6)

4-1.说明差动变隙式电感传感器的主要组成、工作原理和基本特征。 (6)

4 -3.差动变压器式传感器有哪几种结构形式?各有什么特点? (6)

4-10.何为涡流效应?怎用利用涡流效应进行位移测量? (7)

4-11.电涡流的形成范围包括哪些内容?他们的主要特点是什么? (7)

5.用电感式传感器设计应用 (8)

第五章 (8)

5-1.根据工作原理可以将电容式传感器分为哪几类?每种类型各有什么特点?各适用于什么场合? (8)

5-9.简述差动式电容测厚传感器系统的工作原理。 (8)

第六章 (9)

6-1.什么叫正压电效应和逆压电效应?什么叫纵向压电效应和横向压电效应? (9)

6-3.简述压电陶瓷的结构及其特性。 (9)

3.利用压电式传感器设计一个应用系统 (10)

第七章 (10)

7-4.什么是霍尔效应?霍尔电势与哪些因素有关? (10)

7-6.温度变化对霍尔元件输出电势有什么影响?怎样补偿? (10)

第八章 (11)

8-1.光电效应有哪几种?相对应的光电器件有哪些? (11)

8-2.试述光敏电阻、光敏二极管、光敏晶体管和光电池的工作原理,在实际应用时各有什么特点? (11)

8-6.光在光纤中是怎样传输的?对光纤及入射光的入射角有什么要求? (12)

8-7.试用光电开关设计一个应用系统。 (13)

第九章 (13)

9-1.简述气敏元件的工作原理 (13)

9-2.为什么多数气敏元件都附有加热器 (13)

9-3.什么叫湿敏电阻?湿敏电阻有哪些类型?各有什么特点? (14)

第十章 (14)

10-1.超声波在介质中传播具有哪些特性? (14)

10-2.图10-3中,超声波探头的吸收块作用是什么? (15)

10-3.超声波物位测量有几种方式?各有什么特点? (15)

10-5.已知超声波探头垂直安装在被测介质底部,超声波在被猜测介质中的传播速度为1460m/s,测得时间间隔为28μs,试求物位高度? (15)

第十一章 (15)

11-1.简述微波传感器的测量机理。 (15)

11-2 微波传感器有哪些特点?微波传感器如何分类? (16)

11-4 微波无损检测是如何进行测量的 (16)

第十二章 (17)

12-1:红外探测器类型及工作原理 (17)

12-2:什么是放射性同位素?辐射强度与什么因素有关? (17)

第十三章 (18)

13-1.数字式传感器有什么特点?可分为哪几种类型? (18)

13-2.光栅传感器的组成及工作原理是什么? (18)

13-5.码盘式转角-数字传感器的工作原理是什么?其基本组成部分有哪些? (19)

第十四章 (20)

14-1.什么是智能传感器?它包含哪几种主要形式?应从哪些方面研究开发智能传感器?

(20)

14-2.智能传感器一般由哪些部分构成?它有哪些显著特点? (21)

14-3.传感器的智能化与集成智能传感器有何区别? (22)

MEMS传感器 (22)

1.什么是MEMS传感器? (22)

2.MEMS传感器由几部分组成?各部分的作用是什么? (22)

第三章

3-1.什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解释金属

电阻应变片和半导体应变片的工作原理。

应变效应:导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化,这种现象称为电阻应变效应。

压阻效应:半导体材料的电阻率ρ随作用应力的变化而发生变化的现象称为压阻效应。

金属电阻应变片的工作原理基于电阻应变效应。当电阻丝受到拉力F作用时,将伸长Δl,横截面积相应减少ΔA,电阻率因材料晶格发生变形等因素影响而变化Δρ,从而引起电阻变化ΔR。

半导体应变片的工作原理基于半导体材料的压阻效应。用应变片测量应变或应力时,根据上述特点,在外力作用下,被测对象产生应变(或应力)时,应变片随之发生相同的变化,同时应变片电阻值也发生相应变化。当测得的应变片电阻值变化量为ΔR是,便可测到被测对象的应变值,根据应力与应变的关系,得到应力值σ为σ=E*ε,由此可知,应力值σ正比于应变ε,而试件应变ε正比于电阻值的变化。所以应力σ正比于电阻值的变化,这就是利用应变片测量应变的基本原理。

3-2.试述应变片温度误差的概念,产生原因和补偿方法。

由于测量环境现场环境温度的改变而给测量带来的附加误差,称为应变片的温度误差。产生应变片温度误差的主要因素有下述两个方面:

(1)电阻温度系数的影响

(2)试件材料和电阻丝材料的线膨胀系数的影响

电阻应变片的温度误差补偿方法:

(1)线路补偿法

(2)应变片的自补偿法

3.试用应变片传感器实现一种应用。

自动门

当远处有人接触到传感器,传感器检测到应力变化,从而产生电阻值变化。这样可以实现自动开门。这可以应用到一般酒店或写字楼、商务大厦等地方,以方便人群。

第四章

4-1.说明差动变隙式电感传感器的主要组成、工作原理和基本特征。

差动变隙式电感传感器是利用线圈自感量的变化来实现测量的,它由线圈、铁芯和衔铁三部分组成。铁芯和衔铁由导磁材料如硅钢片或坡莫合金制成,在铁芯和衔铁之间有气隙,传感器的运动部分与衔铁相连。当被测量变化时,使衔铁产生位移,引起磁路中磁阻变化,从而导致电感线圈的电感量变化,因此只要能测出这种电感量的变化,就能确定衔铁位移量的大小和方向。

差动变隙式电感传感器基本特征:

(1)灵敏度是单边式的两倍。

(2)线性度得到明显改善。

4 -3.差动变压器式传感器有哪几种结构形式?各有什么特点?

差动变压器结构形式有变隙式、变面积式和螺线管式等,在非电量测量中,应用最多的是螺线管式差动变压器。

特点:

(1)变气隙式:灵敏度较高,但随气隙的增大而减小,非线性误差大,为了减小非线性误差,量程必须限制在较小的范围内工作,一般为气隙的1/5一下,用于测量几μm~几百μm的位移。这种传感器制作困难。

(2)变面积式:灵敏度小于变气隙式,但为常数,所以线性好、量程大,使用较广泛。

(3)螺线管式:灵敏度低,但量程大它可以测量1~100mm 机械位移,并具有测量精度高、结构简单、性能可靠、便于制作等优点,使用广泛。

4-10.何为涡流效应?怎用利用涡流效应进行位移测量?

根据法拉第电磁感应定律,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈旋涡状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。

利用涡流效应测量位移时,可使被测物体的电阻率ρ、磁导率μ、线圈与被测物的尺寸因子r、线圈中激磁电流的频率f保持不变,只改变线圈与导体间的距离,这样测出的传感器线圈的阻抗变化,可以反应被测物位移的变化。

4-11.电涡流的形成范围包括哪些内容?他们的主要特点是什么?

线圈-导体系统产生的电涡流密度既是线圈与导体间距离x的函数,又是沿线圈半径方向r的参数。当x一定时,电涡流密度J与半径r的关系如下:

(1)电涡流径向形成范围大约在传感器线圈外半径的1.8~2.5倍范围内,且分布不均匀。

(2)电涡流密度在r=0处为零。

(3)电涡流密度最大值在r=传感器线圈外半径附近的一个狭窄区域内。

5.用电感式传感器设计应用

电涡流探伤

在非破坏性探测领域内,电涡流传感器已被用作有效的探伤技术。例如,用来测试金属材料的表面裂纹、热处理裂痕,砂眼、气泡以及焊接部分的探伤等。探伤时,传感器与被测物体间距要保持不变,当有裂纹出现时,传感器阻抗发生变化,导致测量电路的输出电压改变,达到探伤的目的。电涡流传感器还可以探测地下或墙里埋没的管道或金属体,包括带金属零件的地雷。

第五章

5-1.根据工作原理可以将电容式传感器分为哪几类?每种类型各有什么特点?各适用于什么场合?

电容式传感器可分为三种:变极距型、变面积型和变介电常数型。

变极距型电容式传感器:输出特性不是线性关系,在微位移测量中应用最广。

变面积型电容式传感器:电容量与水平位移是线性关系,适合测量线位移和角位移。

变介电常数型电容式传感器:利用不同介质的介电常数不同,通过改变介质的介电常数实现对被测量的检测,并通过电容式传感器的电容量变化反映,适合介质的介电常数发生改变的场合。

5-9.简述差动式电容测厚传感器系统的工作原理。

在被测带材的上下两侧各置一块面积相等,与带材距离相等的极板,这样极板和带材就构成了两个电容器C1、C2。把两块极板用导线连接起来成为一个极,而带材就是电容的另

一个极,其总电容为C1+C2,如果带材厚度发生变化,将引起电容量的变化,用交流电桥将电容的变化测出来,经过放大即可由电表指示测量结果。

第六章

6-1.什么叫正压电效应和逆压电效应?什么叫纵向压电效应和横向压电效应?

某些电介质,当一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个表面上产生符号相反的电荷,当外力去掉后,又重新恢复到不带电的状态。这种现象称为压电效应。当作用力的方向改变时,电荷的极性也随之改变。又是人们把这种机械能转换为电能的现象,称为“正压电效应”。相反,当在电介质极化方向施加电场时,这些电介质也会产生几何变形,这种现象称为“逆压电效应”。

通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”,而把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。

6-3.简述压电陶瓷的结构及其特性。

压电陶瓷是人工制造的多晶体压电材料。材料内部的晶粒有许多自发极化的电畴,它有一定的极化方向,从而存在磁场。在无外电场作用时,电畴在晶体中杂乱分布,它们各自的极化效应被相互抵消,压电陶瓷内极化强度为零。因此原始的压电陶瓷呈电中性,不具有压电性质。

在陶瓷上施加外电场时,电畴的极化方向发生转动,趋向于按外电场方向的排列,从而使材料得到极化。外电场愈强,就有更多的电畴更完全的转向外电场方向。让外电场强度大到使材料的极化达到饱和的程度,即所有的电畴极化方向都整齐地与外电场方向一致时,当

外电场去掉后,电畴的极化方向基本不变化,即剩余极化强度很大,这时的材料才具有压电特性。

3.利用压电式传感器设计一个应用系统

超载报警系统

经常有大型车辆超载造成路面或者桥面损坏,可利用压电式测力传感器设计一种超载报警系统,可检测出车辆的实际载重量,当超过额定限度,即发出警报。

第七章

7-4.什么是霍尔效应?霍尔电势与哪些因素有关?

霍尔效应:置于磁场中的静止载流导体,当其电流方向与磁场方向不一致时,载流导体上垂直于电流和磁场方向上的两个面之间产生电动势,这种现象称霍尔效应。

霍尔器件工作产生的霍尔电势为U H=R H IB/d=K H IB。由表达式可知,霍尔电势U H正比于激励电流I及磁感应强度B,其灵敏度K H与霍尔系数R H成正比,而与霍尔片厚度d成反比。

7-5.影响霍尔元件输出零点的因素有哪些?怎样补偿?

影响霍尔元件输出零点的因素包括:不等位电势、寄生直流电势等,其中不等位电势是最主要的零位误差。

补偿措施:制造工艺上采取措施,减少误差;选材更精细;采用补偿电路。

7-6.温度变化对霍尔元件输出电势有什么影响?怎样补偿?

霍尔元件的灵敏系数K H是温度的函数,关系式为:K H=K H0(1+αΔT),大多数霍尔元件的温度

系数α是正值,因此,它们的霍尔电势也将随温度升高而增加αΔT倍。

补偿温度变化对霍尔电势的影响,通常采用一种恒流源补偿电路。基本思想是:在温度增加的同时,让激励电流I0相应地减小,并能保持K H*I0乘积不变,也就可以相对抵消温度对灵敏系数K H增加的影响,从而抵消对霍尔电势的影响。

第八章

8-1.光电效应有哪几种?相对应的光电器件有哪些?

光电效应分为外光电效应和内光电效应两大类。内光电效应又可分为光电导效应和光生伏特效应。

光电器件:

(1)基于外光电效应的光电元件有光电管、光电倍增管、光电摄像管等。

(2)基于光电导效应的光电器件有光敏电阻。

(3)基于光生伏特效应的光电器件有光电池、光敏二极管、三极管。

8-2.试述光敏电阻、光敏二极管、光敏晶体管和光电池的工作原理,在实际应用时各有什么特点?

光敏电阻的工作原理:基于光电导效应,其阻值随光照增强而减小。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。

光敏二极管的工作原理:在无光照时,处于反偏的光敏二极管工作在截止状态,其反向电阻很大,反向电流很小,这种反向电流称为暗电流。当有光照射到光敏二极管的PN结时,PN 结附近受光子轰击,吸收其能量而产生电子-空穴对,它们在反向电压和内电场的作用下,漂移越过PN结,形成比无光照时大得多的反向电流,该反向电流称为光电流,此时,光敏二极管的反向电阻下降。若入射光的强度增强,产生的电子-空穴对数量也随之增加,光电流也响应增大,即光电流与光照度成正比。如果外电路接上负载,便可获得随光照强弱变化的信号。光敏二极管的光电流I与照度之间呈线性关系。光敏二极管的光照特性是线性的,所以适合检测等方面的应用。

光敏晶体管的工作原理:大多数光敏晶体管的基极无引出线,当集电极加上相对于发射极为正的电压而不接基极时,集电结就是反向偏压。当光照射在集电结时,就会在结附近产生电子—空穴对,光生电子被拉到集电极,基区留下空穴,使基极与发射极间的电压升高,这样便会有大量的电子流向集电极,形成输出电流,且集电极电流为光电流的β倍,所以光敏晶体管有放大作用。

光电池的工作原理:硅光电池是在一块N型硅片上用扩散的办法掺入一些P型杂质(如硼)形成PN结。当光照到PN结区时,如果光子能量足够大,将在结区附近激发出电子-空穴对,在N区聚积负电荷,P区聚积正电荷,这样N区和P区之间出现电位差。若将PN结两端用导线连起来,电路中有电流流过,电流的方向由P区流经外电路至N区。若将外电路断开,就可测出光生电动势。

8-6.光在光纤中是怎样传输的?对光纤及入射光的入射角有什么要求?

光在同一种介质中是直线传播的,当光线以不同的角度入射到光纤端面时,在端面发生折射进入光纤后,又入射到折射率较大的光密介质(纤芯)与折射率较小的光疏介质(包层)的

交界面,光线在该处有一部分投射到光疏介质,一部分反射回光密介质。

对光纤的要求是包层和纤芯的折射率不同,且纤芯的折射率大于包层的折射率。对入射角的要求是入射角小于临界角。

8-7.试用光电开关设计一个应用系统。

利用光电开关可以制作感应门。将发射器装在门的上方,接收器装在门前方的地上,当有人经过门前时,人会遮挡光束,此时接收器便可感知有物体经过,再利用别的装置打开门,达到自动感应门的效果。

第九章

9-1.简述气敏元件的工作原理

半导体气敏传感器的敏感部分是金属氧化物半导体微结晶粒子烧结体,当它的表面吸附被测气体时,半导体微结晶粒子接触表面的导电电子比例就会发生变化,从而使气敏元件的电阻值随被测气体的浓度而改变。这种反应是可逆的,因而可重复使用。当氧化型气体吸附到N 型半导体上,还原型气体吸附到P 型半导体上时,将使半导体载流子减少,而使半导体电阻值增大。当还原型气体吸附到N 型半导体上,氧化型气体吸附到P 型半导体上时,则半导体载流子增多,使半导体电阻值下降。

9-2.为什么多数气敏元件都附有加热器

加热器的作用是将附着在敏感元件表面上的尘埃、油雾烧掉,同时加速气体的吸附。这样可以提高器件的灵敏度和响应速度。

9-3.什么叫湿敏电阻?湿敏电阻有哪些类型?各有什么特点?

湿敏电阻:利用湿敏材料吸收空气中的水分而导致本身电阻值发生变化这一原理而制成的电阻叫湿敏电阻。

类型:半导体陶瓷湿敏元件;氯化锂湿敏电阻;有机高分子膜湿敏电阻。

特点:

(1)半导体陶瓷湿敏元件:电导率随湿度呈明显变化。如四氧化三铁、氧化钛、氧化钾-氧化铁、铬酸镁-氧化钛及氧化锌-氧化锂-氧化钒等系统的陶瓷湿敏元件。它们的电导率对水特别敏感,适宜用作湿度的测量和控制。

(2)氯化锂湿敏电阻:氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点。其主要特性:

1)可在120度高温环境中稳定工作;

2)线性测湿量程较窄大约在20%RH左右,在该测量范围内,其线性误差小2%RH。(3)有机高分子膜湿敏电阻:当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。

第十章

10-1.超声波在介质中传播具有哪些特性?

(1)超声波的波形:由于声源在介质中施力方向与波在介质中传播方向不同,声波的波形有纵波、横波和表面波。振荡源在介质中可产生两种形式的振荡,即横向振荡和纵向振荡。横向振荡只能在固体中产生,而纵向振荡可在固体、液体和气体中产生。

(2)超声波的折射与反射:在通过两种不同的介质时,产生折射和反射现象。

(3)超声波的衰减:在通过同种介质时,随着传播距离的增加,其强度因介质吸收能量而减

弱。

10-2.图10-3中,超声波探头的吸收块作用是什么?

降低晶片的机械品质,吸收声能量。如果没有吸收块,当激励的电脉冲信号停止时,晶片将会继续振荡,加长超声波的脉冲宽度,使分辨率变差。

10-3.超声波物位测量有几种方式?各有什么特点?

(1)超声波发射和接收探头设置在液体介质中:超声波在液体介质中传播,由于超声波在液体中衰减比较小,所以即使发射的超声波脉冲幅度较小也可以传播。

(2)超声波发射和接收探头安装在液面的上方:超声波在空气中传播,这种方式便于安装和维修,但超声波在空气中的衰减比较厉害。

10-5.已知超声波探头垂直安装在被测介质底部,超声波在被猜测介质中的传播速度为1460m/s,测得时间间隔为28μs,试求物位高度?

H=C*ΔT/2=1460m/s*28μs/2=2.044*10^-5m

物位高度为20.44mm

第十一章

11-1.简述微波传感器的测量机理。

由发射天线发出微波。当遇到被测物体时微波将被吸收或反射,这时波功率发生变化。若利用接收天线,接收到通过被测物体或由被测物体反射回来的微波,并将它转换为电信号,再经过信号调理电路,即可以显示出被测量,实现了微波检测。

11-2 微波传感器有哪些特点?微波传感器如何分类?

特点:

(1)有极宽的频谱(波长=1.0mm~1.0m);

(2)在烟雾、粉尘、水汽、化学气氛以及高、低温环境中对检测信号的传播影响极小,因此可以在恶劣环境下工作;

(3)介质对微波的吸收与介质的介电常数成比例,水对微波的吸收作最强;(4)时间常数小,反应速度快,可以进行动态检测与实时处理,便于自动控制;(5)测量信号本身就是电信号,无须进行非电量的转换,从而简化了传感器与微处理器间的接口,便于实现遥测和遥控;

(6)微波无显著辐射公害。

分类:根据微波传感器的原理可以分为

(1)反射式

反射式微波传感器是通过检测被测物体反射回来的微波功率进过的时间间隔来测量被测量的。通常它可以测量物体的位置、位移、厚度等参数。

(2)遮断式

遮断式微波传感器是通过检测接收天线收到的微波功率大小来判断发射天线与接收天线之间有无被测物体或被测物体的厚度,含水量等参数的。

11-4 微波无损检测是如何进行测量的

微波无损检测是综合利用微波与物质的相互作用。一方面微波在不连续的界面

会产生反射,散射,透射;另一方面微波还能与被检材料产生相互作用,此时的微波场会受到材料中的电磁参数和几何参数的影响。通过测量微波信号基本参数的改变即可达到检测材料内部缺陷的目的。

第十二章

12-1:红外探测器类型及工作原理

类型:

(1)器件的某些性能参数随入射的辐射通量作用引起的温度变化的热探测器。(2)利用各种光子效应的光子探测器。

工作原理:

(1)热探测器的工作原理:

热探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。

(2)光子探测器的工作原理:

光子探测器是利用光辐射与物质相互作用的光子效应制成的器件。光子探测器利用入射光辐射的光子流与探测器材料中的电子的相互作用,改变电子的能量状态,从而引起各种电学现象。

12-2:什么是放射性同位素?辐射强度与什么因素有关?

如果两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素,所以两者就叫同位素。有放射性的同位素称为“放射性同

位素”,没有放射性并且半衰期大于1050年的则称为“稳定同位素”。

辐射强度:

(1)跟辐射源的发射强度有关。

(2)跟辐射源与被辐射点的距离有关。

(3)跟辐射源与被辐射点之间的阻隔物种类有关。

第十三章

13-1.数字式传感器有什么特点?可分为哪几种类型?

特点:

数字式传感器(Digital Sensor)能够直接将非电量转换为数字量,这样就不需要A/D 转换,直接用数字显示。

数字式传感器与模拟式传感器相比有以下优点:测量精度和分辨率高,稳定性好,抗干扰能力强,便于与微机接口,适宜远距离传输等。

类型:

码盘式传感器、光栅式传感器、磁栅式传感器、感应同步式传感器、频率输出式传感器。

13-2.光栅传感器的组成及工作原理是什么?

光栅传感器由光源,透镜,光栅副和光电接收元件等组成

工作原理:

光栅传感器是根据光栅的莫尔条纹原理进行工作的一种传感器,莫尔条纹原理是指将两块光栅叠合在一起,并且使它们的刻线成角度θ,由于光栅的刻线相交处形

成亮带,而在一块光栅的刻线与另一块光栅的缝隙相交处形成暗带,在与光栅刻线垂直的方向,将出现明暗相间的条纹,这些条纹就成为莫尔条纹。莫尔条纹的宽度由光栅常数与光栅的夹角决定对于给定的光栅常数的两光栅,夹角愈小, 条纹宽度愈大, 即条纹愈稀所以通过调整夹角, 可使条纹宽度为任何所需要的值。当两叠合的光栅沿垂直于栅线方向相对运动时, 莫尔条纹就沿夹角口平分线的方向移动。两光栅相对移过一个光栅常数,莫尔条纹移过一个条纹间距,通过测量条纹间距移动的距离,可得到光栅移动的位移。

13-5.码盘式转角-数字传感器的工作原理是什么?其基本组成部分有哪些?

1)接触式编码器

由码盘和电刷组成。

接触式码盘工作原理:以一个四位8421码制的编码器的码盘为例。用四个同心圆码道和四个电刷构成;每个码道分成若干个导电和不导电的区域,将所有导电区连接到高电位(1);绝缘区连到低电平(0)。四个电刷沿某一径向安装,四位二进制码盘上有四圈码道,每个码道有一个电刷,电刷经电阻接地。当码盘转动到某一角度后,电刷就输出一个数码;码盘转动一周,电刷就输出16种不同的四位二进制数码。后续电路通过判别输出数据就可以知道转到什么角度了。

2)光电式编码器

主要由安装在旋转轴上的编码圆盘(码盘)、窄缝以及安装在圆盘两边的光源和光敏元件等组成。码盘由光学玻璃制成,其上刻有许多同心码道,每位码道上都有按一定规律排列的透光和不透光部分,即亮区和暗区。

光电式编码器工作原理:当光源将光投射在码盘上时,转动码盘,通过亮区的光线

经窄缝后,由光敏元件接收。光敏元件的排列与码道一一对应,对应于亮区和暗区的光敏元件输出的信号,前者为“1”,后者为“0”。当码盘旋至不同位置时,光敏元件输出信号的组合,反映出按一定规律编码的数字量,代表了码盘轴的角位移大小。3)电磁式编码器

主要由磁鼓与磁阻探头组成。

电磁式编码器工作原理:电磁式编码器的码盘上按照一定的编码图形,做成磁化区(导磁率高)和非磁化区(导磁率低),采用小型磁环或微型马蹄形磁芯作磁头,磁环或磁头紧靠码盘,但又不与码盘表面接触。每个磁头上绕两组绕组,原边绕组用恒幅恒频的正弦信号激励,副边绕组用作输出信号,副边绕组感应码盘上的磁化信号转化为电信号,其感应电势与两绕组匝数比和整个磁路的磁导率有关。当磁头对准磁化区时,磁路饱和,输出电压很低,如磁头对准非磁化区,它就类似于变压器,输出电压会很高,因此可以区分状态1和0。几个磁头同时输出,就形成了数码。

第十四章

14-1.什么是智能传感器?它包含哪几种主要形式?应从哪些方面研究开发智能传感器?

智能式传感器:一种带有微处理器的,兼有信息检测、信号处理、信息记忆、逻辑思维与判断功能的传感器。

智能传感器主要形式:

一是采用微处理机或微型计算机系统以强化和提高传统传感器的功能,即传感器与微处理机可分为两个独立部分,传感器的输出信号经处理和转化后由接口送到微处理机部分进行运

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

(完整word版)传感器原理及应用复习题.docx

《传感器原理及应用》复习题 1.静态特性指标其中的线性度的定义是指 2.传感器的差动测量方法的优点是减小了非线性误差、提高了测量灵敏度。 3.对于等臂半桥电路为了减小或消除非线性误差的方法可以采用提高桥臂 比,采用差动电桥的方法。 4.高频反射式电涡流传感器实际是由线圈和被测体或导体两个部分组成的系统,两者之间通过电磁感应相互作用,因此,在能够构成电涡 流传感器的应用场合中必须存在金属材料。 5.霍尔元件需要进行温度补偿的原因是因为其霍尔系数和材料电阻 受温度影响大。使用霍尔传感器测量位移时,需要构造一个磁场。 6.热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温 区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得 到了广泛应用。 7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数 系统时,应选其中的光电传感器。需要测量某设备的外壳温度,已知其 范围是300~400℃,要求实现高精度测量,应该在铂铑- 铂热电偶、铂电阻和热 敏电阻中选择铂电阻。 8.一个二进制光学码盘式传感器,为了达到1″左右的分辨力,需要采用 或位码盘。一个刻划直径为400 mm的 20 位码盘,其外圈分别间隔 为稍大于μm。 9.非功能型光纤传感器中的光纤仅仅起传输光信息的作用,功能型光纤传感器 是把光纤作为敏感元件。光纤的 NA 值大表明集光能力强。 11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏 电阻外还有处于反向偏置工作状态的光敏二极管。光敏器件的灵敏度可 用光照特性表征,它反映光电器件的输入光量与输出光电流(电压 )之间 的关系。选择光电传感器的光源与光敏器件时主要依据器件的光谱特性。 12. 传感器一般由敏感元件 _ 、转换元件 ___ 、测量电路及辅助电 源四个部分组成。 13.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化 量的比值。对线性传感器来说,其灵敏度是一常数。

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

传感器原理与应用实验指导书解析

传感器原理与应用 实 验 指 导 书 自动化工程学院

目录 1实验一应变片单臂电桥性能实验 1实验二应变片半桥性能实验 1实验三应变片全桥性能实验 实验四压阻式压力传感器测量压力特性实验 实验五差动变压器的性能实验 实验六差动变压器测位移特性实验 1实验七电容式传感器测位移特性实验 1实验八线性霍尔传感器测位移特性实验 1实验九开关式霍尔传感器测转速实验 1实验十磁电式转速传感器测转速实验 1实验十一光电传感器测量转速实验 实验十二电涡流传感器测量位移特性实验 实验十三被测体材质对电涡流传感器特性影响实验实验十四被测体面积对电涡流传感器特性影响实验* 实验十五气敏传感器实验 实验十六湿度传感器实验

CSY-2000型传感器与检测技术实验台 说明书 一、实验台的组成 CSY-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。 1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关数显表。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载保护功能,在排除接线错误后重新开机恢复正常工作。主机箱右侧面装有供电电源插板及漏电保护开关。 2、振动源(动态应变振动梁与振动台):振动频率3Hz~30Hz可调(谐振频率9Hz~12 Hz左右); 3、转动源:手动控制0转/分~2400转/分、自动控制300~2200转/分。 4、温度源:常温~200℃。 5、气压源:0~20Kpa(连续可调)。 6、传感器:基本型有箔式应变片(350Ω)传感器(秤重200g)、扩散硅压力传感器(20Kpa)、差动变压器(±4mm)、电容式位移传感器(±2.5mm)、霍尔式位移传感器(±1mm)、霍尔式转速传感器(2400转/分)、磁电转速传感器(250转/分~2400转/分)、压电式传感器、电涡流传感器(1mm)、光纤位移传感器(1mm)、光电转速传感器(2400转/分)、集成温度(AD590)传感器(室温~120℃)、K热电偶(室温~150℃)、E热电偶(室温~150℃)、Pt100铂电阻(室温~150℃)、Cu50铜电阻(室温~100℃)、湿敏传感器(10~95%RH)、气敏传感器(50~2000ppm)等。 7、调理电路(实验模板):基本型有电桥及调平衡网络、差动放大器、电压放大器、电荷放大器、电容变换器、电涡流变换器、光电变换器、温度变换器、移相器、相敏检波器、低通滤波器。增强型增加相应的配套实验模板。 8、实验台:尺寸为1600×800×750mm。实验台桌上预留了计算机及示波器安放位置。 二、电路原理

传感器原理与工程应用考试题库

传感器原理与工程应用习题 一、单项选择题 1、在整个测量过程中,如果影响和决定误差大小的全部因素(条件)始终保持不变,对同一 被测量进行多次重复测量,这样的测量称为( C ) A.组合测量 B.静态测量 C.等精度测量 D.零位式测量 1.1在直流电路中使用电流表和电压表测量负载功率的测量方法属于( B )。 A. 直接测量 B. 间接测量 C. 组合测量 D. 等精度测量 2、1属于传感器动态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.1不属于传感器静态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.2 以下那一项不属于电路参量式传感器的基本形式的是( D )。 A.电阻式 B.电感式 C.电容式 D.电压式 2.2传感器的主要功能是( A )。 A. 检测和转换 B. 滤波和放大 C. 调制和解调 D. 传输和显示 3.电阻式传感器是将被测量的变化转换成( B )变化的传感器。 A.电子 B.电压 C.电感 D.电阻 3.1电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( D )。 A.直流平衡电桥 B.直流不平衡电桥 C.交流平衡电桥D.交流不平衡电桥 3.2电阻应变片的初始电阻数值有多种,其中用的最多的是( B )。 A、60Ω B、120Ω C、200Ω D、350Ω 3.3电阻应变片式传感器一般不能用来测量下列那些量( D ) A、位移B、压力C、加速度D、电流 3.4直流电桥的平衡条件为( B ) A.相邻桥臂阻值乘积相等 B.相对桥臂阻值乘积相等 C.相对桥臂阻值比值相等 D.相邻桥臂阻值之和相等 3.5全桥差动电路的电压灵敏度是单臂工作时的( C )。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

《传感器原理及应用》实验大纲

《传感器原理及应用》实验教学大纲 课程编号:课程名称:《传感器原理及应用》 课程总学时:54学时总学分:学分 实验学时:8学时实验学分:学分 适应专业:01电子信息工程 编写人:陈欣波编写日期:2000年7月 一、实验课程的目的与任务 传感器原理及应用是实现生产过程自动化的重要手段,通过本课程实验的学习,使学生更好地掌握在生产生活中广泛使用的各类传感器结构、工作原理和特性等,进一步加强学生独立分析、解决问题的能力,同时注意培养学生实事求是、严肃认真的科学作风和良好的实验习惯,为今后工作打下良好的基础。 二、实验教学基本要求 本课程是《传感器原理及应用》课程的一个实践环节,通过实验教学,使学生进一步巩固所学理论知识,提高其分析和解决问题的能力。具体要求如下: 1.进一步巩固和加深对基本理论知识的理解,提高综合应用所学知识、独立设计的 能力。 2.学会自己独立分析问题、解决问题,具有一定的创新能力。 3.能正确使用实验仪器设备,掌握工作原理。 4.能独立撰写实验报告、准确分析实验结果、得出实验结论。 5.课前做好预习,上课严格安装实验步骤认真完成实验内容。 三、实验项目与内容提要

注:开设的实验项目可根据实验室具体设备和条件等进行适当地调整。 四、实验报告格式及要求 (一)、实验报告格式: 攀枝花学院实验报告 实验课程:实验项目:实验日期: 院系:电信班级:姓名: 学号:合作人:指导教师: 成绩: [实验目的和要求] [实验仪器、设备与材料] [实验原理] [实验步骤] [实验原始记录] [实验数据计算结果] 1.相关公式: 2.数据计算: 3.数据分析: 4.实验结论: [实验结果分析,讨论实验指导书中提出的思考题,写出心得与体会] (二)、实验报告要求: 1.实验名称、学生姓名、班号和实验日期; 2.实验目的和要求; 3.实验仪器、设备与材料; 4.实验原理; 5.实验步骤; 6.实验原始记录; 7.实验数据计算结果;

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案 第1章 传感与检测技术的理论基础(P26) 1—1:测量的定义? 答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。 所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。 1—2:什么是测量值的绝对误差、相对误差、引用误差? 1- 3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.11402 ≈?L δ 标称相对误差 %==41.1142 2≈?x δ 引用误差 %--=测量上限-测量下限= 1) 50(1502 ≈?γ 1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器原理与应用心得

传感器原理与应用心得 张宝龙电信工二班201400121099 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电感式传感器的结构、工作原理及应用。 传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律

将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件和变换元件两部分组成,。 通过最近的学习,是我了解到在实际中使用传感器的选择一定要慎重。我们可以根据测量对象与测量环境确定传感器的类型。其次,当我们在选择传感器时要注意传感器的灵敏度,频率响应范围,线性范围,稳定性,精度等。 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 通过对这门课的学习开阔了我的视野,让我了解了以前没有了解的东西。在老师的指导下让我明白了学习要有自觉性,要自己积极主动地去学习。

传感器原理及工程应用概述

第二章传感器概述 1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 2、传感器是由敏感原件和转换原件组成 3、两种分类方法:一种是按被测参数分类,一种是按传感器工作原理分类 4、传感器的基本特性可分为静态特性和动态特性 5、静态特性是指被测量的值处于稳定状态时输入与输出的关系。主要指标有灵敏度、线性度、迟滞、重复性和漂移等。 6、灵敏度是输出量增量ΔY与引起输出量增量ΔY的相应输入量增量ΔX之比。用S表示即S=ΔY\ΔX。 7、线性度是指传感器的输入与输出之间数量关系的线性程度。也叫非线性误差用γL 表示即γL= 8、传感器在相同工作条件下输入量由小到大(正量程)及由大到小(反量程)变化期间输入输出特性曲线不重合的现象称为迟滞。迟滞误差用 9、重复性是指传感器在相同的工作条件下输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。最大重复差值 10、漂移是指输入量不变的情况下传感器输出量随着时间变化。产生漂移的原因有两个一是传感器自身结构参数一是周围环境。温度漂移的计算 第三章应变式传感器 1、电阻应变式传感器是以电阻应变片为转换原件的传感器。 2、工作原理是基于电阻应变效应,即导体在外界作用下产生机械变形(拉伸或压缩)是,其电阻值相应发生变化(应变效应)。 3、电阻应变片分为丝式电阻应变片和箔式电阻应变片。 4、电阻在外力作用下而改变原来尺寸或形状的现象称为变形,而去掉外力后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。具有弹性变形特性的物体称为弹性原件。 5、应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值即初始电阻值。 6、将直的电阻丝绕成敏感栅后,虽然长度不变,但应变状态不同,应变片敏感栅的电阻变化减小,因而其灵敏系数K较整长电阻丝的灵敏系数K0小,这种现象称为应变片的横向效应。为了减少横向效应产生的测量误差,现在一半多采用箔式应变片。 7、应变片温度误差:由于测量现场环境温度的改变而给测量带来的附加误差。产生的主要因素有以下两个方面:一是电阻温度系数的影响,一是试件材料和电阻丝材料的线膨胀系数的影响。 8、电阻应变片的温度补偿方法:1)线路补偿法2)应变片的自补法9***电阻应变片的测量电路10、压阻效应是指在一块半导体的某一轴向施加一定的压力时,其电阻值产生变化现象, 第四章电感式传感器 1、利用电磁感应原理将被测非电量如、位移、压力、流量、振动等转换成线圈自感系数L或互感系数M的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。 2、零点残余电压:传感器在零点位移时的输出电压。产生原因主要有以下两点一是由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。一是由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。为减小电感式传感器的零点残余电压,可以采取以下措施1)在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械应力和改善磁性;两线圈毕恭毕敬绕制要均匀,力求几何尺寸与电气特性保持一致。2)在电路上进行补偿。 3、把被测的非电量变化转化为线圈互感变化的传感器称为互感式传感器。这种传感器

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理与应用实验指导书

《传感器原理与应用》实验指导书 朱蕴璞王芳编写 孔德仁审定 南京理工大学 二〇〇九年九月

实验须知 1.传感器实验仪是贵重实验设备,请在每个实验前认真阅读实验指导书,尤

其是每个实验最后的实验注意事项。 2.实验仪器电源的开关原则: 连接测量线路,确认准确无误后,开启仪器电源; 实验完毕,关闭仪器电源,拆除测量线路。 3.稳压电源不可对地短路。 4.实验过程中,心要细、动作要轻,不可有强制性机械动作出现。5.实验严格按操作规程进行,否则,出现损坏责任自负。 6.实验完毕,请一切恢复到实验前的状态,然后离开实验室。

目录 实验一传感器静态标定实验 (3) 实验二应变式传感器特性实验 (10) 实验三电感式、涡流式、电容式、霍尔式位移传感器特性实验 (14) 实验四重量测量实验(选做) (25) 实验五转速测量实验 (29) 实验六温度实验 (34)

实验一 传感器静态标定实验 (注:“压力传感器的静态标定及特性指标的求取”与“光纤位移传感器静态标定及特性指标求取“两实验取其一。) 压力传感器的静态标定及特性指标的求取 1、实验目的 掌握压力传感器静态标定的基本方法以及压力传感器的静态特性指标的求取。 2、实验内容 (1)组建压力测试系统; (2)学习压力测试系统的标定过程; (3)计算压力测试系统静态特性指标。 3、实验原理及方法 4活塞压力计一台,数字万用表一只,动态电阻应变仪一台,压力表一只。 5、实验步骤 (1)反复排除活塞压力计油腔内的空气,最后将压力泵手轮摇出。 (2)把压力传感器装在活塞压力计的联接螺帽上,关闭油杯。 (3)传感器输出接入可调零的桥盒,电桥输出接入数字万用表。当输出量很小,无法直接用万用表测得时,可先将传感器接入动态电阻应变仪桥盒(注意电桥的连接),桥盒的另一端连线接应变仪输入(选择一个通道);将应变仪专用电源接好;电阻应变仪电压输出接数字万用表。(说明:后者标定是整个系统标定,所求得的指标也为系统指标) (4)压力表指示为零时,开启仪器电源(注意:开启仪器电源前应变仪各通道应处于关闭状态),将应变 图 1 压力传感器标定系统原理框图

传感器原理与工程应用复习题参考答案1

《传感器原理及工程应用》习题答案 第1章 传感与检测技术的理论基础(P26) 1-3 用测量围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L = 140kPa 测量值 x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.1140 2 ≈?L δ 标称相对误差 %= =41.1142 2 ≈?x δ引用误差 %--=测量上限-测量下限= 1)50(1502≈?γ

1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下: 当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。 则 2072.410.03270.0788()0.104d G mm v σ=?=<=-, 所以7d 为粗大误差数据,应当剔除。然后重新计算平均值和标准偏差。 当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。 则 20 2.370.01610.0382()d i G mm v σ=?=>,所以其他14个测量值中没有坏值。 计算算术平均值的标准偏差 20 0.0043()d mm σσ= = = 20 330.00430.013()d mm σ=?= 所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±= 1-14 交流电路的电抗数值方程为

传感器原理及应用习题及答案

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试 求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ②R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,

传感器原理及典型应用

传感器(原理及典型应用) 编稿:张金虎审稿:李勇康 【学习目标】 1.知道什么是传感器,常见的传感器有哪些。 2.了解一些传感器的工作原理和实际应用。 3.了解传感器的应用模式,能够运用这一模式去理解传感器的实际运用。 4.了解传感器在生活、科技中的运用和发挥的巨大作用。 【要点梳理】 要点一、传感器 1.现代技术中,传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转化为电路的通断。把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。 2.传感器原理 传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压值、电流值、电荷量等,这些输出信号是非常微弱的,通常要经过放大后,再送给控制系统产生各种控制动作。传感器原理如下图所示。 3.传感器的分类 常用传感器是利用某些物理、化学或生物效应进行工作的。根据测量目的不同,可将传感器分为物理型、化学型和生物型三类。 物理型传感器是利用被测量物质的某些物理性质(如电阻、电压、电容、磁场等)发生明显变化的特性制成的,如光电传感器、力学传感器等。 化学型传感器是利用能把化学物质的成分、浓度等化学量转换成为电学量的敏感元件制成的。 生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器,生物或生物物质主要是指各种酶、微生物、抗体等,分别对应酶传感器、微生物传感器、免疫传感器等等。 要点二、光敏电阻 光敏电阻能够把光照强弱这个光学量转换为电阻大小这个电学量,一般随光照的增强电阻值减小。 要点诠释:光敏电阻是用半导体材料制成的,硫化镉在无光时,载流子(导电电荷)极少,导电性能不好,随着光照的增强,载流子增多,导电性能变好。 要点三、热敏电阻和金属热电阻 1.热敏电阻 热敏电阻用半导体材料制成,其电阻值随温度变化明显。如图为某一热敏电阻的电阻—温度特性曲线。

传感器原理与应用实验报告

传感器原理与应用 实验报告 分校: 班级: 姓名: 学号:

实验一 电阻应变式传感器实验 实验成绩 批阅教师 一. 实验目的 1.熟悉电阻应变式传感器在位移测量中的应用 2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容 1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。 三.实验步骤 1.调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2.按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图(1) 测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。 3.接线无误后开启仪器电源,预热数分钟。调整电桥W D 电位器,使测试系统输出为零。 1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一 +

个差动放大器输出电压值,并列表。2.计算各种情况下测量电路的灵敏度S。S=△U/△x 表1 金属箔式电阻式应变片单臂电桥 表2 金属箔式电阻式应变片双臂电桥 表3 半导体应变片双臂电桥

相关文档
最新文档