核磁共振成像MRI

核磁共振成像MRI
核磁共振成像MRI

核磁共振成像MRI

一、引言

1942年,Pauli 为了说明原子光谱的超精细结构,提出了核自旋和磁矩的概念。Stern-Gerlach 实验初步证实其存在,且为空间量子化。又经过许多科学工作者探索和改进,1946年哈佛大学的Purcell 和斯坦福大学的Bloch 等各自设计出一套用电磁波场观察核磁能级间跃迁的实验方法——核磁共振法。核磁共振可针对较弱的耦合能进行测量。核磁共振由于其设备简单、方法容易、测量精度高、频率范围宽等优点,在科研、生产方面的应用日趋广泛。

二、实验原理

1共振跃迁

原子核系统在外磁场中发生能级分裂。由磁偶极跃迁的选择定则1m ±=Δ可知,只有相邻能级之间的共振跃迁才是允许的,磁共振条件为0B γω=,可知能引起共振跃迁的辐射场角频率ω,刚好与磁矩在0B 中的进动角频率0ω相等。根据爱因斯坦的辐射理论,两能级之间的量子跃迁有感应吸收、感应发射和自发发射三种情况。由于在射频和微波频段的自发发射概率小到可以忽略不计,而感应吸收

和感应发射两种情况的跃迁概率是相等的,概率21B p ∝。设相邻两能级为1E 和

2E ,低能级1E 的粒子数1N ,高能级2E 的粒子数2N ,在热平衡状态下个能级的粒子数遵从玻尔兹曼分布

kT

E -1kT /E -ex p N N 12Δ≈Δ=)( 通常E Δ远小于kT ,故1N 稍大于2N ,因而在辐射场作用下,感应吸收稍占优势,总的效果是共振吸收。

2弛豫过程与弛豫时间

在共振吸收过程中,使高低能级的粒子数分布趋于均等,使系统达到饱和。但物质内部机制存在着回复平衡状态的逆过程,下面用宏观理论来讨论这种回复平衡的过程。在恒定的磁场作用下,微观粒子系统的磁化可用宏观磁化强度M 来描述。M 等于单位体积内所有微观磁矩的矢量和,即∑=i

i M μ,在恒定磁场0B 中,

M 在xoy 平面上的投影等于0,在z 轴上的投影等于恒定值0M ,即

0z y x M M 0M 0M ===,,

当辐射场1B 作用而引起共振吸收时,有

0z y x M M 0M 0M <,,≠≠

但共振吸收停止后,M 将会恢复原来的取向,这一过程为弛豫过程。 这些分量对时间的导数可以写为

10z z T /M -M -dt /dM )(= 2x x T /-M dt /dM = 2y y T /-M dt /dM =

式中1T 是描述M 的纵向分量z M 恢复过程的时间常量,称为纵向弛豫时间;2T 是描述M 的横向分量x M 和y M 消失过程的时间常量,称横向弛豫时间。 3自由感应衰减信号

垂直于恒定磁场0B 的方向施加一持续时间相对于弛豫可以忽略不计的射频脉冲1B ,M 绕转动坐标系’x 轴转过一个角度θ,如图1所示为脉宽p t 恰好使°=90θ和°=180θ的情况。

图1 90°射频脉冲和180°射频脉冲的作用

以90°脉冲为例,射频场1B 消失后,核磁矩经过弛豫过程。在旋转坐标系看来,M 没有旋进,如图2(a )所示;在实验室坐标系看来,M 绕z 轴按螺旋形式回到平衡位置,如图2(b )所示。在弛豫过程中,若在垂直于z 轴方向上置一接收线圈,便可感应出一个射频信号,称为自由感应衰减(FID )信号。经过检波并滤去射频后,观察到的FID 信号是指数衰减1的包络线,如图2(c )所示。

图2 90°脉冲作用后的弛豫过程以及自由感应衰减信号

4自旋回波

现在讨论核磁矩系统对两个或多个射频脉冲的响应。在实际应用中,常用两个或多个射频脉冲组成脉冲序列,周期性地作用于核磁矩系统。例如,在90°射频脉冲作用之后,经过τ时间再施加一个180°射频脉冲作用,便组成一个90°-τ-180°脉冲序列,在90°射频脉冲后即观察到FID 信号;在180°射频脉冲之后对应于初始时刻的2τ处还观察到一个“回波”信号。这种回波信号是在脉冲序列作用下核自旋系统的运动引起的,故称自旋回波。

如果实验装置中的脉冲程序器能够提供Carr-Purcell 脉冲序列,即在90°-τ-180°脉冲序列之后,每隔2τ时间施加一个180°射频脉冲,这时可以在2τ,4τ,6τ...处观察到自旋回波,每个回波峰值2T /τn 2-0y e M |t M |=)

(,可以利用这个峰值衰减规律来测得样品的T2值。

图3回波序列法测T2

三、实验仪器

图4 NMI20台式核磁共振分析仪

图中右面为磁体单元,提供实验所需磁场,大小为0.5T 左右;磁场均匀度在15ppm 以下,直径为10mm 样品试管放在射频线圈中间;图中中间上、中、下分别为射频控制单元、梯度放大器和计算机主机,射频单元产生射频信号和脉冲序列,梯度放大器提供梯度场和电子匀场。

四、实验结果与分析

1.测量大豆油的拉莫尔频率

采用旋转坐标系来描述宏观磁化矢量的弛豫过程,因此当旋转坐标系的旋转频率与拉莫尔频率完全相同时,FID 信号呈现出来的是一条呈指数规律递减的曲线。实验时,将O1设为820KHz ,不断修改射频脉冲的频率,直到FID 信号的振荡频率减小到基本不振荡时,测得拉莫尔频率为22.828223MHz ,如图5(a )。

(a )

(b )

(c )

(d )

图5 拉莫尔频率、90°180°脉冲的测量

2.硬脉冲的90°、180°脉冲的调节

初始时刻幅值的大小即为该时刻宏观磁化强度在xoy 平面上的分量,故90°脉冲为极大值,而180°脉冲从理论上讲为0。选择硬脉冲Fid (H SP1D )序列,设P1(us )初始值为20,采用“GS ”采集信号,观察FID 信号模值。在P1为55.5us 时,幅值最小为10左右,积分面积6941.8,此时P1的值为180°脉冲,如图5(b )。注意到在20-30的区间内,幅值先增大再减小,故减小步长,逐步锁定幅值的极大值在P1=27与P1=28之间,相应的积分面积分别为75089.2与65096.8,如图5(c )(d )此时的P1大致为90°脉冲。

另外在实验的过程中,隔一段时间再重复进行该实验内容,发现极值点变化不大,但相应的积分面积与原来相差较大。可能的解释为在脉冲产生的过程中90°脉冲与180°脉冲的宽度很难保证,同时,由于温度微小的波动,拉莫尔频率也在不断漂移。

3.硬脉冲回波实验

①回波时间D1对信号的影响

(a)D1=1000us (b)D1=3000us (c)D1=5000us

(d)D1=8000us (e)D1=10000us

图6 回波时间D1对信号的影响

观察到当仅改变D1的大小时,随着D1的增大,信号形状基本不变而向右移。由于D1为90°射频与180°射频之间的时间间隔,回波出现的时间随D1增大而延后。

②接收带宽SW对信号的影响

(a)

SW=10kHz (b)SW=30kHz

(c)SW=50kHz

(d)SW=80kHz (e)SW=100kHz

图7接收带宽SW 对信号的影响

采样点数和采样频率共同决定采样时间,而SW 为采样频率的倒数。因此,仅增大SW 时,会使FW 减小,导致采样时间减少。

③采样点数TD 对信号的影响

(a )TD=128 (b )TD=256 (c )TD=512

(d )TD=1024 (e )TD=2048

图8 采样点数TD 对信号的影响

仅改变TD ,随着TD 增大,测量时间变长,回波信号更具整体性地呈现。

由于采样时间SW

TD t =,SW 不变,采样时间与TD 成正比。 4.横向弛豫时间T2的测定

利用3中的规律,调节TD 和SW 的值,使得窗口中完全显示出10个回波链,如图9所示

图9 10个回波链 图10 9个回波峰点拟合T2 当恰好出现十个完整回波链时,软件只能找到9个回波峰点,此时拟合得出s 09.60T 2=。 调整TD 和SW 能使窗口中的第十个回波更宽,可以使软件找到第十个回波峰点,但此时的第十个峰的形状已发生明显的变化,与指数递减的包络线有一定的偏差,其数值再计入拟合会增大误差。因此只采用9个回波峰点进行拟合,s 09.60T 2=。

5.芝麻、大豆油等自旋回波成像

图11 大豆油Y 轴截面

图12大豆油X 轴截面 图13芝麻Y 轴截面

结合核磁共振成像的实验原理以及试验网站https://www.360docs.net/doc/428101573.html, 上同学们分享的图片可知

GzAmp (%):频率编码 前后定位,增大GzAmp 绝对值,图像由窄变宽,由亮变暗 GyAmp (%):相位编码 左右定位,增大GyAmp 绝对值,图像由短变长,由亮变暗 NE1:决定选层矩阵数目,增大NE1,图像由长变短,分辨率提高

采样频率SW :增大SW ,图像由宽变窄

采样点数TD :增大TD ,图像分辨率提高

采样次数NS :增大NS ,信噪比增大

SLICE :选层截面,0为X 轴截面,1为Y 轴截面,2为Z 轴截面

当然合适的合适的90°与180°软脉冲的幅值是合适成像的基础,本实验的数值详见记录本

由此,结合我们测得的图像可知,在测量大豆油时,可以增大GzAmp 或减小SW 使图像变宽;在测量芝麻时,可以考虑改变NE1与GxAmp (%)提高信噪比与分辨率。

五、实验结论

1.在本实验条件下,大豆油的拉莫尔频率为2

2.828223MHz

2.在本实验条件下,大豆油90°硬脉冲P1=27us ,180°脉冲P1=55.5us

3.观察并确定回波时间D1,采样点数TD ,接收带宽SW 对回波信号的定性影响

4.在本实验条件下,大豆油横向弛豫时间s 09.60T 2=

5.观测了大豆油、芝麻的自旋回波成像

六、参考文献

[1]https://www.360docs.net/doc/428101573.html,/

[2]吴先球. 近代物理实验教程(第2版)[M]. 科学出版社, 2009.

[3]高立模. 近代物理实验[M]. 南开大学出版社, 2006.

[4]蒋树刚, 黄艳宾. 磁共振成像技术及其应用[J]. 保定学院学报, 2009, 22(4):44-47.

[5]蒋莹莹, 张洁天, 吕斯骅. 核磁共振成像系列实验教学探讨[J]. 物理实验, 2007, 27(1):20-23.

磁共振(MRI)检查注意事项

磁共振(MRI)检查注意事项 一、磁共振检查的禁忌症 1.带有心脏起搏器及人工瓣膜的病人; 2.带有神经刺激器(如膈肌刺激器)的病人; 3.术后体内置有动脉瘤止血夹的病人; 4.带有心脏人工瓣膜和人工耳蜗的病人; 5.疑有铁磁性植入者,如枪炮伤后存留及眼内铁磁性金属异物的病人; 6.体内有微量输液泵的病人,如胰岛素或化疗药物微量输液泵等; 7.手术后体内用金属钉缝合切口者及置有大块金属植入物如人工股骨头、人工关节、金属假肢、胸椎矫形钢板等; 8.患有幽闭恐惧症的病人; 9.体内有各种内支架者,如血管内支架、胆道、胃肠道支架、泌尿道等支架; 10.危重病人、昏迷躁动、有不自主运动或精神病不能保持静止不动者; 11.妊娠三个月以内的早孕患者; 二、填写MRI申请单的注意事项 1.详细标明检查部位。对称器官必须标清左右;胸、腹部检查必

须标明具体器官或检查目的;头颈部检查,如欲观察细小结构,如垂体、内耳等,必须明确标出; 2.认真填写病人信息及病史。详细的病人信息及病史对影像技术人员的扫描方案的确立有很大的帮助。门诊患者详细填写患者信息和病史,为日后随访提供了很大的方便; 3.对扫描范围和扫描序列有特殊要求,可以说明。如脊柱检查,可以根据查体情况说明要检查哪几个椎体。如果其它检查怀疑某处有病变,应详细说明,以使MRI操作员扫描时重点观察。对MRI较为熟悉的医生,可以根据自己的习惯要求扫哪个方位、哪个序列。MRA、MRCP、功能成像等特殊检查,因检查时间长,且可能另收费,临床医生如果需要,必须特殊标明。 三、关于增强检查。 一般情况下,是否进行增强检查应咨询MRI医生或技术人员,或在观察平扫图像后决定。有时MRI医生要求病人增强,病人来征求临床医生意见,临床医生应积极配合MRI医生的工作,说明增强检查的必要性。一般而言,肿瘤性病变直接平扫加增强。 四、对病人的检查前交代 1.说明此检查的意义和必要性,以及有可能出现阴性结果,以减少病人和MRI医生的不必要纠纷。 2.如患者手中有既往影像检查资料,应嘱咐病人进行MRI检查时

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

磁共振成像系统原理和功能结构

磁共振基本原理 第一章 主要讲述电荷、电流、电磁、磁感应方面的基本概念。这里将介绍余下章节中将提到的大量的词汇。你可以快速复习这些概念,但是要注意关键定义和一些重要的概念,因为这些概念有可能在考试中出现。同时也包括一些对向量和复数关系的解释。如果你有工程师的背景就请略过这些章节,否则请多花些时间研究2D、3D向量,振幅和相位、矢量和复数方面的知识。矢量在MRI中有极其重要的作用,因此现在多花些时间学习是值得的。 静电学研究的是静止的电荷,在MRI中几乎没有太大意义。我们以此作为开场白主要是因为电学和磁学之间有密切的关系。静电学与静磁场非常相似。最小的电荷存在于质子(正)和电子(负)中,集中在很小的一团或以量子形式存在。虽然质子比电子重1840倍,但是他们有同样幅度的电荷。电荷的单位是库仑,是6.24*1018个电子的总和,这是一个非常大的数量。一道闪电包含10到50个库仑。一个电子或质子的电荷为±1.6*10-19库仑。 与一个粒子所拥有的分离的电荷不同,电场是连续的。关键的概念是相同的电荷相互排斥,不同的电荷相互吸引。同时,你应该知道电场强度与电荷呈线形变化,和电荷的距离的平方成反比。换句话说,如果总的电荷数增加,电场的强度也会增加,与电荷的距离越远,电场强度越弱。 将相同的电荷拉近,或将不同的电荷分开都需要能量。当出现这种情况时,粒子就有做功的势能。就象拉开或压缩一个弹簧一样。这种做功的势能叫电动力(emf)。当一个电荷被移动,并做功时,势能可以转化成动能。每单位电荷的势能称电势能,它是电荷相对于电场的位置的函数(1/d2)。 电荷位于周边,它尽量要处于一个舒服的位置,但这也不是一件容易做到的事。它不断地运动、做功。运动的电荷越多,每个电荷做功越多,总功越大。运动的电荷叫做电流。电流的测量单位为安培(A)。第一个电流图描绘的是电池产生直流电(DC)。电厂里的发电机产生的是变化的电压,也称为交流电(AC)。 在通常情况下,电子在电流中的运动并不是没有阻力的。它们遇到各种类型的阻力。电路中阻碍电流流动的特点叫做阻抗。共有三种类型的阻抗,即电阻、电感、电容。如果电流的做功产生热量,阻抗就叫电阻;如果能量能产生磁场,阻抗即电感;如果能形成电场即电容。这三种阻抗在MRI中均有不同的作用,后面的章节将详细讨论。电流在电路中流动会做功,在单位时间内电流的总做功量称为功率。 磁学是物质的基本特性,就象电荷与质量一样。物质的磁性特点很大一部分是由电子的结构和运动决定的。非磁性的物质有非常小的排列方向紊乱的、结构紊乱的磁区,它们相互抵消。永磁体有大量的几乎排列方向一致磁区。排列越一致,磁场越强。 *备注:现在被称为土耳其的国家曾经认为天然磁体有磁性是很神秘的。几千年前,土耳其被称为Magnesia,这就是磁性这一词的由来。 当一种物质放在磁场中变的有磁性的程度被称为磁敏感性。真空的磁敏感性定义为0。如内

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

MRI检查前准备

MRI检查前准备及注意事项 一、适应证与禁忌证 1.适应证:适用于人体大部分解剖部位和器官疾病的检查,应根据临床需要以及MRI在各解剖部位的应用特点选择。 2.禁忌证: (1)体内装有心脏起搏器,除外起搏器为新型MRI兼容性产品的情况; (2)体内植入电子耳蜗、磁性金属药物灌注泵、神经刺激器等电子装置; (3)妊娠3个月内; (4)眼眶内有磁性金属异物。 3.有下列情况者,需在做好风险评估、成像效果预估的前提下,权衡利弊后慎重考虑是否行MRI检查。 (1)体内有弱磁性置入物(如心脏金属瓣膜、血管金属支架、血管夹、螺旋圈、滤器、封堵物等),一般建议在相关术后6~8周再进行检查,且最好采用以下场强设备; (2)体内有金属弹片、金属人工关节、假肢、假体、固定钢板等时,视金属置入物距扫描区域(磁场中心)的距离,在确保人身安全的前提下慎重选择,且建议采用以下场强设备; (3)体内有骨关节固定钢钉、骨螺丝、固定假牙、避孕环等时,考虑产生的金属伪影是否影响检查目标; (4)可短时去除生命监护设备(磁性金属类、电子类)的危重患者;

(5)癫痫发作、神经刺激症、幽闭恐怖症患者; (6)高热患者; (7)妊娠3个月及以上; (8)体内有金属或电子装置植入物者,建议参照产品说明书上的MRI安全提示。 二、MRI对比剂使用注意事项 1.核对受检者基本信息及增强检查申请单要求,确认增强检查为必需检查。 2.评估对比剂使用禁忌证及风险,受检者签署对比剂使用风险及注意事项知情同意书。 3.按药品使用说明书正确使用对比剂。 4. 增强检查结束后,受检者需留观15~30min,无不良反应方可离开。病情许可时,受检者应多饮水以利对比剂排泄。 5.孕妇一般不宜使用对比剂,除非已决定终止妊娠或权衡病情依据需要而定。 6.尽量避免大量、重复使用钆对比剂,尤其对于肾功能不全患者,以减少发生迟发反应及肾源性系统纤维化的可能。 7.虽然钆对比剂不良反应发生率较低,但仍需慎重做好预防及处理措施。 三、检查前准备 1.核对申请单,确认受检者信息、检查部位、目的和方案。 2.确认有无MRI检查禁忌证。

核磁共振成像

核磁共振成像 在磁场的作用下,一些具有磁性的原子能够产生不同的能级,如果外加一个能量(即射频磁场),且这个能量恰能等于相邻2个能级能量差,则原子吸收能量产生跃迁(即产生共振),从低能级跃迁到高能级,能级跃迁能量的数量级为射频磁场的范围。核磁共振可以简单的说为研究物质对射频磁场能量的吸收情况。 定义 核磁共振成像(Nuclear Magnetic Resonance Imaging?,简称NMRI?),又称自旋成像(spin imaging?),也称磁共振成像(Magnetic Resonance Imaging?,简称MRI?),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance?,简称NMR?)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 物理原理 核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。 核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。医生考虑到患者对“核”的恐惧心理,故常将这门技术称为磁共振成像。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经电脑处理而成像的。 原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。氢核-首选核种 氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高,且氢核的磁旋比大,信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。 当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,

低场核磁共振技术在水泥基材料研究中的应用及展望_孙振平

低场核磁共振技术在水泥基材料研究中的应用及展望* 孙振平1,俞 洋1,庞 敏1,杨培强2,俞文文2,曹红婷2 (1 同济大学先进土木工程材料教育部重点实验室,上海200092;2 上海纽迈电子科技有限公司,上海200333)摘要 阐述了低场核磁共振技术在水泥基材料研究中的应用现状,认为现有的研究主要集中于水泥水化进程和水在硬化浆体中的扩散特征,也包括对硬化水泥浆体孔结构和比表面积的测试。分析了低场核磁共振技术在实际应用中面临的挑战,展望了该技术在新拌水泥浆体结构性能研究中的应用前景。 关键词 低场核磁共振 孔径分布 横向弛豫时间 硬化水泥浆体中图分类号:T Q172 文献标识码:A A pplications and Outlook of 1 H Low Field NM R Probing into Cement based M at erials SUN Zhenping 1,YU Yang 1,PAN G M in 1,Y ANG Peiqiang 2,YU Wenw en 2,CAO H ongting 2 (1 K ey L abo rato ry of A dv anced Civil Eng ineering M aterials,M inistry of Educatio n,T o ng ji U niversit y, Shang ha i 200092;2 Shanghai N iumag Co rpor atio n,Shanghai 200333)Abstract T he cur rent applications o f lo w f ield N M R in cement based mater ials ar e demo nstr ated.It is found that researches are focused o n cement hydration and w ater diffusio n in har dened cement paste,as well as por e size dis tributio n and specific surface area o f hy dr ated cement paste.Challenges in the curr ent resear ch are analyzed and the fu tur e applications of low field N M R in r esear ch o n fr esh cement paste are fo recast. Key words low field nuclear mag net ic r eso nance,por e size distributio n,tr ansver se relaxation time,hydrated cement paste *国家973基础研究项目(2009CB623104 5) 孙振平:男,1969年生,博士,副教授 T el:021 ******** E mail:g rtszhp@https://www.360docs.net/doc/428101573.html, 自1945年美国物理学家Bloch 和Purcell 发现核磁共振现象以来,核磁共振作为一种重要的现代分析手段已广泛应用于多个领域,如物质结构分析、医学成像和油气资源的勘探等[1]。低场核磁共振分析仪采用价格低廉的钕铁硼永磁材料作为场源,大大降低了仪器制造成本和运行成本,进一步扩展了核磁共振技术的应用。近年来,低场核磁共振技术的应用已逐步从生命科学、地球物理等领域扩展到水泥基材料领域,该方法可在不破坏样品的前提下,利用水分子中质子的弛豫特性研究水泥基材料中水的含量及其分布的变化,具有快速、连续和无损的优势[2]。然而,由于低场核磁共振技术在水泥材料研究中的应用刚刚起步,尚面临许多亟待解决的问题,本文就低场核磁共振技术应用于水泥基材料研究的现状进行归纳评述,并就其发展趋势,尤其是低场核磁共振技术应用于新拌的水泥浆体结构研究的前景进行了展望,希望对该方向研究有所裨益。 1 低场核磁共振的应用 硬化水泥浆体由C S H 凝胶、CH 晶体、AFt 晶体、未水化的水泥颗粒以及毛细孔、水分等组成。M cDonald 等[3]将硬化水泥浆体中的水分为结合水、凝胶孔水和毛细孔水。结合水是与C S H 凝胶发生化学结合的水,纵向弛豫时间T 1大于100m s,横向弛豫时间T 2约为10 s;凝胶水是指在凝胶孔中的水,是C S H 凝胶的组成部分,由于其与凝胶孔壁的强烈作用,T 1和T 2在0.5~1m s 之间;毛细孔水的弛豫时间在5~10m s 范围内。除此之外,还可以将硬化浆体中的水分为自由水、物理结合水和化学结合水[4] 。自由水和物理结合水的横向弛豫时间通常为0.1~10ms [2,5],可以采用NM RD 将孔中的自由水和物理结合水分开[3];化学结合水的横向弛豫时间通常小于100 s,Jehng [4]将水泥浆体样品置于110 的烘箱中48h,以移除自由水和物理结合水,然后测得其表观横向弛豫时间为12 s 。研究表明[6-8],采用Carr Purcell M eiboom Gill(CPM G)序列测试时,水泥浆体第一自旋回波幅度正比于自由水和物理结合水氢核总量。 目前,低场核磁共振技术用于水泥浆体孔结构和硬化浆体比表面积的测试已比较成熟,也开始用于研究水泥水化进程和硬化浆体中水的扩散。 1.1 水泥水化进程 水泥的水化包括初始反应期、诱导期、加速期和减速期。研究发现,水泥浆体的T 1和T 2随水化的进行而逐渐减小, 其中T 1能够反映出水化的不同阶段,即在诱导期和减速期的减少比较缓慢,而在加速期的减小比较快速 [9-13] 。但是,

磁共振检查适应症

磁共振检查的适应症 颅脑MR 检查 先天性颅脑发育异常。 1、 脑积水。 2、 脑萎缩。 3、 卒中及脑缺氧:脑梗塞和脑出血等4、 脑血管疾病。 5、 颅内肿瘤和囊肿。 6、 颅脑外伤。 7、 颅内感染和其他炎性病变。 8、 脑白质病。 9、 ? 4眼及眶区MR 检查 眼眶前病变。 1、 肌圆锥内、外病变。 2、 眼外肌病变。 3、 视神经及其鞘病变。 4、 眼球病变。 5、 ? 亠鼻部MR 检查 鼻咽部良性、恶性病变。 1、 2、喉部良性、恶性病变。 四:口腔、颌面部MRI 检查 五:胸部MR 检查

1、肺脏。 2、纵膈及肺门。 3、胸膜与胸壁。 4、乳腺。 5、心脏、大血管。 六:肝脏、胆系胰腺、脾脏MR检查 1、肝脏、胆系、胰腺、脾脏的原发性或转移性肿瘤,以及肝海绵状 血管瘤。 2、肝寄生虫病。 3、弥漫性肝病。 4、肝、胆、脾、胰腺先天性发育异常。 5、胆道梗阻; 6、肝脓肿。 7、肝局限性结节增生和肝炎性假瘤。 8、手术、放疗。化疗及其它治疗效果的随访和观察。 9、胰腺炎及其并发症。 七:盆腔MR检查 1、膀胱、输尿管、前列腺、精囊腺、子宫、卵巢及其附件的病变。 2、骨盆及盆腔脏脏的损伤。 八:肾脏MR检查 九:肾上腺MR检查

十:腹膜腔及腹膜后间隙MR检查 」:脊柱MR检查 1、椎管内肿瘤。 2、脊髓病变。 3、脊柱及脊髓外伤性病变。 4、脊柱及脊髓先天性病变。 5、椎间盘突出。 6、椎管狭窄。 十二:骨关节和肌肉MR检查 十三:胃肠道MR检查 【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

磁共振成像系统

(一)分类磁共振按照不同的分类方法有不同的分类。按照场强大小分为高场、中场、低场磁共振;高场一般为场强高于1. OT的磁共振;巾场为场强高于0. ST而低于1.OT的磁共振;低场一般为低于0. ST的磁共振。按照磁体类型一般分为:永磁型磁共振、常寻型磁共振和超导型磁共振。永磁型磁共振维护费用小;逸散磁场小,对周围环境影响小;造价低;安装费用也较少; 一般只能产生垂直磁场;场强范围一般在0. 15~0. 35T;磁场随温度漂移严重,磁体需要很好的恒温;磁场不能关断,对安装检修带来困难;磁体沉重;且随着场强增大,磁体厚度增大,更加沉重。常导型磁共振生产制造较简单,造价低;可产生水平或垂直磁场;重量轻;检修方便,磁场均匀度也很高;场强一般在0. 1~0. 4T;运行耗费较大,通电线圈耗电达60kW以上;还需配用专门的供电设备和水冷系统。超导型磁共振场强范围0. 3~9T;磁场均匀性高;稳定性好;图像质量好;运行耗费很高,制冷剂主要是液氦的费用很高;运输、安装、维护费用也很高。目前主要市场上的磁共振以高场和低场为主,高场一般为超导型,低场一般为永磁型;且低场永磁型磁共振往往做成开放式,有C形式或立柱式;高场超导磁共振往往做成圆形孔腔式或站立式的磁共振。常导磁共振一般也做成圆形孔腔式。还有些公司推出了某些部位如头颅、四肢或关节专用检查的磁共振设备,其形态变化较灵活。一般来讲,低场永磁型以出诊断图像为主要目的,图像质量已经能够满足诊断要求;高场超寻型主要以功能磁共振为主,图像质量是其基础。 (二)MRI系统结构 磁共振系统的典型结构如图6-10所示,主要包括磁体子系统、梯度场子系统、射频子系统、数据采集和图像重建子系统、主计算机和图像显示子系统、射频屏蔽与磁屏蔽、MRI软件等,分述如下。

核磁共振成像仪word资料8页

核磁共振成像仪 核磁共振成像仪概述核磁共振(MRI)又叫核磁共振成像技术。核磁 共振成像仪就是因这项技术而产生的仪器。它是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学、生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像技术发展历史1930年代,物理学家伊西多•;拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。1946年,美国哈佛大学的 珀塞尔和斯坦福大学的布洛赫发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。人们在发现核磁共振现象之后很快就产生了实际用途,早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到碳谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。后来核磁共振广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使13C谱的应用也日益增多。用核磁共振法进行材料成分和结构分析有精度高、对样品限制少、不破坏样品等优点。基本原理核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:质量数和质子数均为偶数的原子核,自旋量子数为0;质量数为奇数的原子 核,自旋量子数为半整数;质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有:1H、

核磁共振成像技术分析

电磁波成像 一、核磁共振成像技术分析 1.基本概况 核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 2.检测设备及原理 核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;核磁共振谱仪是将共振信号放大处理并显示和记录下来。采用调节频率的方法来达到核磁共振。由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化。当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。 3.核磁共振成像优缺点 磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点优点: 1.对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

MRI核磁共振成像与CT成像的联系区别

MRI核磁共振成像与CT成像的联系区别 一、定义 MR(MagneticResnane lamge)中文译为核磁共振成像。它是一种生物磁自旋成像技术。工作原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在射频脉冲停止后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接收器收录,经电子计算机处理获得图像,这就叫核磁共振成像。 CT(Computed Tomography)中文译为断层扫描。由于X线球管和探测器是环绕人体某一部位旋转,所以只能做人体横断面的扫描成像。工作原理:人体各种组织(包括正常和异常组织)对X 线的吸收不等。CT即利用这一特性,将人体某一选定层面分成许多立方体小块,这些立方体小块称为体素。X线通过人体测得每一体素的密度或灰度,即为CT图像上的基本单位,称为像素。它们排列成行列方阵,形成图像矩阵。分析CT图像, 一方面是观察解剖结构,另一方面是了解密度改变。后者可通过测定CT值而知,亦可与周围组织的密度对比观察。人体内肿瘤组织因部位、代谢、生长及伴随情况不同,其密度变化各异。CT对组织的密度分辨率较高,且为横断面扫描,提高了肿瘤诊断的准确率。 二、区别

1、成像面。CT成像为横断面,而MRI可做横断、矢状、冠状和任意切面的成像。 2、分辨率。CT比MRI的空间分辨率高,但只能辨别有密度差的组织,对软组织分辨力不高。MRI对软组织则有较好的分辨力,如肌肉、脂肪、软骨、筋膜等。 3、各自特点。MRI固然被认为分子水平上的成像有许多优点,但在氢质子缺乏或含量很少的组织如致密的骨骼、钙化、含气的肺部等,皆无法成像。由于MRI成像时间较长,昏迷、躁动病人不能获得清晰的图像,体内有金属异物的患者不能进入磁场,此为禁忌症。所以MRI与CT相互不能取代,二者相辅相成。 三、肺部影像检查举例 对于肺部的影像学检查,CT和MRI诊断价值基本相似,但各有特点。如MRI在明确肺部肿瘤与血管之间关系上要明显优于CT,但在发现肺部小病灶(<5mm)方面则不如CT敏感。此外对于诊断支气管扩张、肺结核、小量气胸等疾病,CT可作为常规检查。而对于肺栓塞患者,其MRI诊断价值高于CT.对于肺部检查到底是CT好还是MRI好,不能一概而论,应根据具体病情及所需要了解的情况进行选择。

5T磁共振成像系统技术参数.doc

1.5T 磁共振成像系统技术参数 * 总体要求:投标时提供进口品牌产品、技术白皮书(DATA SHEET) ,投标方应提供设备技术要求中的全套配置。 序号项目要求 一磁体 1.1 磁场强度 1.5T 1.2 磁体类型超导磁体 1.3 磁体屏蔽方式主动屏蔽 1.4 抗外界电磁干扰屏蔽具备 1.5 匀场方式主动匀场 + 被动匀场 1.6 磁场稳定度<0.1ppm/hour 1.7 主动匀场技术具备 1.8 匀场线圈组数≥18 组 1.9 10cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.014ppm 1.10 20cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.044ppm 1.11 30cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.1ppm 1.12 40cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.22ppm 1.13 磁体长度(不含外壳)≤160cm * 1.14 磁体长度(包含外壳)≤170cm 1.15 病人检查孔道孔径≥ 60cm * 1.16 液氦消耗率(以datasheet 公布的数据为准)≤0.01 升 /年 1.17 理论液氦填充周期(以datasheet 公布的数据为 ≥5 年准) 1.18 五高斯磁力线X,Y 轴≤ 2.5m 1.19 五高斯磁力线Z 轴≤ 4.0m 1.20 磁体重量 (连液氦 ) ≥3.2 吨 1.21 冷头保用时间≥2 年 二梯度系统 2.1 梯度系统具备源屏蔽2.2 梯度场强( X,Y,Z 轴,非有效值)≥ 33mT/m 2.3 梯度切换率( X,Y,Z 轴,非有效值)≥ 120mT/m/s 2.4 梯度爬升时间≤ 0.275ms 2.5 最高梯度性能时X 轴扫描野≥ 50cm 2.6 最高梯度性能时Y 轴扫描野≥ 50cm

核磁共振技术在医学领域的运用前景分析

核磁共振技术在医学领域的运用前景分析 发表时间:2018-05-29T17:24:00.410Z 来源:《健康世界》2018年6期作者:唐光荣 [导读] 本文简单介绍了核磁共振技术的基本原理以及其在化学、医学领域的不同运用情况,以及优势所在 唐光荣 文山州疾病预防控制中心云南文山 663099 本文简单介绍了核磁共振技术的基本原理以及其在化学、医学领域的不同运用情况,以及优势所在,并对这项技术在精神卫生领域的发展前景进行分析和预测。核磁共振波谱法是化学运用中重要的一种波谱学。目前,与核磁共振技术的研究已经获得了五次诺贝尔奖,可见核磁共振技术在科学研究工作中占有举足轻重的地位,从1993年制出第一台核磁共振谱仪以来,核磁共振技术获得了飞速的发展,运用领域得到广泛发展,在医学领域也通过这一技术进行对人体进行分析和诊断,帮助医生快速找到病灶,从而对症下药。 一、技术背景 二十世纪三十年代,伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。1946年,费利克斯·布洛赫和爱德华·珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。 人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术从最初的一维氢谱(1H NMR)发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年以后,发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上,1969年纽约州立大学南部医学中心的达马迪安通过测核磁共振的弛豫时间成功地将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用设备成功地绘制出了一个活体蛤蜊的内部结构图像。劳特伯尔之后,MRI技术日趋成熟,应用范围日益广泛,成为一项常规的医学检测手段,广泛应用于帕金森病、多发性硬化症等脑部疾病,脊椎病变以及癌症的诊断。 二、技术原理 核磁共振波谱法是化学运用中最重要的一种谱学。它是通过研究处于强磁场中的原子核对射频辐射的吸收进而获得有关化合物分子结构信息的办法。原子核由质子和中子组成,不同的核有不同的自旋量子数I,凡I值非零的原子核即具有自旋角动量P,由于原子核是带正电粒子,故自旋可导致核电荷作循环运动,产生一定的磁场,同时产生磁矩μ,则存在以下公式:μ=γ*P式中,γ成为磁旋比,是原子核的重要属性,每种核都有其特定值,该值越大,则其磁性越强,检测的灵敏度越高,信号越易被观察,在天然同位素中H核的γ最大,故其被作为首选研究对象。 MRI是一台巨大的圆筒状机器,主要有三大基本构件组成,即磁体部分、磁共振波谱仪部分、数据处理和图像重建部分,主磁体用以提供强大的静磁场,而且要求较大的空间范围(能容纳病人),保持高度均匀的磁场强度;磁共振波谱仪主要包括射频发射部分和一套磁共振信号的接收系统;在数据处理和图像重建部分中,磁共振信号首先通过变换器变为数字量,并存入暂存器。图像处理机按所需方法处理原始数据,获得磁共振的不同参数图像,并存入图像存储器能在受检者的周围制造一个强烈磁场区的环境,借由无线电波的脉冲撞击身体细胞中的氢原子核,改变身体内氢原子的排列,当氢原子再次进入适当的位置排列时,会发出无线电讯号,此讯号借由电脑的接收并加以分析及转换处理,可将身体构造及器官中的氢原子活动,转换成2D影像,因MRI运用了生化、物理特性来区分组织,获得的影像会比电脑断层更加详细。 三、目前在医学领域的运用 人体内含有丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了创伤性探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此是相对安全环保的检查。MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。由此指导更为精确的手术和放射治疗,尤其是早期肿瘤的诊断有很大的价值。医学领域中的第一台 MRI 设备是上世纪 80年代初研发出来后,到 2002 年,全世界使用的核磁共振成像仪共有两万多台,进行了约 6000万/人次的检查。同时,MRI 还可以替代部分血管造影检查,由于它不侵入人体,因而能减轻许多病人的痛苦,它图像反差好,密度层次分辨率高,对软组织尤其有用。由于MRI 装置是通过电子计算机来调节和控制三维的梯度场方向,不受机械方面的限制,这就完全自由地按医生需要随心所欲选择层面,获得任意层面的图像。由于它具有极大的灵巧性,能得到其它成像技术所不能接近或难以接近部位的图像,空间分辨率达1.0mm左右。 MRI的优点是可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像;不需注射造影剂;无电离辐射,对机体没有不良影响;缺点是带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格相对昂贵。 四、未来发展前景 人脑是如何思维的,一直是个谜,而且是科学家们关注的重要课题。而利用 MRI 的脑功能成像技术则有助于我们在活体和整体水平

关于低场核磁共振采购的一些看法

关于低场核磁共振采购的一些看法 核磁共振成像系统(以下简称核磁)随着时代的发展,其技术水平和临床应用能力越来越高,而其生产成本和市场售价却越来越低,这为大规模的工业化生产和普及型的临床应用带来了可能。在西方国家,磁共振的检查因其与CT检查相比无辐射伤害而成为常规检查和早期肿瘤普查的首选手段。在国内,也有越来越多的医院拥有或正在考虑购买磁共振。特别是因资金条件和病员量少的医院,多数采购低场核磁共振。下面,就低场核磁的有关情况谈一下个人看法,供参考: 在磁共振中,磁场强度在0.1T-0.5T之间的称为低场核磁.按磁场条件又可分为三种:永磁型、超导型和常导型。又可分为开放和非开放型两类。因低场超导型运行费用高和技术特点不突出且在市场上很少就不再介绍。 永磁型:是采用人工合成材料在电磁场中充磁后做成小磁体再经过有序堆积形成磁场。其特点是材料简单,可采用减少磁间距降低开放度来提高主磁场强度(如日立能做到0.4T,这也是永磁设备厂家卖点最重要的一点。但国外的高场强开放式0.6/0.7T磁共振都采用超导)制造工艺难度小成本较低而销售价格低(销售型式也很好,分期\卖方信贷\投资或合作经营都可以),安装简单,一经成型匀场不需再调整.所以,它特别适合于像中国这样的发展中国家生产和普及运用.据不完全统计,自1990年以来,国内有超过18家企业在生产,如安科、威达、东软和近年新加入的三九、迈迪特、鑫高益等。在国内市场投放可能超过千台(没见过在国外医院大量使用的报道)。在国际上,近年来生产并在国内销售的只有日立0.2T、0.3T和0.4T(原装进口),西门子0.2T(原装进口),GE 0.35T(原装进口),而西门子迈迪特0.35T和所有的国产机一样都是采用国产磁体,外购梯度线圈,射频系统等进口件拼装而成。 常导型:1992年,原马可尼公司芬兰工厂研发了具有独家专利的ESR电子自旋稳态磁场技术和垂直磁场相控阵技术,一举突破原来常导核磁的立磁时间和耗电量大的技术瓶颈(在原来的教科书里所举例安装在广州南方医院西门子常导核磁的问题就在此),使常导型核磁共振在临床上应用得到实现。其优质图像,全面的临床功能,先进的技术,优良的制造工艺和可靠稳定的质量很快被用户接受。(西门子公司在2000年以前,也得以使用马可尼这两项技术生产并销售常导型核磁共振,直至飞利浦收购马可尼公司收回专利为止,不能生产常导而转产其并不成功的永磁型)至2000年,国外医院的使用量突破600台。1995年,全亚洲第一台开放式核磁共振马可尼outlook0.23T(第一代机型,现已发展到第四代Panorama/Proview)被引进中国,安装在合肥市第二人民医院。这台机器已正常使用到今天,仍然保持了装机时的优良图像,开机率近100%。在核磁设备中磁场强度的大小是和二磁极的距离成反比的(只针对开放式磁场,高场超导型不同),磁极离的越近,磁场强度越大。不考虑磁极间距而单比磁场大小是无意义的,而且,水分子的共振频率约为10兆赫,恰与我们的核磁共振频率0.23X41兆赫的相近,共振效果最好。这也就是这么多年来,飞利浦一直生产0.23T的最主要原因。在国内,有包括著名的天坛医院、天津医院、浙江省人民医院、山东省人民医院等五十多家用户,算上西门子公司的常导型核磁几十家用户,常导型核磁是原装进口低场核磁共振(包括永磁和低场超导)市场占有率最高的机型。常导型核磁近百台市场占有率确实不能和国产18家生产的过千台机器占有量相比。但是,我们的几十台机器不论装机时间长短,都正在临床一线正常使用,而在国内市场上投放过千台这种型号的永磁型核磁共振能在临床上正常使用超过4年的有多少台呢?

相关文档
最新文档