复合材料损伤研究现状

复合材料损伤研究现状
复合材料损伤研究现状

复合材料损伤研究现状

复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。

结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。

结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。

结构损伤诊断技术方面的工作在国外大体分为三个发展阶段:

(1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

(2)20世纪60年代到70年代为发展阶段,注重对建筑物检测技术和评估方法的研究,提出了破损检测、无损检测、物理检测等几十种现代检测技术,还提出了分析评价、综合评价、模糊评价等多种评价方法。

(3)80年代以来,则进入完善阶段,这一阶段中指定了一些列规范和标准,强调了综合评价,并引入知识工程,使结构损伤检测工作向着智能化方向迈进。

在国内,结构损伤诊断的研究工作起步较晚,但近年来发展非常迅速,在研究理论与方法方面提出了基于一类模式的状态识别技术、统计学习分类技术、全息谱技术、时序分析诊断技术、智能诊断技术等。结构损伤诊断技术已开始在国民经济重要生产部门中得到应用,并取得了显著的经济效益。

纤维增强复合材料以比强度高、比模量高等优良性能得到许多领域的重视。对其破坏过程和损伤机理的研究是复合材料及结构研制、设计与质量检验的重大课题。

文献【1】研究了芳纶/环氧复合材料在承受拉伸载荷时的损伤与断裂行为。发现不同损伤类型表现出不同的声发射特性,从声发射信号的某几种关联图中可以较好地判断损伤发生的类型,并可根据某些声发射特征参量值对临界承载值进行合理的确定。声发射技术是通过检测记录材料结构在受力状态下突然释放的应力波,判断结构内部损伤部位、损伤阶段、损伤机理和严重程度等。它的基本原理是利用材料结构表面布置传感器,将应力波转换为电信号,通过放大器将电信号放大进入声发射仪,再对这些信号进行数字处理。

文献【2】介绍了小波技术基本理论,回顾了小波技术在复合材料损伤检测中应用及其发展,提出了存在的问题,并对小波技术在复合材料损伤检测的应用进行了展望。小波分析是一种时变信号时—频两维分析方法,具有多分辨分析的特点,而且在时频两域都具有表征局部特征的能力。

文献【3】在试验研究的基础上,作者指出长期以来一直使用的CAI(冲击后压缩强度)的物理意义比较含混,有时可能误导材料研究和设计选材,同时提出应分别用典型层压板静压痕力—凹坑深度曲线的最大压痕力

F来表征损伤

max

阻抗性能,用凹坑深度—压缩破坏应变曲线门槛值CAIT(Compression failure strain After Impact Threshold)来表征损伤容限性能,同时给出了测试方法的建议。

文献【4】采用神经网络、小波变换并结合神经网络两种仿真方法,对复合材料损伤定位进行了定量化分析研究。结果表明,通过采用小波变换对信号进行预处理,可明显提高损伤位置的识别率。

文献【5】用T300碳纤维编织为三维四向编织体,编织角22°,用CVI化学气相渗法在950℃~1000℃沉积热解碳界面层、SiC基体。最终得到纤维体积分数约为40%、热解碳界面层厚度约0.2微米和空隙率为17 %的复合材料,表面SiC 涂层厚

度为50μm。基体由于热应力和外力会产生许多微裂纹,用单向陶瓷基复合材料裂纹计算公式可大致估算出3D2C/SiC 的基体开裂应力和裂纹间距。纤维束间的孔隙在蠕变中变形,孔隙表面基体易产生微裂纹,而且纤维束间的夹角不断改变。蠕变是损伤引起的,属于损伤蠕变机理。弯曲、断裂韧度、蠕变及疲劳等试验中,纤维束力图沿拉应力方向伸直,纤维束间相对滑动并产生损伤是细观主要的损伤机理。室温及疲劳循环应力低、循环周次多的断口粗糙度大,纤维拔出较长;高温及高应力、循环周次少的断口相对齐平,纤维拔出较短。纤维束与基体界面和纤维与基体界面的脱粘和滑动产生损伤中,以纤维束与基体之间的磨损产生的损伤为主要的,因此纤维束编织交叉处的损伤更大。

文献【6】对纤维增强聚合物基复合材料进行了损伤与断裂力学分析,建立了材料的模型,采用基体横向裂纹的剪切迟滞分析获得较好的基体开裂的定量分析结果;采用边界配置法计算各向异性材料裂纹体的应力强度因子,建立裂纹的扩展判据,并对纤维断裂进行了弹性分析Z针对玻璃纤维/酚醛复合材料层板进行了理论和实验分析,得到材质裂纹密度与刚度退化的相关曲线,实验结果验证了理论分析结果的正确性;得到应力强度因子S 随裂纹尺度的变化曲线和对纤维断裂和脱胶引起的刚度退化的计算结果。

文献【7】应用模态分析技术,分析复合材料拉伸破坏试验中声发射信号,提取复合材料不同破坏阶段的声发射源信号的特征,进行了有关复合材料损伤模式识别的工作。

文献【8】介绍了一种用lamb波对复合材料进行损伤检测的定位方法,该方法用HHT算法提取损伤特征,利用损伤处能量的衰减的特点,确定损伤位置;最后用实验验证该方法。研究结果表明:本文提出的损伤定位方法能有效地确定出在复合材料中的损伤。

文献【9】中采用神经网络建立了复合材料冲击损伤检测方法,运用遗传算法并结合神经网络对复合材料损伤检测的3个传感器布置进行了优化,结果得到了穷举法的验证。该遗传神经网络方法具有一般性,可有效地推广到类似的更多传感器位置优化问题。具有损伤自检测功能的智能复合材料是一个多传感器体系结构。对其传感器进行数目及位置优化,具有重要的使用价值,值得深入研究。

文献【10】利用声发射技术全程监测二维机织C/SiC复合材料拉伸实验,通过声发射多参数分析法和断口显微观察,结合材料拉伸应力-应变曲线,分析了二维机织C/ SiC 复合材料拉伸损伤演化过程和损伤机理。结果表明:材料拉伸损伤演化经历3个阶段:第一阶段为无损伤阶段,材料无损伤发生;第二阶段为损伤初始阶段,损伤主要为微裂纹开裂,并且微裂纹开裂基本上均匀发生在样品工作段;第三阶段为损伤加速阶段,损伤主要为宏观基体、界面开裂和纤维束断裂,并且集中发生在断口区域。损伤第二阶段与第三阶段的转换点在拉伸强度的

76%左右,转换点的确定对二维机织C/SiC复合材料工程应用有重要意义。

文献【11】中为了对复合材料进行结构健康和损伤监测,减少由于复合材料裂缝、应力集中、疲劳等导致的事故,建立了光纤传感系统,引入神经网络算法,并介绍了其在损伤程度和位置分类中的实现。

文献【12】测定了UHMWPE/HDPE复合材料在拉伸载荷作用下的声发射(AE)振幅信号。对特殊试样,即预测到断裂有明确方式,如纤维-基体界面脱粘、基体破裂、纤维断裂和分层等的试样,实施加载直至破坏。用扫描电子显微镜(SEM) 观测试样的断裂表面,对产生于若干特殊损伤类型的AE信号进行了鉴别。在相同加载条件下,完成了不同种类的UHMWPE/HDPE准各向同性层合板声发射检测。结果在特殊试样损伤类型与声发射信号事件振幅之间建立了对应关系,揭示了上述各种准各向同性层合板损伤扩展过程的AE特征与损伤破坏机制。各种准各向同性层合板试样的声发射事件累计数对拉伸应力关系曲线相异,其相同损伤类型发生时所对应的拉伸载荷水平不等,表明它们的铺设角度和铺设顺序对损伤演变过程有显著的影响。结果证实了它们的最终破坏由严重层间分层造成。

文献【13】研究了颗粒增强聚合物复合材料的力学行为,研究得知:材料屈服、裂纹形核、扩展与贯通直至最终断裂是一逐渐劣化过程,而损伤理论正是这一劣化过程的良好描述。通过假设自由能和耗散势函数,导出了损伤演化规律,与实验比较,模型和试验结果基本符合。进一步采用改进的Dugdale模型,重点研究损伤对GB/PPO 复合材料宏观裂纹起裂的影响,通过建立损伤模型来描述材料的劣化行为和裂纹扩展,结果表明,损伤区域严重影响裂尖的性能,材料损伤对宏观裂纹起裂影响不可忽略。

文献【14】中红外热波无损检测基于物体的热辐射特性,利用主动加热技术,通过相关的检测系统记录试件表面缺陷和基体材料由于不同热特性引起的温度差异,进而判定飞机复合材料表面及内部的损伤。较之于常规检测方法,红外热波无损检测具有非接触、快速、直观、准确等优点。

文献【15】基于模拟聚丙烯复合材料本构模型的破坏机制,评价了CODAM模型。首先,确定聚丙烯复合物CODAM模型中的参数;然后,通过有限元模拟与标准材料试验的相关性,确定受拉、受压和受剪破坏参数。标准材料试验包括拉伸、压缩、紧凑拉伸和剪切试验;通过冲击试验初步验证了模型的有效性。

文献【16】利用YAG激光器及

CO激光器对固体火箭发动机壳体用碳纤维材

2

料试件进行了两种典型波长(10.16μm和1.06μm) 的高能量密度激光能量作用下的损伤实验研究,分析了波长对碳纤维试件损伤效果及损伤方式的影响。结果表明:在相同的功率密度条件下,YAG激光能量除造成表面树脂的分解碳化外,还会直接造成纤维的断裂,

CO激光能量对碳纤维材料的损伤则主要表现在内部的

2

树脂分解;此外,YAG 作用的试件单位面积内平均质量损失为28. 642/cm mg ,小于

2CO 激光作用时的平均值40.332/cm mg ,约是其71%;平均每焦耳激光能量下的

质量损失YAG 为15. 0J mg /,小于2CO 的试验结果21.4J mg /;从烧蚀热看,损失相同质量的条件下,需要YAG 激光能量大于2CO 激光能量。

文献【17】测定了UHMWPE/ LDPE 复合材料在准静态拉伸作用下的声发射(AE)信号,用无监督模式识别方法对预处理后的AE 信号进行分类,据此分析了几种试样(0°、90°和[+45°/-45°])的损伤机制。研究表明,模式识别(PR)方法能识别出试样中基体开裂、纤维2基体界面脱粘、纤维抽拔和纤维断裂等损伤模式,识别结果与利用扫描电子显微镜(SEM)对破坏断面观察得到的结果一致。UHMWPE/LDPE 复合材料的AE 信号特征只受损伤模式的影响而与试样类型无关,PR 方法能有效地区分不同损伤模式的AE 信号,每种损伤模式的AE 信号累计数对应变的关系曲线能清楚地反映复合材料的损伤进程。AE 信号的PR 分析为复合材料的损伤机制分析提供了准确依据。

文献【18】总结研究了自组织特征映射(SOM)神经网络的结构及学习算法,提出了利用SOM 神经网络对输入样本的“聚类”作用及MATLAB 神经网络工具箱来实现对故障模式的分类,通过U 矩阵图对其分类结果进行仿真与分析的新方法。结果表明:该网络对复合材料损伤监测的诊断故障能够准确识别和分类,与一般可视化界面相比,此方法可视化界面更简单直观,故障识别率高,应用于材料无损检测是有效可行的。

文献【19】提供了一种通过计算红外热图中损伤影像象素点数目自动测量飞机复合材料构件损伤面积的方法,并借助设计制作的复合材料标准试块,得出了基于该方法的损伤面积测量系统的测量精度。

在智能材料与结构的各个领域的研究中,结构损伤健康监测是非常有前途的。健康监测技术由于其广泛的应用潜力近年来引起了极大的关注,它不仅在所有的智能材料与结构的国际研讨会上提出,并且已经成为一个专门的研究课题。

参考文献

【1】 刘怀喜,马润香,张恒,芳纶纤维/环氧树脂复合材料损伤与断裂过程的

声发射特性[J],材料导报,2004.6,18(6):93—95

【2】 董晓马,张为公,小波分析技术在复合材料损伤检测中的应用[J],仪器

仪表学报,2004.8,25(4):489—491

【3】 沈真,张子龙,王进,杨胜春,叶林,复合材料损伤阻抗和损伤容限的性

能表征[J],复合材料学报,2004.10,21(5):140—145

【4】谢建宏,张为公,梁大开,基于小波神经网络的智能复合材料损伤定位的仿真研究[J],测控技术,2004,23(9):8—10

【5】乔生儒,杜双明,纪岗昌,韩栋,李枚,3D-C/SiC 复合材料的损伤机理[J],机械强度,2004,6(3):307—312

【6】张力,张恒,李雯,复合材料损伤与断裂力学研究[J],北京工商大学学报,2004.1,22(1):34—38

【7】江云飞,声发射技术在复合材料损伤模式识别中的应用[J],直升机技术,2005,(1):26—30

【8】孙亚杰,王帮峰,基于HHT对复合材料损伤的定位方法[J],仪器仪表用户,2005,12

【9】谢建宏,张为公,基于遗传神经网络的智能复合材料损伤检测传感器位置优化的研究[J],仪器仪表学报,2005.11,26(11):1184—1187 【10】潘文革,矫桂琼,管国阳,二维机织碳纤维/ 碳化硅陶瓷基复合材料损伤分析[J],硅酸盐学报,2005.11,33(11):1321—1325

【11】赵丽花,王克奇,王业琴,石岭,BP网络在光纤传感对复合材料损伤定位中的应用研究[J],仪器仪表与检测技术,2005,24(2)

【12】庄兴民,张慧萍,宴雄,聚乙烯自增强复合材料损伤过程的声发射特征[J],复合材料学报,2006.4,23(2):82—87

【13】樊建平,邓泽贤,崔智帮,颗粒增强聚合物复合材料损伤模型[J],华中科技大学学报,2007.8,35(8):112—114

【14】杨小林,代永朝,李艳红,蒋淑芳,红外热波技术在飞机复合材料损伤检测中的应用[J],NDT无损检测,2007,29(4)

【15】Xinran Xiao,Evaluation of a Composite Damage Constitutive Model for PP Composites[J],Composite Structures,2007,79(2):163-173

【16】南宝江,李雅娣,吴平,不同波长激光能量对碳纤维复合材料损伤实验研究[J],纤维复合材料,2008.6,28(2):28—30

【17】杨璧玲,张同化,基于声发射信号模式识别的UHMWPE/LDPE复合材料损伤机制分析[J],复合材料学报,2008.4,25(2):35—40

【18】赵进昌,原思聪,张满意,刘道华,耿素花,SOM神经网络在复合材料损伤监测中的应用[J],煤矿机械,2009.4,30(4)

【19】冯海星,先明乐,基于红外热波检测的飞机复合材料损伤面积自动测量[J],机电产品开发与创新,2009.7,22(4)

我国城市规模两极分化的现状与原因

我国城市规模两极分化的现状与原因 刘爱梅2011-05-19 摘要:在城市化过程中,城市规模的分布与资源配置状况对我国经济能否平稳发展有至关重要的作用。本文运用城市成本一收益、住序一规模分布、网络城市等理论,通过分析我国不同规模城市的人口、经济总量、资源配置等数据,对我国城市规模两极分化的特征性事实做了概括总结,并从市场选择、政治制度、自然历史因素等三个方面分析了我国城市规模两极分化的原因,认为城市化的均衡发展对我国经济社会的平稳发展具有至关重要的作用,并据此提出引导教育、医疗等优质资源向中小城市流动,促进不同规模城市协调发展的对策。 关键词:城市规模,两极分化,协调发展,城市发展 一、引言 城市化与我国经济发展息息相关。2000年诺贝尔经济学奖获得者斯蒂格利茨曾经提出了一个著名的论断:影响21世纪人类进程的有两件大事,一是以美国为首的新技术革命;二是中国的城市化。他认为,新世纪对于中国有三大挑战,居于首位的就是中国的城市化,“中国的城市化将是区域经济增长的火车头,并产生最重要的经济利益”。截至2009年底,我国城镇人口达到6.22亿,城镇化率为46.6%,我国城市化处于加速阶段,也即所谓的诺瑟姆“S”型曲线的中期阶段。进入新世纪以来,中国各种发展资源快速向城市集中,城市规模的扩大直接拉动了人们的住房需求,带来了城市面貌日新月异的变化,并通过城市的“规模经济”推动着城市的快速膨胀和经济的增长。国内许多学者认为城市化是未来驱动经济长期增长的主要动力。然而,如果依照目前中国的城市化发展趋势,大城市将拥有更优质的教育、医疗、公共卫生等资源,将对迁移人口形成更强的吸引力,而随着大量人口的涌入,将造成房价等资源要素价格高涨,大城市的城市化成本将不断增长;而中小城市教育、医疗等优质资源少,难以吸引到真正的优秀人才和企业项目,导致规模集聚效应难以发挥,这种“强者愈强、弱者愈弱”的状况最终将损害经济的平稳运行。目前,一线大城市房价高涨已经引

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

Abaqus中复合材料地累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

纺织结构复合材料中的纺织品

纺织结构复合材料中的纺织品 刘洪玲 (东华大学纺织学院,上海,200051) 摘 要:本文从结构的角度分别综述纺织结构复合材料中的几种纺织品:机织物、编织物、针织物和非织造布,分析各种织物的结构特点及性能,同时也指出了各种织物应用于复合材料时存在的不足。 关键词:纺织品,复合材料,结构,特性 中图分类号:TS10616 文献标识码:A 文章编号:1004-7093(2001)10-0002-05 1 概述 利用纺织品作为增强材料与基体相结合所形成的复合材料称为纺织结构复合材料。应用于复合材料的纺织品,广义上包括纤维束、纱线、机织物、针织物、编织物及非织造布等。由于纤维束和纱线并不是纺织所特有的,因此,一般只将机织物、针织物、编织物及非织造布等作为应用于复合材料的纺织品[1~3]。 以纺织品作为增强结构的纺织结构复合材料的应用由来已久。早在一百多年前,就出现了用机织物与橡胶复合制造的轮胎,以后又陆续出现了充气筏、传送带、篷面材料、灯箱材料等柔性纺织结构复合材料。20世纪50年代,刚性纺织结构复合材料诞生了,它具有比强度高、比模量大的优点,可作为金属和木材的替代物,能够显著减轻重量[4]。但这类层压织物复合材料的层间剪切强度低,易分层,这主要是由于织物层间仅靠性能较低的基体粘结。为了解决分层问题,人们采取了很多措施,主要包括基体改性、厚度方向缝纫和衬入纤维,但这些方法不仅成本较高,而且还不能从根本上解决分层问题[5]。三维纺织结构复合材料能够从根本上解决分层问题,这类纺织品包括三 收稿日期:2001-03-27 作者简介:刘洪玲,女,1973年生,博士研究生。从事纺织材料及纺织品的开发研究。维机织物、三维编织物、多轴向缝编针织物等。在这类结构中,纤维束在空间相互交错、交织形成一个整体结构,从而在厚度方向引入增强纤维,提高了复合材料的层间剪切强度和损伤容限,因此它不会分层。这类结构的另一优点是可以加工各种不同形状的预型件,在浸渍前最终产品已经预成型,因而避免了由切割加工引起的性能下降[3,6]。因此,近几年来三维纺织结构复合材料的发展极为迅速,各种新型织机及其相应的产品不断出现,其性能研究也逐步深入,从而大大推动了纺织结构复合材料的发展与应用[7,8]。本文拟从结构的角度分析纺织结构复合材料中机织物、编织物、针织物和非织造布,分析各种织物的结构特点及性能(而不是从具体加工工艺的角度分析各种织物),同时也指出了各种织物存在的不足。 2 机织物 机织物是应用于纺织结构复合材料中最常见的纺织品。它既有平面二轴向结构,也有平面多轴向结构,还有空间三维结构。 2.1 平面机织物 2.1.1 平面二轴向机织物 根据织物组织结构,平面二轴向机织物可以分为以下几种:①平纹织物,它是机织物中最简单的组织,经纬纱交织次数最多。当经纬纱号数、密度相同时,可织成经纬向各向同性的增强结构。 ②斜纹织物,它较平纹织物有更好的变形能力。

复合材料泡沫夹层结构冲击损伤的研究

复合材料泡沫夹层结构冲击损伤的研究

毕业设计(论文)题目:复合材料泡沫夹层结构冲击损伤的研究

学士学位论文原创性声明 本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌航空大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 作者签名:日期: 导师签名:日期:

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用 复合材料,是由两种或两种以上性质不同的材料组成。主要组分是增强材料和基体材料。复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。复合材 料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。另外,用户也可自定义最多达六种的

纤维增强复合材料层合结构冲击损伤

复合材料定义: 复合材料通常由基体材料和增强材料两大组分构成,它不仅保持了组分材料自身的优良性能,而且通过材料互补改善或突出某些特殊性能。改变组分材料品种或比例,可以得到不同品种和性能的复合材料。 复合材料分类: 复合材料可分为金属基复合材料与非金属基复合材料,非金属基复合材料可分为树脂基复合材料与陶瓷基复合材料,树脂基复合材料具有质量轻、易于加工和改型等优点。 复合材料特点: 1.具有较高的比强度和比刚度 2.具有良好的抗疲劳性能 3.具有良好的减振性能 4.具有良好的可设计性 复合材料中的主要缺陷: 先进复合材料中的缺陷类型一般包括: 孔隙、夹杂、裂纹、疏松、纤维分层与断裂、纤维与基体界面开裂、纤维卷曲、富胶或贫胶、纤维体积百分比超差、纤维基体界面结合不好、铺层或纤维方向误差、缺层、铺层搭接过多、厚度偏离、磨损、划伤等。其中孔隙、分层与夹杂是最主要的缺陷。材料中的缺陷可能只是一种类型, 也可能是好几种类型的缺陷同时存在。 缺陷对复合材料性能的影响: 复合材料在成型、固化、使用过程中产生各种缺陷,不同的缺陷对复合材料性能都有着或多或少的影响。孔隙是复合材料中常见的缺陷之一,过多的孔隙可降低复合材料层间剪切强度约30 %。当受冲击及长期疲劳时,富脂及贫脂区首先开裂,这也标志着这些区域的力学性能不同程度降低。纤维束的断裂也可使碳纤维复合材料拉伸强度下降约25 %,压缩强度损失约11 %。加工过程中直径10mm 纸屑的进入零度层(0°/ ±45°)碳纤维蜂窝结构导致压缩强度降低约25 %。热塑性复合材料碳纤维/ PEEK纤维弯曲导致压缩强度降低约20 %。 总之,复合材料中的各种缺陷对性能有着不同的影响,总体而言倾向于性能降低。下面重点介绍孔隙、杂质对性能的影响。 复合材料在冲击载荷下的损伤形式:

我国收入两极分化的原因分析

湖南商学院学年论文 题目我国居民收入两极分化的原因分析学生姓名丁柏华 学号090110084 学院经济与贸易学院 专业班级经济0902 指导教师尹向飞 职称副教授

我国居民收入两极分化的原因分析 【内容摘要】 本文通过定性分析的方法,得出我国居民收入两极分化的原因有以下几点。城乡差距拉大导致居民收入持续拉大;非均衡的发展战略拉大了地区间的收入差距;垄断行业的高利润,导致行业间的收入不均衡;国家的制度不够完善,导致收入分配失衡;市场的自发倾向。根据这些结论,相应的提出了加大西部的支持力度,打破垄断,注重市场公平等政策建议。 【关键词】居民收入、两极分化、基尼系数 Our country income polarizing reason analysis [Content abstract] This article through the method of qualitative analysis, the income that Chinese residents of polarization reason has the following points. The gap widening income gap to continue; The unbalanced development strategy widen the gap between the area of the income gap; The highly profitable monopoly industry, leading to the income disparities between industries; The national system are not perfect, lead to the income distribution imbalance; The market of the spontaneous tendency. According to these conclusions, corresponding proposed increasing the western support, and break the monopoly, pay attention to fair market and policy Suggestions. [Keywords] household income, polarization, the coefficient

冲击损伤下航空复合材料修复技术研究进展

冲击损伤下航空复合材料修复技术研究进展 发表时间:2019-01-02T14:25:47.017Z 来源:《信息技术时代》2018年3期作者:李伟栋董少兵郝伟[导读] 随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展 (河南省新乡市飞机场,河南新乡 453000) 摘要:随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展,同时,航天事业也对复合材料的应用提出了新的要求。在航天器材建造中,所使用的复合材料具有各向异性和非均质性的特点,这种特点使得其对于分层损伤和层间断裂十分敏感,为了减少这种损伤对于航天器材的作用发挥的影响,研究人员开始对于冲击损伤下航空复合材料修复技术进行了研究。 关键词:冲击损伤;航空复合材料;修复技术 一、冲击损伤评估 (一)冲击损伤 航天设备在进行使用的过程中,一般所处的环境都是外太空中,这样的外界环境使得在航天器材发挥作用的过程中,可能会出现众多的不可测因素,这些因素的存在会对航天器作用的正常发挥造成一定的影响,为了减少材料的因素对于航天器材的影响,航天器材制作人员在进行材料选择的过程中,一般都会选择高强度、高刚性的复合材料[1]。但是复合材料在使用的过程中,难免会在制造、服役、维修的过程中不可避免的出现缺陷或者损伤,因此复合材料修理的难题就受到了业界的广泛关注。 航空复合材料结构损伤产生的原因或是由制造缺陷引起或是由机械载荷引起,或是由于外界环境引起,在结构损伤中,冲击损伤是对航天器材造成影响最大的。复合材料在进行作用的发挥过程中,由于其各向异性和非均质性对于冲击及其敏感[2]。并且复合材料冲击损伤的机理较为复杂,因此国内外专家针对复合材料的冲击损伤提出了不同的损伤机理计算模型。这些模型的出现有助于研究人员对于航空复合材料修复的进一步研究,推动航天事业的发展与进步。 (二)损伤评估 在对复合材料进行修复时应当提前进行损伤评估,在对复合材料进行损伤评估的过程中,需要进行多方面内容的评估,但是确定修理容限是损伤评估中最为重要的核心工程。在材料修复行业中,所讲的修理容限是指在材料发生故障时观察材料的整体性能是否发生了变化,判断材料是否还存在修理的价值。世界上的航天部门在对复合材料进行修理的过程中一般都会采用冲击后压缩性能来对复合材料的抗冲击和冲击损伤性能进行表征。并且将这种冲击后压缩性能作为复合材料修理容限的一种测量值,通过这种测量值对于复合材料的修理价值做出具体的评价,但是在这种评估方法的使用过程中,也有研究人员提出不应当将这种方法作为唯一的评价标准,因为损伤阻抗与损伤容限是两个不同的概念,在进行研究的过程中,不应当将这两种概念进行混淆,在这种概念的影响下,作者提出用典型铺层试样在规定的冲击条件下得到的冲击损伤破坏曲线的门槛值作为表征复合材料体系损伤容限的物理量[3]。 二、修复技术 (一)机械连接修理 机械连接修理主要是指在复合材料发生损伤时将补板材料与母体材料利用专用的铆钉或螺栓进行联合,这样的修理方法在复合材料的修理过程中由于成本较低,因此在修理过程中较为常见。但是这种修理技术由于在材料修理过程中所使用的铆钉或螺栓密度较高,在修理处易形成二次损伤,导致材料的整体性能下降。随着中国科技技术的不断发展,在机械连接技术的发展中也在不断融入新型制造技术,使机械连接技术向着高智能化方向进行发展[4]。在进行修理的过程中,为了能够较为清晰的观察到复合材料的修理状况,一般会采用数据模型与实验数据相结合的方式。飞机结构在进行连接的过程中一般都是单搭接,所以在进行修理检测的过程中会采用单相静拉伸的方法。并且在近些年对于修复检测的实验中开始考虑到了螺钉载荷分配问题,因而将智能螺栓测试引用到了机械连接之中。智能螺栓在进行检测的过程中,应用其内变形片的变形量输出所形成的电信号来确定在变形片上所形成的具体载荷。 (二)胶结修复技术 在航天材料的修理过程中,除了机械修理外,胶接修复技术也是较为常见的一种修复技术。这种技术在进行应用的过程中,是通过足量的胶粘剂将复合材料补板与母体进行必要的连接,使复合材料的损伤得到修复。胶接修复技术与机械连接修复技术相比,具有更高的实用价值,胶接技术在使用中所形成的胶接区域受力更加均匀,表面更加光滑,受到二次损伤的可能性较小。在胶接修复技术中较为常见的就是贴补法,贴补法在进行应用的过程中,将补板贴于复合材料的损伤处,通过粘贴剂使得材料之间能够进行充分的联合,使用这种技术进行修复的航天材料,在进行使用的过程中,性能比例能够得到相应提高。但是贴补材料在进行使用的过程中易造成修复表面不平滑现象,因此在进行使用的过程中,一般仅仅是在对气动外形要求不高的结构中进行应用。同时这种贴补技术进行的贴补会因为受到外力的影响,发生贴补脱落的情况,因此在贴补过程中,为了避免这种情况的发生,一般都会采用贴板外张扬的方法。除了贴补法外,挖补法也是一种修复技术,在进行挖补修复的过程中,会将复合材料的损伤处打磨成锥形再将修补材料连接到损伤区域,但是这种修复技术在使用的过程中需要高温作用以满足性能和外部结构的需求[5]。 结语: 冲击损伤下航空复合材料修复技术随着航空事业的发展,被越来越多的国家所重视,在进行修复技术的研究过程中投入了大量的资金和技术资源。我国在航天事业的发展上已经取得了重大的成就,但是对于损伤修复技术额研发中依旧存在众多的不足,因此在航天事业的发展过程中,国家航天部应当加大对修复技术的研究力度。 参考文献 [1]韩志杰,刘振宇.航空复合材料薄壁壳体高速冲击损伤特性仿真研究[J].科技与创新,2018(09):19-21. [2]王长越,邢素丽.冲击损伤下航空复合材料修复技术研究进展[J].玻璃钢/复合材料,2017(12):91-98.

当前中国贫富两极分化的原因分析及其调整策略

当前中国贫富两极分化的原因分析及其调整策略 贫富分化---中国不能承受之重改革开放以来,中国在减轻贫困和贫富差距上取得的成果归功于快速发展策略,但城乡贫富差距、地区贫富差距和贫困仍然是中国所面临的严峻问题。这不但是经济学研究的一个重要内容,同时也是政治学理论必须正视的一个现实问题。我们小组成员主要从政治学角度具体分析、讨论形成社会两极分化的原因,并提出了解决由贫富差距和地区发展不平衡引起的社会两极分化问题的一些对策,以期健全公平的社会主义市场经济体制和完善的社会保障体制。 首先,对于什么是贫富分化,我们小组都有一个共同的了解和认识,就是:贫富差距是指由于各个社会成员所处的具体社会政治、经济和文化方面的地位和环境不同,而形成的实际占有社会财富的差距。它表现为一定量的物质财富和精神财富。贫富差距包括收入差距和财富差距两部分。 其次,对于中国当前贫富差距现状及其表现,我们小组结合网上所所查的资料和所学的政治经济学有关的知识,我们主要归结为以下几个方面: (一)城乡居民的收入差距呈扩大化趋势。最近,中国社科院在发布的《人口与劳动绿皮书(2008)》其中指出,中国城乡居民收入差距出现全方位扩大。在过去的十几年里,我国城乡居民收入的绝对额差距增加了近12倍。数据显示,1978年至2007年间,中国城镇居民人均实际可支配收入增加了7.5倍,农村居民人均纯收入增加

了7.3倍。但1990年以来农民收入的增幅明显低于城镇居民,二者之间绝对额的差距逐年扩大。2007年是改革开放以来差距最大的一年,城乡居民收入比却扩大到3.33∶1,绝对差距达到9646元。 (二)除了城乡之间,我国各行业之间收入差距也在明显加大。由于在市场经济发展过程中存在如法制不够健全、市场竞争机制不够完善等弊端,另外,又由于国家政策的相关保护,从而导致行业垄断现象仍然存在。当前,垄断行业主要包括电力、电信、民航、铁路、石化、金融、保险、烟草、煤炭、房地产等部门。这些垄断性行业凭借垄断经营的特权及国家政府的特殊保护,与其他行业进行不公平竞争,从而取得高额垄断利润,使行业间差距不断扩大。 (三)区域间贫富差距扩大。区域间的贫富差距主要表现在东部和西部之间的贫富差距。据国家统计局数字表明,1999年,东部地区人均GDP为10732元人民币,西部地区为4302元;到2005 年,东部地区人均GDP为22200元,西部地区为8970元。6年间,东西部人均GDP差距由6430 元扩大到13230 元,增加了1倍多。2006年,西部12个省市自治区GDP总和不到人民币4万亿元,约占全国GDP 的17%;而东部地区GDP达到2万亿元的省份就有3个,其中江苏省为21500亿元,山东省为22000亿元,广东省为25000亿元。从这一组数据不难发现东西部之间的差距的明显。 最后,我们对于我们的主题----当前中国贫富两极分化的原因分析及其调整策略,展开了讨论。 讨论记录如下:

中国正在走向两极分化吗

中国正在走向两极分化吗 导读:本文中国正在走向两极分化吗,仅供参考,如果觉得很不错,欢迎点评和分享。 近年来,我国居民之间收入差距明显拉大,于是许多人纷纷议论:中国正在走向两极分化!那么,应该怎样认识这个问题呢?一、我国的收入差距状况及成因据社会学家保守地估计,目前我国年收入在5万元以上的有500多万户,约占全国总户数的2%;个人家庭资产在百万元以上的也约有100万户。而另一方面,我国目前还有6500万人口没有摆脱贫困。国家统计局1994年统计表明:全国约占城镇居民总数5%的1250万人处于相对贫困状态,其收入低于全国城镇居民月人均160元的基本消费水平。这1000多万人尽管节衣缩食,仍然收不抵支,许多人甚至连新鲜蔬菜也不敢多买一点。 在收入分配差距比较中,国际上常用五等份的测量方法,就是按收入水平的高低,将人口分为五等份,然后计算各个1/5人口层的收入在全部收入中所占的比例。有关资料计算表明:在城镇,1994年20%的最高收入的家庭占了全部收入的44.46%,而20%的最低收入的家庭仅占全部收入的6.04%;在农村,1994年最富有的20%的家庭占有全部收入的48.79%,最贫穷的20%的家庭仅占全部收入的4.59%。从以上两组数据可以看出,无论在城镇还是在农村,贫富差距都是相当大的。

那么,是什么原因拉开了贫富差距呢?主要有以下几点: 1.分配制度不完善,分配政策不配套,导致分配秩序紊乱。例如,尽管国家三令五申,但一些行业、企业和单位仍在滥发工资、奖金、津贴;有的国有企业滥发职工股;实行国有民营时,低估国有资产价值,化国有资产为个人所有;把公有住房低价卖给个人;有的事业单位乱收费;一些管理部门或个人瓜分、截留土地出租收益;等等。 2.对非法暴富行为打击不力。在我国现有富翁中,有相当一部分不是靠勤劳致富、合法经营致富,而是靠违法乱纪暴富起来的。近年来,我国侵犯财产型犯罪和经济犯罪的比率急剧上升,贪污、受贿层出不穷,偷税、漏税成为普遍现象。如,1995年全国个人所得税征收为131.39亿元,但国家税务局负责人指出,目前我国隐蔽性所得和高收入层所得,约有50%的税没有征收上来。这便大大制约着我国个人所得税对于调节收入公平分配的作用。 上述情况并不能表明我国已走向两极分化了。那么,中国将来会不会走向两极分化呢? 二、中国不会走向两极分化1.社会主义本质上不允许出现两极分化。邓小平同志在南巡谈话中指出:“社会主义的本质是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到共同富裕。”他在接受美国记者华莱士电视采访时再次强调指出:“社会主义的致富是全民共同致富。社会主义的原则,第一是发展生产,第二是共同富裕。”所以,建设有中国特色社会主义,鼓励部分地区和部分人先富起来的政策,其最终目标还是为了实现共同富裕。我国在实行这一

中国贫富两极分化的成因

二、中国贫富两极分化的成因 为消解贫富两极分化.首先要找到贫富两极分化的根源。促成贫富两极分化的因素很多,市场经济的引入是其产生的外部环境,社会管理则是其产生的内在因素。从制度的角度来说.收入分配制度是导致贫富两极分化的直接诱因。新制度主义者们认为,形塑人的行为的是制度制度影响人的动机、目的和行为策略,因而在不同个体的行为交互作用下构筑了一定的政治结果。贫富两极分化正是在拉大收入差距的分配制度的激励下促成的结果。而这一分配制度是由国人赶超发达国家的心态促成的。 改革开放之初,中国的经济、科技水平与发达国家的水平相距甚远。国人正是深切地认识到这一点,他们才产生赶超发达国家的急切心理。改革开放的实质是以新的激励制度激发国人劳动的热情,以此推进国家经济的飞速发展。备受社会诟病的平均主义分配制度自然成为改革的首选目标。平均主义被指是促使个人懒惰的分配制度,它不利于推动经济的快速发展.当然更不利于中国赶超发达国家。既然收 入差距太小不利于调动劳动者的积极性,那么,把收入差距拉大必将激励劳动者为获取更多收入而奋力。“效率优先。兼顾公平”的收入分配制度之所以得以正式确立并固化。是因为拉大收人差距的分配制度实质上是凸显精英功能的制度.强调精英在经济发展中的重要作用。平均主义分配制度是过度照顾普通民众利益的制度,而“效率优先,兼顾公平”的分配制度是利益向精英倾斜的制度。既然这一制度维护的是精英阶层的利益,精英阶层自然而然会反过来维持这一制度,并通过国家政策使之固化。固化后的分配制度若要实现变迁,将遭遇路径依赖的陷阱。 合理拉开收入差距确实能激励有能力和勤奋的个人通过自己的努力实现致富.而对能力较差和懒惰的个人形成压力。迫使其提高能力且改变懒惰的习性。中国改革开放30年来取得的辉煌成就很大程度上得益于收入分配制度改革的成功。当政府认识到 收入差距拉大与国家经济发展成正相关关系时,政府将这一激励制度固化并逐步形成路径依赖。新的收入分配制度的激励效应使为数不少的决策者逐渐产生“收入差距越大,激励效应越强”的观点。于是,普通劳动者与雇主或高管之间的收入差距越拉越大,加之精英阶层联合垄断经济资源和组织资源,下层民众无法通过自己的辛勤劳作从中分得更多的资源。中国劳动者工资收入总额在GDP中的比重长期在12%一17%的低水平徘徊.发达国家所占比一般是54%一65%。在1980年至2005年期间.这一比重还从17.1%下降至11%(章辉美等,20“)。劳动者收入所占比重在下降,而政府和企业收入在GDP中所占比重在上升。这一收入分配格局使得劳动者无法充分分享改革成果,极易激发社会冲突,民众对政府的信任度也将下降。不仅如此,随着社会阶层的分化与固化,居民收入流动性在降低①,收入差距在高(李实,2011),进而形成“贫者愈贫,富者愈富”的趋势。贫困阶层,甚至连他们的下一代都失去致富的希望,因而产生对富裕阶层的仇视心理。他们尤其仇视那些通过不正当手段致富的官员、投机商人等群体。贫困阶层中的一些激进分子甚至通过制造突发事件以发泄其对社会的不满。贫富两极分化由此形成。 中国政府已经开始觉察到贫富两极分化现象的存在,在意识到其不利于社会稳定与和谐。不利于中国经济的可持续发展之后,着手进行收入分配制度的改革,但成效甚微。改革是利益的重新分配。改革收入分配制度就意味着精英阶层主动削减自己的既得利益,增加贫困阶层的利益。从经济人的本性来说,精英阶层不会自觉自愿地损害自己的利益,因此,他们将极力维持现存的分配制度.继续垄断经济资源和组织资源。导致贫富两极分化的直接原因是拉开收入差距的分配制度,深层原因则是分配制度的制定模式。因为精英制定的制度必定维护精英的利益。没有劳动者参制定的制度很可能损害劳动者的利益。现有的收入分配制度主要是由精英制定的.劳动者在制度制定过程中的话语权并不大。精英通过制定制度、政策将本阶层的收入不断推高,而劳动者阶层的收人则不断压低。如此,贫富两极分化最终形

第二章 压电复合材料有限元分析方法 (恢复)

第二章压电复合材料有限元分析方法 2.1 1—3型压电复合材料常用的研究方法 第一、理论研究,包括利用细观力学和仿真软件进行数值分析的方法。人们对1-3型压电复合材料宏观等效特征参数进行研究时,从不同角度出发采用了形式多样的模型和理论,其中夹杂理论和均匀场理论具有代表性。夹杂理论的思想是,从细观力学出发,将1-3形压电复合材料的代表性体积单元(胞体)作为夹杂处理。求解过程中,使用的最著名的两个模型为:Dilute模型和Mori-Tanaka模型。夹杂理论的优点是其解析解能较好地反映材料的真实状况,解精度较高;缺点是其解题和计算过程烦琐,有时方程只能用数值方法求解。均匀场理论的思想是基于均匀场理论和混合定律,同时借助1-3型压电复合材料的细观力学模型导出其宏观等效特征参数。其基本的研究思路是:假设组成复合材料的每一相中力场和电场均匀分布,结合材料的本构方程得到1-3型压电复合材料的等效特征参数。Smith,Auld采用此理论研究了1-3型压电柱复合材料的弹性常数、电场、密度等等效特征参数。Gordon,John采用此理论研究了机电耦合系数、耗损因子、电学品质因子等等效特征参数。Bent, Hagood和Yoshikawa等基于此理论对交叉指形电极压电元件等效特征参数进行了研究。均匀场理论优点在于物理模型简单,物理概念清晰,计算也不复杂,并具有相当的精度和可靠性;不足在于其假设妨碍了两相分界面上的协调性。有限元作为一种广泛应用于解决实际问题的数值分析方法,将其引入压电复合材料研究中具有重要的意义。John,Gordon等用有限元方法分析了1-3型压电柱复合材料中压电柱为方形柱、圆形柱、二棱柱时的力电耦合系数及其波速特性,得到了压电柱在几何界面不同的情况下的等效力电耦合系数及等效波速曲线。 第二、实验研究。Helen,Gordon等对1-3型压电复合材料的宏观等效特征参数进行了理论和实验研究,结果表明两者符合良好;LVBT等运用了1-3型压电复合材料进行了声学方面的控制取得了良好的效果;John,Bent等对压电纤维复合材料的性能进行了深入的研究,结果显示压电纤维复合材料在高电场、大外载荷环境下具有优良的传感和作动性能。参数辨识研究是试验研究中重要的一种方法,基本思路是:分析1-3型压电纤维复合材料的响应特性,从中得到其等效宏观的模态和弹性波的传播特性参数。Guraja,Walter等采用的就是这种方法,他们研究了1-3型压电纤维复合材料薄板、厚板、变截面板的响应特性,得到了其相应的声波传播速度c,频率f,机械品质因素Q等参数的表达式,为1-3型压电纤维复合材料在超声波方面的应用提供了依据。 综合对比以上的研究方法,夹杂理论得出的结果比较接近实际结果,但是计算烦琐,而且对于高体积百分比的复合材料其计算结果跟实际相差较大;均匀场理论计算较为简单,但是模糊了两相材料之间的界面作用;实验研究方法是最接近实际的一种方法,但是由于实验条件、测试技术等一系列因素的制约使其不能广泛应用十实际中。由于交叉指形电极压电复合材料的复杂性,利用上面提到的夹杂理论和均匀场理论的方法,很难得到压电元件整体模型的性能状况。而数值研究有限元法,利用先进的分析软件ANSYS进行压电复合材料性能分析,可以超越目前现有的生产工艺和测试技术水平得到比较准确的分析结果,又可以减小压电元件的设计周期,减少实验制作压电元件的材料浪费和设备损耗。 2.2 有限元分析方法概述 有限元法(又称为有限单元法或有限元素法)是利用计算机进行数值模拟分析的方法。诞生于20世纪50年代初,最初只应用于力学领域中,现在广泛应用于结构、热、流体、电磁、声学等学科的设计分析及优化,有限元计算结果已成为各类工业产品设计和性能分析的

相关文档
最新文档