复合材料疲劳损伤分析_杨全生

复合材料疲劳损伤分析_杨全生
复合材料疲劳损伤分析_杨全生

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

Abaqus中复合材料地累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用 复合材料,是由两种或两种以上性质不同的材料组成。主要组分是增强材料和基体材料。复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。复合材 料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。另外,用户也可自定义最多达六种的

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

纤维增强复合材料疲劳性能研究进展

纤维增强复合材料疲劳性能研究进展 宋磊磊李嘉禄 (天津工业大学复合材料研究所天津市和教育部共建先进纺织复合材料重点实验室天津 300160) 摘要:随着科技的发展,纤维增强复合材料作为一种新型材料越来越多的应用于众多领域。然而,纤维增强复合材料的疲劳性能对应用具有重要影响。本文根据近年来国内有关复合材料疲劳性能的研究和探索,综述了纤维增强复合材料疲劳性能的定义、机理以及影响因素,并提出了当前存在的一些问题。 关键词:纤维增强复合材料疲劳 1 前沿 随着科技的进步,很多工业特别是高新技术工业对材料的要求不断提高。复合材料由于比强度和刚度高、质量轻、耐磨性和耐腐蚀性好等优点,广泛应用于船舶、汽车、基础设施和航空航天等领域,以及文体用品、医疗器械、生物工程、建筑材料、化工机械等方面。 在复合材料构件的使用过程中,由于应力和环境等因素的影响,会逐渐产生构件的损伤以至破坏,其主要破坏形式之一是疲劳损伤。疲劳损伤的产生、扩展与积累会加速材料的老化,造成材料耐环境性能严重下降以及强度与刚度的急剧损失,大大降低其使用寿命,甚至报废。为了使复合材料的应用更加广泛和深入,本文综述了近年来在纤维增强复合材料疲劳性能方面的研究。 2 复合材料疲劳性能及损伤机理 在周期性交变载荷作用下材料发生的破坏行为称为疲劳,它记述了材料经受周期应变或应变时的失效过程。复合材料疲劳主要是指复合材料构件在交变荷载作用下的疲劳损伤机理、疲劳特性(强度、刚度随着时间变化规律及其破坏规律)、寿命预测及疲劳设计。 复合材料是非均质(在大尺度上)和各向异性的,它以整体的方式积累损伤,且失效并不总是由一个宏观裂纹的扩展导致。损伤积累的微观机构机理,包括纤维断裂基体开裂、脱粘、横向层开裂和分层等,这些机理有时独立发生,有时以互相作用的方式发生,而且材料参数和试验条件可能强烈影响其主要优势。多种损伤及其组合,使疲劳损伤扩展往往缺乏规律性,完全不像大多数金属材料那样能观察到明显的单一主裂纹扩展,复合材料不仅初始缺陷/损伤大,而且在疲劳破坏发生之前,疲劳损伤已有了相当大的扩展。 3 影响复合材料疲劳性能的主要因素 3.1 基体材料 Boller研究了基体材料对玻璃纤维增强复合材料疲劳性能的影响,研究证明,不同的基体材料具有完全不同的疲劳性能。一般情况下,疲劳性能最好的是环氧树脂。 很多复合材料的疲劳试验证明,基体和界面是薄弱环节。尽管树脂含量的变化在106次循

疲劳分析计算的流程

疲劳分析,从零开始 1 测量应变、应力谱图 (1)衡量应力集中的区域,布置应变片 可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片: 因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。 (2)根据测的应变和材料性能,计算应力 测得的三个应变,分别记为εx, εy, εxy。两个主应力(假设只有弹性变形): 其中,E为材料的弹性模量,μ为泊松比。根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力:

()()222122121σσσσσ++-=m 或最大剪应力: ()2121 σσστ-= 实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。 (3)分解谱图 就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。最常用的是雨流法(rainflow counting method )。 2 获取材料数据 如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准): 得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:

1:如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N 载荷,以便进行插值计算,因为此时平均应力对寿命有影响。也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。 2:如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。 3::如果出现塑性应变,累计损伤一般基于应变-寿命曲线(即E-N曲线),所以需要施加应变载荷。 3 损伤计算 到目前为止,疲劳分析基本上是基于经验公式,还没有完全统一的理论。损伤 累积的计算方法有很多种,最常用的是线性累计损伤(即Miner 准则), 但其结果不保守,计算得到的寿命偏高。 ∑∑≥=0.1,f i i i N n D 准确度比较高的累计准则是双线性准则,并且计算比“破坏曲线法”要容易,所以,是一个很好的折衷选择。

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

第二章 压电复合材料有限元分析方法 (恢复)

第二章压电复合材料有限元分析方法 2.1 1—3型压电复合材料常用的研究方法 第一、理论研究,包括利用细观力学和仿真软件进行数值分析的方法。人们对1-3型压电复合材料宏观等效特征参数进行研究时,从不同角度出发采用了形式多样的模型和理论,其中夹杂理论和均匀场理论具有代表性。夹杂理论的思想是,从细观力学出发,将1-3形压电复合材料的代表性体积单元(胞体)作为夹杂处理。求解过程中,使用的最著名的两个模型为:Dilute模型和Mori-Tanaka模型。夹杂理论的优点是其解析解能较好地反映材料的真实状况,解精度较高;缺点是其解题和计算过程烦琐,有时方程只能用数值方法求解。均匀场理论的思想是基于均匀场理论和混合定律,同时借助1-3型压电复合材料的细观力学模型导出其宏观等效特征参数。其基本的研究思路是:假设组成复合材料的每一相中力场和电场均匀分布,结合材料的本构方程得到1-3型压电复合材料的等效特征参数。Smith,Auld采用此理论研究了1-3型压电柱复合材料的弹性常数、电场、密度等等效特征参数。Gordon,John采用此理论研究了机电耦合系数、耗损因子、电学品质因子等等效特征参数。Bent, Hagood和Yoshikawa等基于此理论对交叉指形电极压电元件等效特征参数进行了研究。均匀场理论优点在于物理模型简单,物理概念清晰,计算也不复杂,并具有相当的精度和可靠性;不足在于其假设妨碍了两相分界面上的协调性。有限元作为一种广泛应用于解决实际问题的数值分析方法,将其引入压电复合材料研究中具有重要的意义。John,Gordon等用有限元方法分析了1-3型压电柱复合材料中压电柱为方形柱、圆形柱、二棱柱时的力电耦合系数及其波速特性,得到了压电柱在几何界面不同的情况下的等效力电耦合系数及等效波速曲线。 第二、实验研究。Helen,Gordon等对1-3型压电复合材料的宏观等效特征参数进行了理论和实验研究,结果表明两者符合良好;LVBT等运用了1-3型压电复合材料进行了声学方面的控制取得了良好的效果;John,Bent等对压电纤维复合材料的性能进行了深入的研究,结果显示压电纤维复合材料在高电场、大外载荷环境下具有优良的传感和作动性能。参数辨识研究是试验研究中重要的一种方法,基本思路是:分析1-3型压电纤维复合材料的响应特性,从中得到其等效宏观的模态和弹性波的传播特性参数。Guraja,Walter等采用的就是这种方法,他们研究了1-3型压电纤维复合材料薄板、厚板、变截面板的响应特性,得到了其相应的声波传播速度c,频率f,机械品质因素Q等参数的表达式,为1-3型压电纤维复合材料在超声波方面的应用提供了依据。 综合对比以上的研究方法,夹杂理论得出的结果比较接近实际结果,但是计算烦琐,而且对于高体积百分比的复合材料其计算结果跟实际相差较大;均匀场理论计算较为简单,但是模糊了两相材料之间的界面作用;实验研究方法是最接近实际的一种方法,但是由于实验条件、测试技术等一系列因素的制约使其不能广泛应用十实际中。由于交叉指形电极压电复合材料的复杂性,利用上面提到的夹杂理论和均匀场理论的方法,很难得到压电元件整体模型的性能状况。而数值研究有限元法,利用先进的分析软件ANSYS进行压电复合材料性能分析,可以超越目前现有的生产工艺和测试技术水平得到比较准确的分析结果,又可以减小压电元件的设计周期,减少实验制作压电元件的材料浪费和设备损耗。 2.2 有限元分析方法概述 有限元法(又称为有限单元法或有限元素法)是利用计算机进行数值模拟分析的方法。诞生于20世纪50年代初,最初只应用于力学领域中,现在广泛应用于结构、热、流体、电磁、声学等学科的设计分析及优化,有限元计算结果已成为各类工业产品设计和性能分析的

ansysworkbench疲劳分析

第一章简介 1.1 疲劳概述 结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算。 在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。接下来,我们将对基于应力疲劳理论的处理方法进行讨论。 1.2 恒定振幅载荷 在前面曾提到,疲劳是由于重复加载引起: 当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。 否则,则称为变化振幅或非恒定振幅载荷。 1.3 成比例载荷 载荷可以是比例载荷,也可以非比例载荷: 比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。 相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括: σ1/σ2=constant 在两个不同载荷工况间的交替变化; 交变载荷叠加在静载荷上; 非线性边界条件。 1.4 应力定义 考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况: 应力范围Δσ定义为(σmax-σmin) 平均应力σm定义为(σmax+σmin)/2 应力幅或交变应力σa是Δσ/2 应力比R是σmin/σmax 当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。这就是σm=0,R=-1的情况。 当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是σm=σmax/2,R=0的情况。 1.5 应力-寿命曲线 载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示: (1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而

疲劳分析的相关知识(流程)

疲劳分析,从零开始 By ZHANG Chunyu 1 测量应变、应力谱图 (1)衡量应力集中的区域,布置应变片 可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片: 因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。三个应变片也可以重叠在一起(见右上图)。 (2)根据测的应变和材料性能,计算应力 测得的三个应变,分别记为ε x , ε y , ε xy 。两个主应力(假设只有弹性变 形):

其中,E 为材料的杨氏模量,μ为泊松比。根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力: ()() 222122121σσσσσ++-=m 或最大剪应力: ()2121 σσστ-= 实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。 (3)分解谱图 就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。最常用的是雨流法(rainflow counting method )。 2 获取材料数据 如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准): 得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:

如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N 载荷,以便进行插值计算,因为此时平均应力对寿命有影响。也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。 如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。 如果出现塑性应变,累计损伤一般基于应变-寿命曲线(即E-N曲线),所以需要施加应变载荷。 3 损伤计算 到目前为止,疲劳分析基本上是基于经验公式,还没有完全统一的理论。损伤累积的计算方法有很多种,最常用的是线性累计损伤(即Miner准则),但其结果不保守,计算得到的寿命偏高。 准确度比较高的累计准则是双线性准则,并且计算比“破坏曲线法”要容易,所以,是一个很好的折衷选择。 4软件开发 很适合使用面向对象语言(如C++)来设计疲劳分析软件或专家系统。材料,载荷和损伤累计各一个模块,便于扩充。

复合材料断裂分析的特殊方法

复合材料断裂分析的特殊方法 复合材料具有热稳定性好、比强度、比刚度高的特点,因此被广泛应用于航空航天、建筑、汽车等领域。由于裂纹和夹杂的存在,复合材料常常会不同程度地断裂破坏,这会极大地影响其服役寿命。研究复合材料断裂失效问题的方法有解析方法、实验方法及数值方法。解析法仅适用于具有特殊几何边界和加载条件的问题,难以解决具有复杂边界和加载条件的问题。实验方法由于代价高也难于被广泛应用。常用的数值方法在模拟裂纹或夹杂等不连续问题时需进行网格重构。因此,发展新的数值方法来研究复合材料的断裂与损伤具有重要的理论与现实意义。 扩展有限元法是一种新兴的分析裂纹等不连续问题的数值方法,该方法继承了传统有限元法的优点,克服了其分析裂纹问题中网格划分繁琐的缺点。相对于各向同性弹性材料断裂,扩展有限元在正交各向异性热弹性材料断裂方面的研究要少得多,因此,研究正交各向异性热弹性断裂扩展有限元分析方法具有非常重要的应用价值,基于此,本文主要应用发展扩展有限元法(extended finite element method,XFEM)研究含裂纹夹杂各向同性、正交各向异性复合材料的断裂失效问题,把正交异性热弹性裂尖加强函数应用于正交异性热弹性断裂问题中,并把热弹性各向同性裂尖加强函数应用于热弹性各向同性裂纹夹杂相互作用问题中,主要内容包括: 1.给出了各向同性及正交异性交互积分的表达式,并在正交异性交互积分的基础上,通过引入热积分项,推导了正交异性热弹性交互积分的表达式,并对交互积分做了两点改进:增加了与温度变化有关的项,把各向同性弹性交互积分推广到正交异性热弹性交互积分。 2.在经典的各向同性扩展有限元的基础上,把各向同性材料弹性问题的扩展有限元法推广到正交异性材料热弹性问题分析,研究了热载荷作用下含单裂纹正交异性复合材料板断裂分析的扩展有限元法,分析了不同材料主轴、网格细度、高斯积分、裂尖加强函数及J积分

复合材料损伤机理整理_final

一、立项依据与研究内容: 1.立项依据: 1.1 研究意义与目的 近几十年以来,随着科学技术的迅速发展,对材料的性能提出了更高的要求。当前高技术材料一般分为:高技术陶瓷、高技术聚合物和复合材料三种类型。由于复合材料可以根据工程结构对性能的要求来进行设计,其发展速度和规模在近几年尤为迅猛。一些先进的复合材料己经在航空、航天、机电、化工、能源、交通运输以及生物、医疗器械等领域中得到了广泛的应用。可以说复合材料已经深入到了我们生活的方方面面。 在航空领域,由于飞机结构设计和材料性能要求的不断提高,复合材料在飞机上的比例不断增加。目前,波音B 787代表了当前飞机技术发展的最高水平,其基本特点之一为采用复合材料主结构,其中复合材料的用量为50%(如图1所示)。[陈绍杰, 复合材料技术与大型飞机. 航空学报, 2008. 29(3): p. 605-610]先进战斗机上复合材料用量基本上在飞机机体结构重量的30%左右,图2为国外新一代军用飞机上复合材料的用量。在航天方面,复合材料也被广泛用于火箭发动机壳体、航天飞机的构件、卫星构件等。固体火箭发动机喷管的工作温度高达3000~3500℃,为了提高效率还要在推进剂中掺入固体粒子,发动机喷管的工作环境是高温、复合材料能承受这种工作环境:化学腐蚀、固体粒子高速冲刷,因此固体火箭目前只要碳/碳人造卫星每减轻Ikg,运载火箭可以减轻1000kg,因此用复合材料制造的卫星有很大的优势。此外,复合材料还被广泛用于化学工业、电气工业、建筑工业、机械工业、体育用品等多个方面。我国从上世纪七十年代就开始了先进复合材料方面的研究工作,到八十年代时,我国已将复合材料应用技术列入重点发展领域,通过三十多年的发展,我国航空复合材料技术应用水平己有了大幅度的提高。目前我国军用飞机上复合材料用量已达到6%以上,已基本实现从次承力构件(如垂直安定面、水平尾翼、方向舵、前机身等)到主承力构件(如机翼、直升机旋翼等)的转变[王慧杰等.我国航空复合材料技术发展展望.第九界全国复合材料学术会议论文集,1996:l-6]。

波纹膨胀节的许用疲劳寿命及损坏原因分析

波纹膨胀节许用疲劳寿命和损坏原因分析河北伟业波纹管制造有限公司提供 一.波纹膨胀节的许用疲劳寿命 补偿器中的波纹管件是在材料屈服极限的高应力状态下工作,每一次变化都不能恢复其原来的自由长度而留有残余变形,往复循环,残余变形累计到一定程度,波纹管就会发生破坏,而破坏的循环次数称之为补偿器的疲劳寿命Nc。实际应用时,取一定的安全系数nf(倍数)。补偿器的许用疲劳寿命[N]为[N]=Nc/nf 而nf一般为10~15 ,由于有些厂家设计选取nf值不同,实际补偿器[N]也大不相同,相差甚大。 行标“城镇供热预制蒸汽保温管技术规程”中,要求管道寿命25年以上,实际直埋管道,由于使用负荷变化,操作频率大,昼夜用量不均,这就要求制造厂家,提供的产品[N]≥1000次以上。 二.膨胀节(补偿器)补偿量的确定 综上所述,膨胀节的补偿量相对不是一个定数,工作温度影响压力,同时也影响位移量。这就要求我们设计时,必须通盘考虑许用疲劳寿命(次)、安全系数、实际的工作温度、压力和补偿器可提供的位移(补偿量)。建议,依照CJJ34-2002(J216-2002)设计规范要求,蒸汽直埋保温管道补偿器宜按:通常工作压力/公称压力=0.75,通常工作位移/额定位移=0.70,来选择补偿器,才能确保超常规安全系数,使城镇供热管网压力管道寿命在25年以上,点应力循环次数在7000次水平。 三.热网工程中波纹膨胀节损坏的事故分析 波纹膨胀节是典型低频疲劳部件(即频率<105),其波峰和波谷处于塑性高应力范围内,极易在较低的循环次数下发生疲劳破坏而失效。蒸汽直埋管道在输送介质、气流脉冲、阀门开启、封关、分支节点、弯管阻力变化,特别是管道的汽水冲击——水锤,使之管道发生变频震动。波纹破坏的主要原因是疲劳破坏,腐蚀破坏以及扭曲破坏: )水质处理不好,蒸汽中含有氯离子,造成不锈钢波纹点蚀或晶格腐蚀; )输送介质高压蒸汽,线速υ>/s以上,在三通、弯头、阀门处形成湍流,使之补偿器原设计的导流筒低频大幅震动而破坏,特别是大口径,大补偿量导流筒L>以上更易发生导流筒疲劳断裂,吹掉; )设计或操作失误,造成汽水冲击,爆破性水锤,严重打(震)破波纹管元件;

复合材料损伤及其修复技术研究

复合材料损伤及其修复技术研究 【摘要】:复合材料是一种新材料,因为其许多特有的优点已经在航空航天、建筑桥梁等领域得到广泛应用,复合材料的损伤修复也逐渐成为研究项目中的热点。其中光修复技术是用得较多的一种,本研究以较常用的复合材料为试件,在简要介绍复合材料的基础上对光修复技术做了详细介绍,期望能为进一步研究复合材料的光修复技术奠定基础。 【关键词】:复合材料;损伤;光修复 引言 复合材料无论是力学性能、损伤情况、失效方面都要比单一材料复杂很多。由于其基体的强度要比增强纤维的强度低很多,导致它抗冲击的性能较差,横向强度以及层间的剪切强度也比较低,当受到局部的冲击时,复合材料普遍会出现纤维断裂、凹痕、剥层、基体破裂等一些损伤现象。而且一旦发生损伤,损伤的区域会在周期性的应力作用下逐渐扩大,进一步影响到复合材料的继续使用。从上个世纪的80年代初,国外已经着手研究和解决复合材料的修复问题,先后投入了大量的人力、物力和资金。到目前为止,美国和欧洲的一些大公司对关于飞机复合材料损伤修理问题开展了较为广泛的研究,并且己经取得一定的成果,但仍然在不断的发展中。早在上个世纪80年代中期,欧美的许多大公司就在飞机的设计文件以及使用手册里面详细规定了复合材料的修复方法,比如美国波音公司的A320维护手册和F-16修理手册。近年来,国内航空航天系统的相关部门对这个问题的紧迫性和重要性已经有所认识,在复合材料的修复问题上也作了许多工作并取得了一些进展,相继成立了空中客车亚洲复合材料结构维修和中国东方航空公司空中客车复合材料结构修理专家系统等致力于研究复合材料修复的机构。但从总体上来看,重视程度依然不够、投资也不足,所以基本上没解决什么问题。对许多缺陷和损伤没有制定明确的修理方法,修理材料、工艺设备等也不够完善。因此,我们通过研究制定关于复合材料的修复手册,更加高效地解决有关复合材料修复的问题,使复合材料能够得到更加广泛的应用。 1.复合材料的性能与特点 复合材料具有很多良好的性能,复合材料代替铝合金结构,可大大降低飞行

复合材料ABAQUS分析___精讲版

复合材料Abaqus仿真分析——精讲版 本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。各单层的材料相同,材料属性如下: E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。 定义模型的几何形状 创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:

定义材料属性和局部材料方向 Create coordinate system

定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。 创建铺层 或者使用菜单栏

此处使用全局坐标系

使用用户自定义坐标系 Rotation angle depends on the coordinate system defined by user. Par example, if x-axe in the user defined system is parallel to the direction of fiber; we should replace the angles by 0 and 90. 使用全局坐标系和局部坐标系的区别在下面这一步可以查看 如果使用全局坐标系,会有方向指示,如果使用用户自定义坐标系,在层中没有方向指示可以通过’工具——查询’来检查铺层(Tool ---- Q uery----ply stack plot) Case 1 全局坐标系

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

相关文档
最新文档