三相有源电力滤波器的设计

三相有源电力滤波器的设计
三相有源电力滤波器的设计

三相有源电力滤波器的设计

摘要:随着现代社会经济的不断发展,推动了电力行业的进一步发展,电子装置亦被广泛应用,至此大量谐波及无功电流被用于电网中,但随之而来的是极大的污染,电能质量问题亦显得十分严重。有源电力滤波器可有效补偿电力系统谐波及其无功功率,此装置控制具备良好的实时性及准确性,这亦是实现有效补偿的重要内容。三相有源电力滤波器是以模拟逻辑方式消除电网谐波,从而实时检测电网中的非线性负载电流波形,再将动态滤波、动态无功功率集于一体,其使用性能良好,影响速度极快,滤波涵盖范围亦是非常广泛,实际应用效率高,工作时并不受系统参数的影响。本文探讨了三相有源电力滤波器的设计,并提出了实用性应用措施,为三相有源电力滤波器设计提供参考依据。

关键词:三相有源;电力滤波器;滤波器设计

三相有源电力滤波器可实时滤除谐波,及时消除非线性负载中的谐波电流,亦或者是消除电网侧产生的谐波电流,从而有效降低系统电压畸变率;并可实现动态无功补偿,能够及时发出容性无功亦或感性无功,可有效改善系统的功率因数;可达到降耗节能的目的,有效降低线路损耗与变压器损耗,能够有效缓解设备发热的问题,同时延长设备应用时间,并确保电力系统运行稳定可靠。三相有源电力滤波器对现代电力系统发展有着极大现实意义,但三相有源电力滤波器设计水平偏低,因此探讨三相有源电力滤波器设计,对电力系统有效运行有着极大现实意义。

一、三相有源电力滤波器简论

1、有源电力滤波器

电力电子设备及非线性负载现已被广泛应用,这时的谐波电流及无功电流被大量注进电网,从而威胁着电网及电气设备的运行及其正常使用。有源电力滤波器为动态抑制谐波及补偿无功的设备装置,此类电力电子设备可对频率及大小变化谐波、无功等有效补偿,其为十

分理想的补偿谐波设备,为十分理想的补偿谐波设备。有源电力滤波器具备极高可可控度,其反映速度十分快速,可及时跟踪补偿各谐波与需要的无功功率,而此特性并不会受到系统的影响,无谐波可合理放大,其体积与重量小。单台有源电力滤波器造价与技术、容量均被制约,大容量有源电力滤波器研究已获得诸多成就,三相有源电力滤波器被广泛用于电力系统中,但此方式结构非常复杂,控制程序亦十分繁琐,设计工作难度大。

2、三相有源电力滤波器

三相有源电力滤波器具备诸多良好的性能特点,其可滤除的谐波次数范围非常广泛,通常可滤除2-50次谐波,为可滤波除特征谐波,亦可滤除非特征滤波;谐波滤除效率高,于额定功率下的谐波电流除率为95%;响应速度极快,谐波补偿电流响应时间超过10MS;能够单相动态为电力系统注进补偿电流,从而有效改善系统三相不平衡的问题;可自动消除谐振,确保各设施设备与系统安全运行;可设定输出与最大100%限流输出,确保设备长时间稳定运行;具备滤波与无功补偿功能,比如感性与容性,从而实现滤波或是补偿功能;其操作界面简单便捷;界面可实时显示电压与电流、谐波等参数,并且菜单设置灵活合理,可选择消谐模式、无功补偿模式与谐波无功可实现同时补偿模式,且具备目标功率因数与输出电流,能够及时记录实时故障,设计选型简单合理,安装及其操作、维护工作亦非常简单;可可10台扩展并联运行;保护措施简单完善,具备系统电压过压保护及欠压保护、输出过流保护、过热保护、控制电压欠压保护。其工作原理主要是实时检测电网中的负载电流,从而将谐波电流分量合理分离,以谐波电流大小发出控制指令,达到实时产生大小相等与方向相反补偿电流,并将补偿电流注进电网中,这时则可实现瞬时抵消滤除谐波电流的目的,并实现无功补偿。

二、三相有源电力滤波器主电路参数选择

三相有源电力滤波器主电路参数及其系统模型会严重影响系统控制效果,选择适当的主

电路参数对滤波器稳定运行十分关键,亦是有效控制性能的重要条件,本文对此进行了下述几方面分析:

1、交流侧电感选择

有源电力滤波器指令电流中的谐波及暂态电流十分关键,要求实际输出电流可有着良好的跟踪能力,有源电力滤波器补偿对象确定时,有源电力滤波器主电路参数选择及其性能、效率息息相关。电感有通低频及阻高频电流会导致有源滤波器补偿电流中均是谐波电流,电感值设计与电流跟踪性能及其补偿效果息息相关。主电路参数是互相制约的,不可单独的选择电感值。稳定的电流跟踪能力为有源电力滤波器运行中谐波补偿的重要内容,与最终的谐波补偿效果息息相关,电网电压及滤波器直流侧电容电压确定时,补偿电流跟踪效果与主电路功率器件开关频率及补偿电流瞬时变化率息息相关。

(1)器件开关频率

器件开关频率对滤波器运行非常重要,有源电力滤波器的目的就是产生谐波,这时则强调系统具备更高的电流带宽。若开关频率太低则表示主电路电流带宽低,输出高频率电流分量难度较大,这时系统则缺乏相应的谐波补偿能力,从而导致补偿效果偏低。

(2)电流波形

就电流波形而言,偏低的开关频率会导致补偿电流中存在的纹波成分不断增大,随之而来的系统损耗亦加大,电流跟踪效果则随之恶化;若开关频率高时,会使得开关功率耗损增大,从而提高了系统损耗,系统效率亦持续降低。

(3)补偿电流

补偿电流瞬时变化率会面对两个互相矛盾的问题,有源电力滤波器中的主电路应具备更高的补偿电流变化率,确保补偿具备更大的电流变化率,非线性负载中亦可产生补偿电流,从而达到谐波补偿的目的。补偿电流波形与被补偿的负载电流波形息息相关,而被补偿的负

载电流变化率大时,对滤波器的要求就会更高;再是补偿电流变化率不可太高,以便适应对补偿电流纹波大小的要求。若补偿电流中的变化率太大,则会导致滤波器输出电流超调,从而于补偿电流中出现极大的纹波毛刺使得补偿效果失灵。主电路参数设计时,电网电压及滤波器直流电容电压确定条件下,滤波器变化率均是由交流侧接口电感产生的,主电路参数间存在的互相关联与制约关系十分重要,电感参数要可保证系统具备高电流带宽、动态性能、低开关损耗,以确保滤波器运行安全稳定。

(4)串联电感

串联电感设计时,若电流过零,则电流变化率大,这时的电感务必小,才能更好的适应快速跟踪电流的要求;再是正弦电流峰值的输出电流纹波极为严重,而这时的电感要大,要适应开关抑制谐波电流的要求。

2、直流母线额定电压选择

要全面分析空间矢量控制下的三相有源电力滤波器工作过程,确定其间主电路参数选择互相联系,不可仅注重其间某个。三相有源电力滤波器直流侧电容电压会因外部因素而限制,这时则应全面分析特定待补偿非线性负载的实际情况,合理选择直流侧电容电压。有源电力滤波器直流侧电容电压选择与特定被补偿非线性负载息息相关,并与交流侧接口电感及电网电压矢量问题密不可分。有源电力滤波器直流侧电容电压临界值选择及其补偿电流特定为谐波分布特性,交流侧接口电感参数与其亦是息息相关,其并不是简单的固定数值。

3、直流母线电容选择

有源电力滤波器为直流侧电容充、放电过程,其间滤波器性能与稳态工作下的直流侧电容电压应保持不变。电容量大小会严重影响到电压波动,若电容大则电压波动小,有源滤波器具备良好的滤波效果;但若电容大则成本会随之增加。直流侧电容的目的是给变流器提供相应的电压参考,直流电压于变流器实际工作中务必保持稳定,变流器中的开关器件会因工

作而出现损耗,这时稳定直流电压则十分关键,应于系统中吸收有功电流,以达到维持直流电压稳定的目的。直流侧电容多用来稳定电压源型变流器,其属于稳定的直流电压源,负序和谐波电流于直流电容侧时,会出现相应的能量脉动,且因开关的作用及有源电力滤波器交流侧电感储能而出现能量脉动的问题诸多,这些均需直流侧电容合理缓冲。

4、交流侧输出滤波器设计

有源电力滤波器的目的是为了处理电网中的非线性负载导致的谐波电流引起的电能质量问题所设计的电力电子设备,可检测其负荷侧电流获得畸变电流分量,再以逆变器生成脉宽调制波,通过输出低通滤波器滤除开关波纹,之后再将其融于电网中,生成相应的补偿电流再注进电网中,充分抵消负载谐波电流,确保电源侧电流与正弦波接近,有效改善电网电能质量。输出电流中存在50次及以下的谐波电流,开50次以上的谐波分量要全部滤除。通常采用LCL滤波器,此滤波器电感电容大小合理,滤波器于高频位置时,能够得到良好的衰减,且系统阻抗对输出电流影响小。

三、三相有源电力滤波器实现影响分析

三相有源电力滤波器实现主要是谐波分析、电流内环跟踪控制、直流母线电压稳定、驱动信号生成等。若母线电压低于设定值,则有源电力滤波器可于电网中稳定吸收能量;若母线电压高于设定值时,则有源电力滤波器会于电网中释放有功能量,合理维持直流母线电压稳定。有源电力滤波器驱动信号生成,大都是以SPMW调制方式实现的,开关频率应选择125kHz,本文对三相有源电力滤波器实现影响进行了下述分析:

1、负载突变对直流母线电压造成的影响

全谐波检测算法是以负载电流降低通滤波器输出电流实现的,低通滤波器输出固有时延是,会导致负载突变时的直流电流中生成基波残留。而负载突然降低时,则有源电力滤波器可由电网中吸收相应的有功能量,促使有源电力滤波器母线电压快速提高;反之则母线电压

会突然降低。新型谐波检测算法并不需要通过负载电流减滤波器输出量,可通过简单的方式提取谐波指令,负载突变时的指令电流中不存在基波,亦不会造成有源电力滤波器直流母线电压出现大范围变化。负载突变时的全谐波算法可有效维持直流母线电压稳定,而直流母线电压波动大,新谐波算法直流母线电压无波动,可以说新谐波算法有助于系统稳定运行。2、相位误差对无功电流检测造成的影响

瞬时无功功率理论下的dp法实时性良好,且计算量不多,电网中的电压出现畸变时,亦可准确无误的检测电流中存在的谐波和无功电流,其可快速检测出电流。系统中的电网电压正弦量及坐标变化正弦量间会存在相位差,会造成检测结果测量误差,通常相位差的产生为两个原因,其一是因电网电压不对称而导致其间存在负序电压,过零检测锁相方式坐标变换正、余弦信号相位是系统电压所决定的,亦是和正序电压及负序电压分量和相同,但是期望的正弦信号要与正序分量为同相;其二是因锁相不准确而导致相位出现偏移。坐标变换中正弦量相位差导致基波有功电流检测中存在误差,而这时则不可正确检测谐波与无功电流。负荷电流畸变不对称时的电压亦是不平衡的,亦或者是其关键环节的误差使得其间存在较大的相位差,谐波与无功电流亦存在相应的误差,这时亦会严重影响控制直流电压的有功分量,同时影响了相位差。而此问题均是以dp坐标闭环锁相方式、过零检测修正锁相方式、电源电压矢量同步参考坐标法等方式来处理。

3、低通滤波器对检测误差造成的影响

直流量提取是通过低通滤波器实现的,滤波器性能会直接影响检测误差,通常是期望能够滤除全部的交流分量而得到纯的直流量,这时低通滤波器实现纯直流滤波则难度较大。结束语

社会经济的飞速发展,电力行业更加注重高次谐波抑制的重要性,并强调谐波污染的降低,诸多新型有源滤波系统亦应时而生,且设施设备均是不同的,电力系统运行亦要求可准

确快速地补偿电网谐波电流,亦或者是谐波电压,有源滤波器若需实现如此效果,则系统电路设计务必科学合理,但这多依赖于三相有源电力滤波器的设计。有源电力滤波器应具备良好的电压控制功能及高性能电流控制功能,电压控制性能务必具备良好的稳态精度,并以合理的动态性能安全启动控制。本文对三相有源电力滤波器进行了简论,探讨了三相有源电力滤波器主电路参数选择,并分析了三相有源电力滤波器实现影响,为三相有源电力滤波器设计提供参考依据。

参考文献

[1]杜太行,胡相彬,赵川,等.有源电力滤波器补偿电流控制与主电路参数设计[J].低压电器,2010(06) .

[2]乐江源,谢运祥,张志,陈林.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报2010(15).

[3]颜文旭,韩立圣,惠晶,谢林柏.三相四线有源电力滤波器新型神经预测控制[J].电力系统及其自动化学报,2011(01).

[4]王路鹏,唐忠.基于LCL的三相并联有源电力滤波器研究[J].电气技术,2014(03).

[5]陈达威,朱桂萍.微电网负荷优化分配[J].电力系统自动化,2010(10).

[6]邵竹星,张国荣.三相四线制有源电力滤波器的研究及仿真[J].低压电器2012(03).

[7]董伟杰,白晓民,宋晓辉,陈静,朱宁辉,李伟.基于PI神经元网络的三相四开关电力有源滤波器研究[J].中国电机工程学报,2014(24).

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

电力有源滤波器的设计

工学院毕业设计(论文) 题目:电力有源滤波器的设计 专业:电气工程及其自动化 班级:电气082 姓名:邓大伟 学号: 1609080203 指导教师:国海 日期: 2011年12月22日

目录 摘要: (1) 1 绪论 (2) 1.1概述 (2) 1.2抑制谐波的方法 (2) 1.3本文研究的内容 (3) 2 APF的工作原理和结构 (4) 2.1APF的基本原理和种类 (4) 2.2APF的谐波检测方法 (5) 2.3APF的补偿电流控制方法 (6) 3 有源电力滤波器谐波检测及控制策略 (8) 3.1瞬时无功功率理论简介及其应用 (8) 3.2SVPWM调制策略 (10) 4 控制系统的总体设计方案 (14) 4.1系统初始化程序的设计 (14) 4.2中断子程序设计 (14) 4.3I P-I Q法补偿谐波和无功电流的原理框图 (15) 5 电力有源滤波器的仿真实现 (17) 5.1源电力滤波器仿真模型的建立 (17) 5.2结果仿真 (21) 总结与展望 (25) 致谢 (26) 参考文献 (27) ABSTRACT: (28)

电力有源滤波器的设计 摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。 目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。 关键词:电力有源滤波器;谐波检测 ;APF

有源电力滤波器课程设计

目录 1 设计相关知识介绍 (1) 1.1 谐波基本概念 (1) 1.2 谐波主要危害 (1) 1.3抑制谐波方法 (1) 2 APF的基本工作原理 (3) 3 APF基本组成部分 (5) 3.1 主电路 (5) 3.1.1 PWM控制的基本原理 (5) 3.1.2 主电路结构 (7) 3.2 指令电流运算部分 (8) 3.2.1 瞬时无功理论定义 (8) 3.2.2 基于瞬时无功理论检测法 (9) 3.3 电流跟踪控制部分 (11) 3.3.1电流滞环控制原理 (11) 3.3.2 三相电流滞环控制原理 (12) 3.4 驱动电路 (13) 参考文献 (15)

1 设计相关知识介绍[1] 1.1 谐波基本概念 1882年,法国数学家傅里叶指出,一个任意函数都可以分解为无穷多个不同频率正弦信号的和。基于此,国际电工标准定义谐波为:谐波分量为周期量的傅里叶级数中大于1的H次分量。把谐波次数的H定义为:以谐波频率和基波频率的之比的整数。电气和电子工程协会标准定义谐波为:谐波为一个周期波或量的正弦波分量,其频率为基波的整数倍。总结二者,目前国际普遍定义谐波为:谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。 1.2 谐波主要危害 谐波研究与治理对于现代工业生产意义重大,这是因为谐波不仅降低电能的生产、传输和利用效率,而且给供、用电设备的正常运行带来严重危险。对于电力系统,谐波会放大系统局部并联谐振或串联谐振现象,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电气设备,谐波可以使电气设备产生振动和噪声,还可以产生过热现象,促使绝缘老化,缩短设备使用寿命,甚至发生故障或烧毁。 谐波对通信设备和电子设备会产生严重干扰。电力系统产生的谐波与普通电话线路传输的音频信号及人耳的音频敏感信号相比在信号频带上具有一定的重叠性,而且二者功率相差悬殊。对于通信的干扰,也是谐波的主要危害之一。 谐波污染是电力电子技术发展的重大障碍。电力电子技术是未来科学技术发展的重要支柱。有人预言,电力电子连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子装置所产生的谐波污染已成为阻碍电力电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效研究。 因此,谐波治理已经成为电气工程领域迫切需要解决的问题。 1.3抑制谐波方法 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为无源滤波和有源滤波。(1) 无源滤波

无源滤波器设计概述

关于无源滤波器设计 随着电网中非线性负载(如电力电子装置、可调速电机)应用的增多,供电质量日趋下降,电网中的谐波含量严重超过国家标准,对电力用户的安全用电构成威胁。并且,国家对电力市场管制的开放,无疑加剧电力市场的竞争,一方面电力用户对供电电源的谐波含量的要求越来越高,另一方面电力公司对电力用户注入电网的谐波水平也提出了限制。因此,对电网的经济安全运行起到十分重要的作用的电力滤波器有大量的市场需求和市场潜力。 概述 电力系统是由电感、电阻、电容组成的网络,在一定的参数配合下可能会对某些频率产生谐振,诱发出过量的电压和电流。因此,应当尽量避免谐振。对于正常设计的电网来说,发生工频谐振的可能性很小。但是,却有可能在某些高次谐波下谐振,使谐波电流和电压剧增,危害设备的运行和安全。 当谐波源产生的谐波大于规定限值时,应装设滤波装置。在谐波源处装设滤波器,就地吸收谐波电流,可以使注入系统的谐波减少到很低的程度,这是当前最主要的抑制谐波的手段。 目前大量应用于在电力系统中的是无源交流滤波装置,由电力电容器、电抗器和电阻组成,可以抑制谐波并兼有一定的无功补偿作用。无源滤波器结构简单、运行可靠、维护方便,成本低、技术成熟。 最理想的滤波器设计是能够将注入的全部谐波都进行衰减的单个宽频带结构,但需要的电容量非常大,比较经济的做法是使用单调谐滤波器将较低次的谐波衰减掉,由高通滤波器衰减较高次数的谐波。 无源谐波滤波器包括一组对应于某几次低次谐波的单调谐滤波器组和一个用于滤除高次谐波的高通滤波器。 运行特点 使用无源滤波器的特点主要有: ①滤波效果受电网阻抗影响大,会因制造误差、设备老化、电网频率变化造成滤波效果下降; 对谐波频率经常变化的负载滤波效果差。 ②容易与电网产生谐振,产生并联或串联谐振,造成谐波放大; ③对谐波进行抑制的同时引入一定量的无功,兼有谐波补偿和无功补偿功能; ④可利用现有无功补偿设备容量; ⑤不具有处理复杂频谱谐波的能力。 ⑥容易过载而产生危险

有源电力滤波器设计

有源电力滤波器设计 摘要:以三相系统中的电网电流为研究对象,介绍了有源电力滤波器的系统结构和工作原理,讨论了主要元件参数的设计和计算。 键词:有源电力滤波器;滤波器设计;谐波检测 O 引言 近年来,公用电网受到了谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,并影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有突出的优点。 (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开等。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。 本文对适用于电力系统的有源电力滤波器的原理和设计进行介绍。 l 有源电力滤波器系统结构 有源电力滤波器系统结构如图l所示。

有源电力滤波器的基本工作原理是:实时检测补偿对象的电压和电流,经指令电流运算单元计算出补偿电流指令信号,该信号经补偿电流发生电路放大产生补偿电流,补偿电流与负载电流中需用补偿的谐渡及无功等电流抵消,最终得到期望的电源电流。在图1中的体现是,当需要补偿负载所产生的谐波电流时,有源电力滤波器检测出补偿对象负载电流iL中的谐波分量iLb后,将其反极性作为补偿电流的指令信号iC*,再由补偿电流发生电路产生补偿电流ic,其中补偿电流ic与负载电流中谐波分量iLh大小相等,方向相反,因而两者相互抵消,使得电源中电流中只含基波,达到消除电源电流中谐波的目的。 图1为有源滤波器的系统框图。通过霍尔传感器检测非线性负载的电流iLa、iLb、iLc经电流信号调理后送入指令电流产生电路,指令电流产生模块是由TI公司的DSP TMS320LF2407为核心建立的。DSP计算出需要补偿的谐波和无功电流后,通过外部D/A送入电流跟踪控制电路。霍尔传感器检测有源电力滤波器主电路的电流ica、icb、icc,经电流信号调理后也送入电流跟踪控制电路,电流跟踪控制电路对主电路补偿电流与指令电流进行滞环比较后送出栅极开关驱动信号,驱动电路接受来自前级电流跟踪控制电路的PWM信号,并经隔离放大后驱动主电路的开关管,以控制主电流的电路跟随指令电流的变化,最终达到实时补偿谐波与无功功率的目的。电压传感器检测变流器直流侧总电压,经电压信号调理后送入指令电流发生电路,通过合理的控制以凋节直流侧电压的稳定。启动、关断和保护模块按一定的时序控制装置的启动和关断,并提供装置的过流、过压、过热、缺相等故障保护功能。 2 有源电力滤波器主电路设计 设计主电路时,应首先确定主电路的形式,目前,有源电力滤波器主电路的形式绝大多数采用电压型,本文选择主电路为并联电压型、单个变流器的形式。 主电路设计需要解决的问题是:主电路容量的计算;开关器件的选择及其参数的确定;对补偿电流的跟踪特性起决定作用的参数(输出电感L、直流侧电容电压Ud、滞环宽度δ)的设计;按所选器件要求的驱动电路的设计以及整个装置的各种保护电路设计。 2.1 主电路容量的计算 有源电力滤波器的容量SA由式(1)确定 式中:E为电网相电压有效值; Lc为补偿电流有效值。 如果所设计装置的容量为15 kVA,则 Ic=SA/3E=15x103/3x220=22.7 A 2.2 功率开关器件的选取 目前适用于APFP中的全控型开关器件主要有GTR、IGBT、IGCT等,器件的选择,首先应当满足工作频率和器件容量的要求,当单个器件的容量难以满足要求时,可考虑采用器件的串并联或主电路多重化等方式。其次,再考虑它们的价格。 器件的种类确定后,再确定其额定参数。其中,额定电压由直流侧电压决定,并考虑适当的安全裕量。额定电流由补偿电流决定。 2.3 主电路滞环宽度的选取 由于有源电力滤波器的指令电流包含高次谐波和暂态电流,故要求实际输出的电流对指令电流有很高的跟踪能力。在有源电力滤波器的补偿对象已确定的情况下,有源电力滤波器主电路参数的选取,对有源电力滤波器的性能和效率有较大的影响。 下面以A相为例,分析采用滞环控制时逆变器的工作频率f与电网电压ea、变流器直流侧电压Ud及

论关于低通无源滤波器优秀设计详细.doc

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系 统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为和两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的分为无源和两种。 :仅由 (R、L 和 C)组成的滤波器,它是利用电容和电感元件的随频率的变 化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供 电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时 容易引起电磁感应,当电感 L 较大时滤波器的和重量都比较大,在低频域不适 用。 有源滤波器:由无源元件 (一般用 R 和 C)和(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽 (由于不使用电感元件);缺点是:通带范围受有源器件 (如集成运算放大器)的带宽限制,需要直流电源供电,可 靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4)按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为x(t ) ,输出为 y(t ) ,滤波器的脉冲响应函数为h(t ) 。转换到频域,激励信号为X ( j ) ,经过一个线性网络得到的响应信号为Y( j) 。

基于DSP的有源电力滤波器设计

一一收稿日期:2013-10-21基金项目:西北民族大学中央高校基本科研业务费专项资金资 助项目(31920130013) 作者简介:王彩霞(1974),女,河南荥阳人,硕士,副教授,主要研究方向为控制理论,计算机控制系统分析设计等三 基于DSP 的有源电力滤波器设计 王彩霞,周志文 (西北民族大学电气工程学院,兰州730030) 一一摘要:随着非线性负载的大量接入和电力系统自身的发展,电力系统中的谐波污染日益严重,谐波影响着电力系统的可靠二安全二经济运行,同时对电力用户也造成潜在的威胁三该文设计了以TMS320F2812型DSP 为核心的有源电力滤波器对电力系统的谐波进行了补偿三完成硬件电路的搭建和软件程序编制,对性能二参数进行了测试,测试结果表明设计的滤波器具有电路结构简单二补偿效果好等优点三 关键词:有源电力滤波器;谐波;DSP ;电压矢量控制 中图分类号:TM46一一文献标志码:A一一文章编号:1000-0682(2014)04-0023-03 The design of active power filter based on DSP WANG Caixia,ZHOU Zhiwen (College of Electric Engineering ,Northwest Minorities University ,Lanzhou 730030,China ) 一一Abstract :Along with the access of nonlinear load and the development of electric power system,the harmonic pollution in power system is deteriorating.Harmonic not only affects the reliability,safety and economic operation of power system but also poses potential risks to power users.An active power filter with TMS320F2812DSP as the core is designed for harmonic compensation for power system.After the hardware circuit configuring,software programming and circuit debugging,the system performances and parameters are tested and studied.The testing results show that the designed filter has the advantages of simple circuit structure and good compensation effect. 一一Key words :active power filter(APF);harmonic;DSP ;voltage vector control 0一引言 电力系统中谐波的产生有两个原因,一个是由接入系统的非线性负载产生的,这类负载的伏安特性不是线性的,即使加在其两端的电压是理想的正弦,通过的电流也不是正弦,含有谐波,使得电力系统的电能质量受到了严重影响三另一个是电力系统自身的发展所产生的,如高压直流输电技术的应用,对电力系统带来的污染也日益严重三随着电力系统自身的发展和用电设备的不断更新,预计谐波对终端用户侧的影响将会越来越严重三因谐波干扰所引发的公用电网供电质量日趋恶化,严重的威胁着整 个电力系统的可靠运行[1]三 传统的抑制谐波的方法是无源滤波技术,由电 阻二电力电容器和电抗器等器件构成LC 无源滤波器,与需要补偿的负载并联三无源滤波器具有结构简单二使用方便的优点,但也存在如LC 滤波器只能抑制固定次的谐波,且在一定频率谐波条件下会产生谐振,反而使谐波放大,LC 滤波器滤波特性受系统参数的影响较大等缺点三尽管如此,LC 滤波器仍然是目前补偿谐波主要方法三 近几年随着电力电子技术的发展,出现了用电力电子变流器构成有源电力滤波器(Active Power Filter,简称APF)对电力系统的谐波进行补偿三与传统无源滤波器相比,有源滤波器具有如下明显的 优越性能: 1)能够迅速地对变化的谐波进行动态跟踪补偿,补偿效果不受电网特性的影响,不会和电网发生谐振,补偿后畸变率很低且功率因数接近1; 四 32四2014年第4期一一一一一一一一一一一一一一一工业仪表与自动化装置

有源电力滤波器课程设计

目录 1 设计相关知识介绍[1] (1) 1.1 谐波基本概念 (1) 1.2 谐波主要危害 (1) 1.3抑制谐波方法 (1) 2 APF的基本工作原理[2] (2) 3 APF基本组成部分 (5) 3.1 主电路 (5) 3.1.1 P WM控制的基本原理[3] (5) 3.1.2主电路结构 (7) 3.2 指令电流运算部分[4] (8) 3.2.1瞬时无功理论定义 (8) 3.2.2基于瞬时无功理论检测法 (9) 3.3 电流跟踪控制部分[3] (11) 3.3.1电流滞环控制原理 (11) 3.3.2三相电流滞环控制原理 (12) (13) 图3-10 三相电流跟踪型PWM逆变电路输出波形 (13) 3.4 驱动电路[5] (13) 4 心得体会 (14) 参考文献 (15)

1 设计相关知识介绍[1] 1.1 谐波基本概念 1882年,法国数学家傅里叶指出,一个任意函数都可以分解为无穷多个不同频率正弦信号的和。基于此,国际电工标准定义谐波为:谐波分量为周期量的傅里叶级数中大于1的H次分量。把谐波次数的H定义为:以谐波频率和基波频率的之比的整数。电气和电子工程协会标准定义谐波为:谐波为一个周期波或量的正弦波分量,其频率为基波的整数倍。总结二者,目前国际普遍定义谐波为:谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。 1.2 谐波主要危害 谐波研究与治理对于现代工业生产意义重大,这是因为谐波不仅降低电能的生产、传输和利用效率,而且给供、用电设备的正常运行带来严重危险。对于电力系统,谐波会放大系统局部并联谐振或串联谐振现象,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电气设备,谐波可以使电气设备产生振动和噪声,还可以产生过热现象,促使绝缘老化,缩短设备使用寿命,甚至发生故障或烧毁。 谐波对通信设备和电子设备会产生严重干扰。电力系统产生的谐波与普通电话线路传输的音频信号及人耳的音频敏感信号相比在信号频带上具有一定的重叠性,而且二者功率相差悬殊。对于通信的干扰,也是谐波的主要危害之一。 谐波污染是电力电子技术发展的重大障碍。电力电子技术是未来科学技术发展的重要支柱。有人预言,电力电子连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子装置所产生的谐波污染已成为阻碍电力电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效研究。 因此,谐波治理已经成为电气工程领域迫切需要解决的问题。 1.3抑制谐波方法 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为无源滤波和有源滤波。(1) 无源滤波

低通无源滤波器设计详细

低通无源滤波器仿真与分析 、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1) 按所处理的信号: 按所处理的信号分为和两种。 2) 按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3) 按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L 较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器) 组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件) ;缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4) 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为 x(t) ,输出为 y(t ) ,滤波器的脉冲响应函数为 h(t ) 。转换到频域,激励信号为 X(j ) ,经过一个线性网络得到的响应信号为 Y( j )

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计 摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准 确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

三相有源电力滤波器的设计

三相有源电力滤波器的设计 摘要:随着现代社会经济的不断发展,推动了电力行业的进一步发展,电子装置亦被广泛应用,至此大量谐波及无功电流被用于电网中,但随之而来的是极大的污染,电能质量问题亦显得十分严重。有源电力滤波器可有效补偿电力系统谐波及其无功功率,此装置控制具备良好的实时性及准确性,这亦是实现有效补偿的重要内容。三相有源电力滤波器是以模拟逻辑方式消除电网谐波,从而实时检测电网中的非线性负载电流波形,再将动态滤波、动态无功功率集于一体,其使用性能良好,影响速度极快,滤波涵盖范围亦是非常广泛,实际应用效率高,工作时并不受系统参数的影响。本文探讨了三相有源电力滤波器的设计,并提出了实用性应用措施,为三相有源电力滤波器设计提供参考依据。 关键词:三相有源;电力滤波器;滤波器设计 三相有源电力滤波器可实时滤除谐波,及时消除非线性负载中的谐波电流,亦或者是消除电网侧产生的谐波电流,从而有效降低系统电压畸变率;并可实现动态无功补偿,能够及时发出容性无功亦或感性无功,可有效改善系统的功率因数;可达到降耗节能的目的,有效降低线路损耗与变压器损耗,能够有效缓解设备发热的问题,同时延长设备应用时间,并确保电力系统运行稳定可靠。三相有源电力滤波器对现代电力系统发展有着极大现实意义,但三相有源电力滤波器设计水平偏低,因此探讨三相有源电力滤波器设计,对电力系统有效运行有着极大现实意义。 一、三相有源电力滤波器简论 1、有源电力滤波器 电力电子设备及非线性负载现已被广泛应用,这时的谐波电流及无功电流被大量注进电网,从而威胁着电网及电气设备的运行及其正常使用。有源电力滤波器为动态抑制谐波及补偿无功的设备装置,此类电力电子设备可对频率及大小变化谐波、无功等有效补偿,其为十

浅谈有源电力滤波器设计

综述 随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。针对10~35kV高压交流电力系统,国内外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。无源电力滤波器具有诸多的缺陷,难以达到理想的性能。受功率半导体开关器件的约束,有源电力滤波器常规技术方案的应用限制在低压交流电力系统。提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。

1 工作原理 1.1 变压器的结构 变压器的结构如图1所示。其一次侧AX与二次侧ax的匝数分别为W1、W2,变比k=W1/W2,一次侧与二次侧的互感为M。一次侧绕组的电阻为r1,自感为L11。变压器采用非晶态合金铁心,为了确保变压器工作在B-H曲线的线性区,铁心开有气隙。利用电压型逆变器向变压器二次侧绕组中注入补偿电流i2且满足i2=-α*∑i1(n)-β*i1(1) 式中:α为谐波补偿系数;∑i1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i1(1)为实时检测的变压器一次侧基波电流。 1.2 谐波抑制原理 从AX端看,变压器n次谐波电压方程为ù1(n)=(r1+jW n L11)/ì1(n)+jW n Mì2(n) 若α满足谐波补偿条件α=L11/M 则从AX端看,变压器对谐波电流的等效阻抗为Z AX(n)=ù1(n)/ì1(n)=r1通常r1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。谐波等效电路如图2所示。

有源滤波器的设计

有 源 滤 波 器 姓名:xxx 班级:XXX 学号: xxx

目录 一、基本介绍 二、工作原理 三、有源滤波器的功能作用 四、有源滤波器分类 五、有源低通滤波器的设计 六、总结

一、基本介绍 滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。在电子电路中常用来进行信号处理、数据传输和抑制噪声等。在运算放大器广泛应用以前滤波电路主要采用无源电子元件一电阻、电容、电感连接而成,由于电感体积大而且笨重导致整个滤波器功能模块体积大而且笨重。本文介绍由集成运算放大器、电阻和电容设计有源滤波器,着重讲解低通、高通、带通滤波电路。 二、工作原理 有源滤波器工作原理是:用电流互感器采集直流线路上的电流,经A/D 采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为PWM的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制IGBT单相桥,根据PWM技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。这是前馈控制部分。再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差。 三、有源滤波器的具体功能及作用 1、滤除电流谐波 可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。 2、改善系统不平衡状况 可完全消除因谐波引起的系统不平衡,在设备容量许可的情况下,可根

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

有源滤波器的概念原理与设计说明

一、基本概念: 有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源, 顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号`,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ? 引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

低通无源滤波器设计-详细说课讲解

低通无源滤波器设计- 详细

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为模拟滤波器和数字滤波器两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的元器件分为无源和有源滤波器两种。 无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。 4)按照阶数来分

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真和实测 (5) 1.3.2 三角信号源仿真和实测 (10) 1.3.3 方波信号源仿真和实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真和实测 (23) 2.3.2 三角信号源仿真和实测 (28) 2.3.3 方波信号源仿真和实测 (33)

第三章结论和误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得:

在任何频率下,使用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成 图2-一阶RC电路multisim仿真电路原理图

有源滤波器设计报告书

{ 广东工业大学课程设计任务书 题目名称有源滤波器设计 学院 ! 专业班级 姓名 学号 ^ :

` ; 摘要 滤波器(filter)是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到的纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。带通滤波器(band-pass filter)是指能

通过某一频率范围内的频率分量,能将其他范围分量衰减的设备。一个理想滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉。另外,通带外的转换在技校的频率范围完成。实际上,并不存在理想的带通滤波器,因为并不能将期望频率范围外的所有频率完全衰减掉,尤其是在索要的通带外还有一个被衰减但是没有被隔离的范围,这通常被称为滤波器的滚降现象,使用每十倍频的衰减幅度dB来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而随着滚降范围越来越小,通常就变得不再平坦-开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应被称为吉布斯现象。 带通滤波器能够广泛应用在电子学和信号处理领域,本文重点介绍了带通滤波器的工作原理以及设计方法,介绍了带通滤波器的工作原理并设计了一个带通滤波电路,并给出了系统的电路设计方法和主要模块的原理分析。由实验结果可知,该滤波器具有良好的滤波效果,并能稳定运行。 关键词:带通滤波器 multisim 设计 目录 前言 (4)

( 第一章二阶带通滤波器设计的内容和要求 (5) 第二章电路设计 (6) 一、正弦波产生电路设计 (6) 二、压控电压源型二阶带通滤波器设计 (8) 第三章电路的仿真调试 (10) 第四章焊接并调试电路 (13) : 第五章总结 (14) 第六章主要参考文献 (15) ?

相关文档
最新文档