600MW凝汽式机组全厂原则性热力系统计算

600MW凝汽式机组全厂原则性热力系统计算
600MW凝汽式机组全厂原则性热力系统计算

[键入文字]

华址电力*营

《热力发电厂》课程设计

题目:国产600MW凝汽式机组全厂原则性热力系统设计

计算

指导教师:李惊涛

专业:热能与动力工程

班级: 热能09

学号: 1091

姓名:

能源动力与机械工程学院

目录

一、............................................................. 课程设计的目的

3

二、................................................................... 计算任务

3

三、............................................................... 计算原始资料

3

3.1汽轮机形式及参数 (3)

3.2回热加热系统参数 (3)

3.3锅炉型式及参数 (4)

3.4其他数据 (4)

3.5简化条件 (4)

四、................................................................. 热系统计算

5

4.1汽水平衡计算 (5)

4.2 汽轮机进汽参数计算 (5)

4.3辅助计算 (5)

4.4各级加热器进、出水参数计算 (6)

4.5高压加热器组及除氧器抽汽系数计算 (7)

4.6除氧器抽汽系数计算 (8)

4.7低压加热器组抽汽系数计算 (8)

4.8汽轮机排汽量计算与校核 (10)

4.9汽轮机内功计算 (11)

4.10汽轮机发电机组热经济性指标计算 (12)

4.11全厂热经济性指标计算 (13)

五、反平衡校核

14

六、参考资料

15

附图(汽态膨胀过程线) (16)

一、 课程设计的目的

热力发电厂课程设计的主要目的是要确定在不同负荷工况下各部分汽水流量及其参 数、发电量、供热量及全厂性的热经济指标,由此衡量热力设备的完善性,热力系统的 合理性,运行的安全性和全厂的经济性。是学生在学习热力发电厂课程后的一次综合性 的训练,是本课程的重要环节。通过课程设计是学生进一步巩固、加深所学的理论知识 并有所扩展;学习并掌握热力系统全面性计算和局部性分析的初步方法;培养学生查阅、 使用国家有关设计标准、规范,进行实际工程设计,合理选择和分析数据的能力;锻炼 提高运算、制图、计算机编程等基本技能;增强工程概念,培养学生对工程技术问题的 严肃、认真和负责的态度。

二、 计算任务

1?根据给定的热力系统数据,在 h —s 图上汇出蒸汽的汽态膨胀线; 2?计算额定功率下的汽轮机进汽量

D o ,热力系统各汽水流量 D j ;

3?计算机组和全厂的热经济性指标 (机组汽耗量、机组热耗量、机组热耗率、机组汽耗率、

绝对电耗率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率)

三、计算原始资料

3.1汽轮机形式及参数

(1) 机组形式:亚临界、一次中间再热、四缸四排气、单轴、凝汽式汽轮机。 (2) 额定功率:P e =600MW 。

:P o =16.7Mpa , t o =537 C 。

:热段:P rh =3.234Mpa , t rh =537 C 冷段:P 'r h =3.56Mpa , t 'r h =315 C 。

(5)汽轮机排气压力

P c =4.4/5.39kPa ,排气比焓h c =2333.8kJ/kg 。

3.2回热加热系统参数

(1)机组各级回热抽汽参数;

(2)最终给水温度:t fw =274.1 C ;

(3) 主蒸汽初参数(主汽阀前) (4) 再热蒸汽参数(进汽阀前)

(3)给水泵出口压力:P u=20.13MPa,给水泵效率:83%;

(4)除氧器至给水泵高差:21.6m ;

(5)小汽机排汽压力:Pc=6.27kPa。小汽机排气焓:2422.6kJ/kg。

3.3锅炉型式及参数

(1)锅炉形式:英国三井2027-17.3/541/541 ;

(2)额定蒸发量:D b:2027t/h;

(3)额定过热蒸汽压力P b=17.3MPa ;额定再热蒸汽压力:3.734MPa ;

(4)额定过热蒸汽温度:541 C ;额定再热蒸汽温度541 C;

(5)汽包压力:P du:18.44MPa ;

(6)锅炉热效率:92.5%。

3.4其他数据

(1)汽轮机进汽节流损失4%,中压缸进汽节流损失2% ;

(2)轴封加热器压力Pt:98kPa,疏水比焓:415kJ/kg ;

(3)机组各门杆漏汽、轴圭寸漏气等小汽流量及参数见表3-2 ;

表3-2

)锅炉暖风器耗气、过热器减温水等全厂性汽水流量及参数见表;

表3-3

(5)汽轮机机械效率:98.5% ;发电机效率:99%;

(6)补充水温度:20 C;

(7)厂用电率0.07。

3.5简化条件

(1)忽略加热器和抽汽管道散热损失;

(2)忽略凝结水泵的焓升。

四、热系统计算

4.1汽水平衡计算

(1) 全厂补水率

全厂汽水平衡如图4-1所示,各汽水流量见 表

3-3。将进、出系统的各流量用相对量

a 表示。

由于计算前汽轮机进汽量 D 。为未知,故预选D 。

=1849085 kg/h 进行计算,最后校核。 全厂工质渗漏系数

a =D L /D o = 30000/1849085 = 0.01622 锅炉排污系

a =D bi /D 0=10000/1849085=0.005408

其余各量经计算为

厂用汽系数 a 1 = 0.01082 ,减温水系数

a sp =0.02974,暖风器疏水系数 师=0.01893

由全厂物质平衡可知补水率 (2) 给水系数 a w

如图4-1 , 1点物质平衡 2点物质平衡 (3) 各小汽流量系数 见表格3-2

4.2汽轮机进汽参数计算

(1) 主汽参数

由主汽门前压力 P 0 =16.7MPa ,温度t 0 =537 C ,查水蒸汽焓熵图,得主汽比焓

3393.564

kJ/kg.。

主汽门后压力p 。' =16.7(1-剧)=16.032MPa , h o ' =h 。由压力与焓值反查焓熵图得主汽门后 温心=534.2Co

(2) 再热蒸汽参数

由再热冷段 P rh =3.56MPa, t rh =315 C ,查水蒸汽焓 h rh =3017.38 kJ/kg . 中联门前蒸汽压力 P rh =3.234MPa,温度t rh =537C , 查焓熵图,得水蒸汽比焓 h rh =3537.00165kJ/kg 。

中联门后再热蒸汽压力 P rh ' =p 0(1-旅)=3.169MPa,由h rh =h rh ',查焓熵图,得中联门后再热 汽温 t rh ' =536.7 Co

图4-1全厂汽水平衡图

a ma = a P i + a_+ a =0.03245

a = o?+ a_=1.01622

a w = a

b + a i — a sp =1.01622+0.005408-0.02974=0.9919

4.3辅助计算

(1)轴封加热器计算

用加权平均法计算轴封加热器的平均进汽焓h sg,详细计算如下表:表4-1

(2)均压箱计算

用加权平均法计算均压箱平均蒸汽比焓jy,详细计算如下:表2:

(3)凝汽器平均排汽压力计算

由P si =4.4kPa,查水蒸汽性质表,得t si =30.668 C

由P s2 = 5.39kPa,查水蒸汽性质表,得t s2 =34. 348 C

凝汽器平均温度t s= 0.5 (30.618 +34.218 ) = 32.508 C

查水蒸汽性质表,得凝汽器平均压力Ps=4.8882kPa,将所得数据与表3-1 一起,以各个

抽起点为节点,在h-s图上绘制出汽态膨胀线。(见附图)

(4)原始数据整理及汽态线绘制

整理原始资料,计算完数据记入表4-3中:

表4-3 600MW机组回热系统计算点汽水参数[额定工况]

4.4各级加热器进、出水参数计算

首先计算高压加热器H1

加热器压力P i:R =(1 一:PJP'NI 一0.03) 5.894 =5.717MPa

式中p i—第一抽汽口压力;

△ P i----抽汽管道相对压损

由P =5.717MPa,查水蒸汽性质表得加热器饱和温度t si =272.4C , Hi出口温度:

t wi =t si it =272.4 _(20) =2744C

式中:t---加热器上端差。

Hi 疏水温度t d」=t w,i + 忧=242.3+5.3 =247.6C

式中:t i----加热器下端差,:t i =5.3C

t'w,i ---进水温度C,其值从高压加热器H2的上端差t计算得到。

已知加热器水侧压力P w=20.i3MPa,由t wi =274.4 C,查得Hi出水比焓h w,i=i203.6kJ/kg。由t'i =242.3C,查得Hi 进水比焓h w,2=i050.9kJ/kg。

由t d,i=247.8 C,查得Hi 疏水比焓h d,i=i075.2kJ/kg。

至此高压加热器Hi进、出口汽水参数已全部算出,同理可依次计算其余加热器各进出口

汽水参数。将计算结果列于表4-3中。

4.5高压加热器组及除氧器抽汽系数计算

(i)由高压加热器Hi热平衡计算a i

高压加热器Hi的抽气系数

a fw(h wj -h w,2)^h 0.9919X(1203.6—1050.8)/1.0

、0.07367

h — h^ 31329—1075.5

Hi的疏水系数a d」:叫r =牛=0.07361

高压加热器

(2)由高压加热器H2热平衡计算a 2、a巾

高压加热器H2的抽汽系数a 2

%(h w,2 -h w,3)/r|h -叫,1仇,1 -h d,2)

「2 二一——- 一一一h2 - h d,2

=0.9919 汇(1050.8 — 860)/1.0 — 0.07367 汉(1075.5 — 883.4) _ ° 咒劄一3016-883.4 -.

高压加热器H2 的疏水系数 a d,2:口d,2 =°f d,i+。1 =0.07367 + 0.0821 =0.1557

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1·引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数[1,2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(ε-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32/R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性和应用时需要注意的问题[7,8]。Ram在对LMTD法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2·平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均温差在一定条件下可由积分平均温差表示[10],即:

600MW凝汽式汽轮机组的热力计算

超临界压力600MW 中间再热凝汽式汽轮机在额定工况下的热经济指标计 机组型号:N600-24.2/566/566 汽轮机型式:超临界、单轴、三缸(高中压合缸)、四排汽、一次中间再热 凝汽式 蒸汽初参数:MPa p 2.240=,5660=t ℃;MPa p 51546.00=?, 再热蒸汽参数:冷段压力MPa p in rh 053.4=,冷段温度5.303=in rh t ℃;热段压 力MPa p out rh 648.3=,热段温度0.566=out rh t ℃;MPa p rh 4053 .0=?, 排汽压力:kPa p c 4.5= (0.0054MPa ) 抽汽及轴封参数见表1。给水泵出口压力MPa p pu 376.30=,凝结水泵出压 力为MPa 84.1。机械效率、发电机效率分别取为99.0=m η,988.0=g η。 汽动给水泵用汽系数pu α为0.05177 表1 N600-24.2/566/566型三缸四排汽汽轮机组回热抽汽及轴封参数

解: 1.整理原始资料 (1)根据已知参数p 、t 在s h -图上画出汽轮机蒸汽膨胀过程线,得到新 汽焓等。0.33960=h kg kJ ,82.2970=in rh h kg kJ ,2425.3598=out rh h kg kJ , 9.62782.29702425.3598=-=rh q kg kJ 。 (2)根据水蒸汽表查的各加热器出口水焓wj h 及有关疏水焓'j h 或d wj h ,将机 组回热系统计算点参数列于表2。

图1 超临界压力600MW三缸四排汽凝汽式机组蒸汽膨胀过程线

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

板式换热器热力计算及分析(整合)

第一章概论 综述 板式换热器发展简史 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中。它的发展已有一百多年的历史。 德国在1878年发明了板式换热器,并获得专利,到1886年,由法国首次设计出沟道板板式换热器,并在葡萄酒生产中用于灭菌。APV公司的在1923年成功地设计了可以成批生产的板式换热器,开始时是运用很多铸造青铜板片组合在一起,很像板框式压滤机。1930年以后,才有不锈钢或铜薄板压制的波纹板片板式换热器,板片四周用垫片密封,从此板式换热器的板片,由沟道板的形式跨入了现代用薄板压制的波纹板形式,为板式换热器的发展奠定了基础。 与此同时,流体力学与传热学的发展对板式换热器的发展做出了重要的贡献,也是板式换热器设计开发最重要的技术理论依据。如:19世纪末到20世纪初,雷诺(Reynolds)用实验证实了层流和紊流的客观存在,提出了雷诺数——为流动阻力和损失奠定了基础。此外,在流体、传热方面有杰出贡献的学者还有瑞利(Reyleigh)、普朗特(Prandtl)、库塔(Kutta)、儒可夫斯基(жуковскиǔ)、钱学森、周培源、吴仲华等。 通过广泛的应用与实践,人们加深了对板式换热器优越性的认识,随着应用领域的扩大和制造技术的进步,使板式换热器的发展加快,目前已成为很重要的换热设备。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片。 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层。 3:研究提高使用压力和使用温度。 4:发展大型板式换热器。 5:研究板式换热器的传热和流体阻力。

换热器传热能力计算

换热器传热能力计算 1.计算依据 一级换热器和二级换热器的设计图纸; 文献1《煤气设计手册》 文献2《燃气工程便携手册》 文献3《化工原理》 2.设计参数列表 一级换热器天然气进口温度t 1=23℃,出口温度t 2=60℃,定性温度t c =(23+60)/2=41.5℃。 二级换热器天然气进口温度t 1=20℃,出口温度t 2=35℃,定性温度t c =(20+35)/2=27.5℃。 一级换热器和二级换热器的加热用水进口温度T 1=90℃,出口温度T 2=70℃,定性温度t c =(90+70)/2=80℃。 天然气的物性参数密度,导热系数和定压热容查自《燃气工程便携手册》P7表1-2和表1-3,动力粘度查自《煤气设计手册》P 25图1-1-15。 水查自《化工原理》P325附录5)。 3. 热平衡计算 1)一级换热器工况流量 h m T T P P Q Q /32.1915 .2935 .4115.273201.036003000 =+??==

质量流速m==ρQ 3600 7 .14832.19?=s kg /798.0 总传热量 =-=)12(t t mCp q kW 97.45)2360(557.1798.0=-?? 加热水的质量流量m w = = -)21(T T Cp q w () 7090195.497.45-?=s kg /548.0 加热水的体积流量Q w = = w w m ρ8 .9713600 548.0?=h m /03.23 2)二级换热器的工况流量 h m T T P P Q Q /49.10515 .2935 .2715.2735.31.036003000 =+??== 质量流速m==ρQ 3600 02 .2649.105?=s kg /762.0 总传热量 =-=)12(t t mCp q kW 81.17)2035(557.1762.0=-?? 加热水的质量流量m w = = -)21(T T Cp q w () 7090195.481.17-?=s kg /212.0 加热水的体积流量Q w == w w m ρ8 .9713600 212.0?=h m /786.03 4. 传热计算 1)一级换热器工况流量 对数传热温差为K t T t T t T t T t m 9.37609023 70ln ) 6090()2370(ln )()(2 1122112=-----=-----= ? 取管子规格为φ14×2mm ,材料为20号钢,导热系数λ=45 W/mK , 单管流通截面积为S=5221085.701.04 4-?=?=π πi d m 2 管子根数N=135根 单位长度管束外表面积为S=N πd o =135×π×0.014=5.938m 2 换热管长度1.808m ,换热面积1.808×5.938=10.74 m 2

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3 2.4估算传热面积 2.4.1热流量

换热器及其基本计算

姓名:杜鑫鑫学号:0903032038 合肥学院 材 料 工 程 基 础 姓名: 班级:09无机非二班 学号:\ 课题名称:换热器及其基本计算 指导教师:胡坤宏

换热器及其基本计算 一、换热器基础知识 (1)换热器的定义: 换热器是指在两种温度不同的流体中进行换热的设备。 (2)换热器的分类: 由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。 二、几个不同的换热器 (1)管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。 管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。 而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。 (2) 套管式换热器 套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。 套管式换热器以同心套管中的内管作为传热元件的换热器。两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。热量通过内管管壁由一种流体传递给另一种流体。通常,热流体由上部引入,而冷流体则由下部引入。套管中外管的两端与内管用焊接或法兰连接。内管与U形肘管多用法兰连接,便于传热管的清洗和增减。每程传热管的有效长度取4~7米。这种换热器传热面积最高达18平方米,故适用于小容量换热。当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。

板式换热器热力计算及分析(整合)

第一章概论 1.1综述 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中。它的发展已有一百多年的历史。 德国在1878年发明了板式换热器,并获得专利,到1886年,由法国M.Malvazin首次设计出沟道板板式换热器,并在葡萄酒生产中用于灭菌。APV 公司的R.Seligman在1923年成功地设计了可以成批生产的板式换热器,开始时是运用很多铸造青铜板片组合在一起,很像板框式压滤机。1930年以后,才有不锈钢或铜薄板压制的波纹板片板式换热器,板片四周用垫片密封,从此板式换热器的板片,由沟道板的形式跨入了现代用薄板压制的波纹板形式,为板式换热器的发展奠定了基础。 与此同时,流体力学与传热学的发展对板式换热器的发展做出了重要的贡献,也是板式换热器设计开发最重要的技术理论依据。如:19世纪末到20世纪初,雷诺(Reynolds)用实验证实了层流和紊流的客观存在,提出了雷诺数——为流动阻力和损失奠定了基础。此外,在流体、传热方面有杰出贡献的学者还有瑞利(Reyleigh)、普朗特(Prandtl)、库塔(Kutta)、儒可夫斯基(жуковскиǔ)、钱学森、周培源、吴仲华等。 通过广泛的应用与实践,人们加深了对板式换热器优越性的认识,随着应用领域的扩大和制造技术的进步,使板式换热器的发展加快,目前已成为很重要的换热设备。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片。 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层。 3:研究提高使用压力和使用温度。 4:发展大型板式换热器。 5:研究板式换热器的传热和流体阻力。

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

管式换热器热力计算

这只是个模板,你还要自己修改数据,其中有些公式显示不出来。不明白的问我。 一.设计任务和设计条件 某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。 物性特征: 混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度 定压比热容=3.297kj/kg℃ 热导率=0.0279w/m 粘度 循环水在34℃下的物性数据: 密度=994.3㎏/m3 定压比热容=4.174kj/kg℃ 热导率=0.624w/m℃ 粘度 二.确定设计方案 1.选择换热器的类型 两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排 从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。

三.确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =85℃ 管程流体的定性温度为 t= ℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。 混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度 定压比热容=3.297kj/kg℃ 热导率=0.0279w/m 粘度=1.5×10-5Pas 循环水在34℃下的物性数据: 密度=994.3㎏/m3 定压比热容=4.174kj/kg℃ 热导率=0.624w/m℃ 粘度=0.742×10-3Pas

换热器的传热计算

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K= 0011 h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

换热器热力设计方案计算

换热器 默认分类 2008-04-04 00:11 阅读36 评论1 字号:大中小 目前,粮食干燥作业中多用列管式换热器,这种换热器结构简单,制造容易,检修方便。干燥行业中,换热器的热介质是烧烟煤与无烟煤混合燃料产生的高温烟道气。在管内流动,冷介质是空气,在管外 横向冲刷管子流动。 1 换热器的设计步骤与计算 1 换热器的设计步骤与计算 1.1 给定的条件 (1)热流体的入口温度t1' 、出口温度t1"; (2)冷流体的入口温度t2' 、出口温度t2"; (3)需要换热器供给的热量Q。 1.2 计算步骤 热平衡方程式是反映换热器内冷流体的吸热量与热流体的放热量之间的关系式。由于换热器的热散失系数通常接近1,计算时不计算散热损失,则冷流体吸收热量与热流体放出热量相等,热平衡方程式中的热量Q是烘干机干燥粮食所需要的热量,换热器换出的热量必须等于该热量。 (2)计算平均温度差△tp 换热器进出口两处流体的温差分别为△t' 和△t"

定性温度为流体主体温度在进、出口的算术平均值;受热时b=0.4,冷却时b=0.3。 2 在粮食干燥行业中。换热器通常是分三组立式安装,下面举一个干燥行业中的具体示例分析 2.1 已知条件及流程

换热器的管子是φ40x2的无缝管,烟气走管内,空气走管外;假定前面烘干塔热量衡算知道,需要 热量296x10(4)kcal/h; 2.2 求热交换工艺参数

所需管子根数n3 调整后数据如表2所示。

3 小结 从以上计算可知,在粮食干燥行业中,通过烘干机的设计计算得出烘干粮食所需的热量之后,再通过一系列的热量衡算和一系列的参数选择,所需列管换热器的传热面积及管长等其它尺寸是不难确定的。不同的选择有不同的计算结果,设计者作出恰当的选择才能得到经济上合理、技术上可行的设计,或者通过多方案计算,从中选出最优方案。近年来依靠计算机按规定的最优化程序进行自会寻优的方法得到日益 广泛的应用。

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用 传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数 [1, 2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换 热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32∕R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所 计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。 王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数 平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均 温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计 算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性 和应用时需要注意的问题[7, 8]。 Ram在对LMTD 法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均ia?i Δ∕-Δ< AZ- =T-Sr In Δ/ 算术平均??: % =l(?∕ι+?∕?ι) 对数平均温差在一定条件下可由积分平均温差表示[10],即:

换热器的换热面积计算

换热器热量及面积计算 一、热量计算 1、 一般式 Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=Whcp,h(T1-T2)=Wccp,c(t2-t1) 式中 cp为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; T为冷流体的温度,℃ 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表 冷流体热流体总传热系数K,w/(m2.℃) 水水850-1700 水气体17-280 水有机溶剂280-850

水轻油340-910水重油60-280 有机溶剂有机溶剂115-340水水蒸气冷凝1420-4250气体水蒸气冷凝30-300 水低沸点烃类冷凝455-1140水沸腾水蒸气冷凝2000-4250轻油沸腾水蒸气冷凝455-1020 注: 1w=1J/s=3.6kj/h=0.86kcal/h 1kcal=4.18kj 2、 温差 (1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △tm=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算 S=Q/(K.△tm) 三、管壳式换热器面积计算

S=3.14ndL 其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。 四、注意事项 冷凝段:潜热(根据汽化热计算) 冷却段:显热(根据比热容计算 【本文档内容可以自由复制内容或自由编辑修改内容期待 你的好评和关注,我们将会做得更好】

EDR换热器计算菜单翻译

Geometrysummary换热器几何信息;Frontheadtype前端圭寸头类型 shel; T ubelayout-tubepasses 通过;Tubelayout-pitch :管束间距 tub; Baffles-spac in gat in let:挡;Shell/heads/flanges/tube Frontheadtype:前端圭寸头类型 she;“E” she Geometry summary:换热器几何信息 Front head type :前端圭寸头类型 shell type:壳体类型 Rear head type:末端圭寸头类型 exchanger position:换热器位置(水平或垂直) Shell ( s) -ID :壳体内径shell (s) -OD:壳体外径 Shell (s) -series:壳体串联数目 shell (s) -p arallel:壳体并联数目 Tubes-numbe:管子数目 tube-length:管长 Tubes-OD: 管子外径tubes-管子厚度(壁厚)Tube layout-option :选择是否新建管子布局图还是使用已有的管子布局图 Tube layout-tube passes通过一个壳程的管程数目 Tube layout-pitch :管束间距tube layout-pattern:管束布置类型Baffles-spa cing (centre-centre : 挡板中心间距 Baffles-spaci ng at in let:挡板内侧间距 baffles-spaci ng at outlet :挡板外侧间距 Baffles-number:挡板数目 baffles-orientation:挡板方位 Baffles-type:挡板类型baffles-cut (%d):挡板圆缺度 Baffles-tube in window :是否有部分管子通过横向挡板(折流板) Shell/heads /flan ges/tubesheets Front head type :前端圭寸头类型 shell type:壳体类型 Rear head type :末端圭寸头类型 exchanger position:换热器位置(水平或垂直) Shell (s) -ID : 壳体内径 shell (s) -OD :壳体外径 Shell (s) -series:壳体串联数目 shell (s)

板式换热器选型计算(DOC)

板式换热器选型计算(DOC)

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人 员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式:F=Wq/(K*△T) 式中 F —换热面积m2 Wq—换热量W K —传热系数W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设

定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:BR35 F=36m2北京市华都换热设备厂 低温冷却水系统 工艺水冷冻水 流 量 m3/ h 进水 温度 ℃ 出水 温度 ℃ 压 降 M Pa 流 量 m3/ h 进水 温度 ℃ 出水 温度 ℃ 压 降 M Pa 计算结果5928170.01306110.0 实测结 果 6322170.021722

(完整版)换热器计算书

一、已知参数 板式换热器热力计算 冷介质流量 G t/h 1825.328584 3 对数温差 传热系数 Δ Tm ℃ 10.2 2 传热面积 K W/m ℃ 1600 F m 2 911.54 换热面积( 10%的裕量) m 2 1002.7 三、设计参数 单板有效换热面积 Fd m 2 8.64 冷介质流程数 N1 1 冷介质单道流通面积 A1 m 2 0.00264 热介质流程数 N2 1 热介质单道流通面积 A 2 m 2 0.0156 板片数 n 116.05207 冷介质板间流速 V1 m/s #NAME? 热介质板间流速 V2 m/s #NAME? 冷介质进、出水口直径 、流速 mm 、m/s 350 #NAME? 热介质进、出水口直径 、流速 mm 、m/s 900 #NAME? 换热器参数 浆液比热 3.457 kj/kg* ℃ 浆液密度 1180 kg/m 3 粘度 0.0022 pa*s m /h #NAME? 冷介质比热容 kcal/kg ℃ #NAME? 冷介质密度 kg/m 3 #NAME? 冷介质入口水温 T 1 ℃ 32 冷介质出口水温 T 2 ℃ 39.00 热介质密度 kg/m 3 1180.0 热介质比热容 热介质入口温度 t 1 kcal/kg ℃ ℃ #NAME? 47 热介质出口温度 t2 ℃ 44.7 热介质流量 W t/h #NAME? m 3 /h #NAME? 二、传热计算 换热量 Q KW 、kcal/h 14860.0 12777300 ΔT1=t1-T2 8.0 ΔT2=t2-T1 12.7

换热站计算使用说明

河北建筑工程学院 毕业设计计算说明书 系别:能环学院 专业:建筑环境与设备工程 班级:建环 121 姓名:任少朋 学号: 2012305127 起迄日期:16年02月21日~ 16年06月15日设计(论文)地点:河北建筑工程学院 指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日

摘要 随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。 本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。供热区域总建筑面积:110000m2,总热负荷:约6400kw。 本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。 除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。 本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。 在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。 关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器

目录 摘要 (1) 第一章设计概况 (4) 1.1设计题目 (4) 1.2设计原始资料 (4) 1.2.1 设计地区气象资料 (4) 1.2.2 设计参数资料 (4) 第二章换热站方案的确定 (5) 2.1换热站位置的确定 (5) 2.2换热站建筑平面图的确定 (5) 2.3换热站方案确定 (5) 2.4供热管道的平面布置类型 (5) 2.5管道的布置和敷设 (6) 2.6换热站负荷的计算 (6) 第三章换热站设备的选取 (7) 3.1换热器简介 (7) 3.1.1换热器概述 (7) 3.1.2换热器的分类 (7) 3.2换热器的选取 (9) 3.2.1换热器类型的选取 (9) 3.2.2换热器选型计算 (9) 3.3换热站内管道的水力计算 (10) 3.4循环水泵的选择 (11) 3.4.1循环水泵需满足的条件 (11)

换热器计算

§6 换热器计算 返回到上一层重点内容: 换热器的热工计算方法。 设计一台换热器必须进行的全部工作包括:热计算、结构布置、流动阻力计算、结构强度计算以及绘图。应该强调指出的是,除了绘图之外,前四项任务实际上是交叉在一起、无法单独进行的。也就是说,设计过程必须,也只能在反复的修正、迭代计算中完成。在传热学课程中将主要讨论热计算,对其他几项计算的有关问题请参考换热器原理和设计方面的专著或教科书。 换热器的热计算有两种基本类型——设计计算和校核计算。 设计计算的具体任务和目标是:根据指定的换热任务,一般是介质的种类、流量和进出口温度,选择合适的换热器型式和流道布置方案,求出总传热系数,进而确定所需要的换热面积。 校核计算则针对已有的一台换热器 ( 当然面积是已知量 ) ,核查它能否完成预定的某项换热任务,即核算两侧流体的出口温度能否达到预期值。

在实际的换热器设计计算中,经常需要同时进行这两种类型的计算。一般首先按照设计工况给定的参数选择流造型式并布置换热表面,计算两侧流体的表面传热系数、总传热系数和所需要的换热面积。但是,任何一台换热器都不可能永远在设计工况下工作,于是在确定了传热系数和换热面的布置方案以后,还必须对非设计工况作校核计算。 一、概述 1 、基本公式 传热方程式:, △t m为对数平均温差; 热平衡方程式:,其中适用于有相变的情况,r为相变潜热。 2 、类型 设计计算:已知中的三个。求KA 校核计算:已知。求 3 、传热系数 K 的确定:,分别为换热面两侧

的污垢热阻。 4 、计算方法 平均温差法( LMTD 法);效能 - 传热单元数法(ε -NTU 法) 二、平均温差法 1 、计算步骤 设计计算: (1) 根据能量守恒算出所缺少的一个温度值。 (2) 如果给出了总传热系数,可以直接进入下一步;如果没有给出总传热系数,则进入迭代程序,首先初选应道布置方案 ( 包括选取管径、管数及流程数,确定流速等 ) ,并计算两侧流体的表面传热系数和总传热系数。 (3) 根据进出口温度和流道布置,求出平均传热温差。 (4) 由传热方程算出换热面积,并与初选面积比较。若不一致,修改布局方案重新计算,直到两者基本一致为止。 校核计算:

相关文档
最新文档