基本不等式求最值的类型与方法,经典大全

基本不等式求最值的类型与方法,经典大全
基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法

一、几个重要的基本不等式:

①,、)(2

22

22

2

R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②,

、)(222

+

∈??

? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3

33

333

3

3

+∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;

④)(333

3+

∈??

? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.

注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;

② 熟悉一个重要的不等式链:b

a 112

+2a b

+≤≤≤

2

2

2b a +。 二、函数()(0)b

f x ax a b x

=+

>、图象及性质 (1)函数()0)(>+

=b a x b ax x f 、图象如图: (2)函数()0)(>+

=b a x

b ax x f 、性质:

①值域:),2[]2,(+∞--∞ab ab ;

②单调递增区间:(,-∞

,)+∞

;单调递减区间:(0,

,[0). 三、用均值不等式求最值的常见类型

类型Ⅰ:求几个正数和的最小值。 例1、求函数2

1

(1)2(1)

y x x x =+

>-的最小值。 解析:21(1)2(1)y x x x =+

>-21(1)1(1)2(1)x x x =-++>-2

111

1(1)222(1)x x x x --=+++>-

1

≥312≥+52=, 当且仅当

211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5

2

。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值:

①23

(32)(0)2

y x x x =-<< ②2sin cos (0)2y x x x π=<<

解析:①

3

0,3202

x x <<->∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3

(32)[]13

x x x ++-≤=,

当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ②

0,sin 0,cos 02

x x x π

<<

>>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。

2

4

2

sin cos y x x =?2

2

2

sin sin cos x x x =??222

1(sin sin 2cos )2

x x x =??22231sin sin 2cos 4()2327x x x ++≤?=,

当且仅当22

sin 2cos x

x =(0)2

x π

<

<

tan x ?=x arc

= “=”号成立,故

评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。

例3、若x 、y +

∈R ,求4

()f x x x

=+

)10(≤

f x ax a b x

=+>、图象及性质知,当(0,1]x ∈时,函数

4

()f x x x

=+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

12121244

()()()(

)f x f x x x x x -=-+-211212()4x x x x x x -=-+?1212124()x x x x x x -=-?, ∵1201x x <<≤,∴121212

4

0,

0x x x x x x --<<,则1212()()0()()f x f x f x f x ->?>,

即4()f x x x =+

在(0,1]上是减函数。故当1x =时,4

()f x x x

=+在(0,1]上有最小值5。 解法二:(配方法)因01x <≤,则有4

()f x x x =

+24=+, 易知当01x <≤

时,0μ=

且单调递减,则2()4f x =+在(0,1]上也是减函数, 即4()f x x x =+

在(0,1]上是减函数,当1x =时,4

()f x x x

=+在(0,1]上有最小值5。 解法三:(拆分法)4

()f x x x

=+

)10(≤

+31≥5=,

当且仅当1x =时“=”号成立,故此函数最小值是5。

评析:求解此类问题,要注意灵活选取方法,特别是单调性法具有一般性,配方法及拆分法也是较为简洁实用得方法。 类型Ⅳ:条件最值问题。

例4、已知正数x 、y 满足81

1x y

+=,求2x y +的最小值。

解法一:(利用均值不等式)2x y +8116()(2)10x y x y x y y x =++=+

+1018≥+=, 当且仅当81

1

16x y x y y

x ?+=???

?=??即12,3x y ==时“=”号成立,故此函数最小值是18。 解法二:(消元法)由811x y +=得8x y x =-,由00088

x

y x x x >?>>?>-又,则

2x y +22(8)161616

2(8)108888

x x x x x x x x x x -+=+

=+=++=-++---

-1018≥=。 当且仅当16

88

x x -=

-即12,3x y ==此时时“=”号成立,故此函数最小值是18。 解法三:(三角换元法)令228sin 1cos x x x y

?=????=??则有228sin 1cos x x y x ?=???

?=

?? 则:22

82

2sin cos x y x x

+=

+2222228csc 2sec 8(1cot )2(1tan )108cot 2tan x x x x x x =+=+++=++

10≥+18≥,易求得12,3x y ==此时时“=”号成立,故最小值是18。

评析:此类问题是学生求解易错得一类题目,解法一学生普遍有这样一种错误的求解方法:

812()(2)8x y x y x y +=++≥=。原因就是等号成立的条件不一致。

类型Ⅴ:利用均值不等式化归为其它不等式求解的问题。

例5、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。 解法一:由0,0x y >>,则3xy x y =+

+3xy x y ?-=+≥,

即2

30-≥

13≤-≥(舍),

当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值范围是[9,)+∞。 又2

3(

)2

x y x y xy +++=≤2()4()120x y x y ?+-+-≥2()6x y x y ?+≤-+≥舍或, 当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故x y +的取值范围是[6,)+∞。

解法二:由0,0x y >>,3(1)3xy x y x y x =++?-=+知1x ≠,

则:31x y x +=

-,由3

0011

x y x x +>?>?>-, 则:2233(1)5(1)44

(1)51111

x x x x x xy x x x x x x ++-+-+=?===-++---

-59≥=, 当且仅当4

1(0)31

x x x x -=

>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。

314441(1)2261111x x x y x x x x x x x x +-++=+

=+=++=-++≥=----, 当且仅当4

1(0)31

x x x x -=

>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。 评析:解法一具有普遍性,而且简洁实用,易于掌握,解法二要求掌握构造的技巧。 四、均值不等式易错例析: 例1. 求函数()()

y x x x

=

++49的最值。

错解:()()y x x x x x x

=

++=++491336

2=++≥+?=133********x x x x

当且仅当x x

=

36

即x =±6时取等号。所以当x =±6时,y 的最小值为25,此函数没有最大值。 分析:上述解题过程中应用了均值不等式,却忽略了应用均值不等式求最值时的条件导致错误。因为函数()()

y x x x

=

++49的定义域为()()-∞+∞,,00 ,所以须对x 的正负加以分类讨论。

正解:1)当x >0时,25362133613=?+≥+

+=x

x x x y 当且仅当x x

=

36

即6=x 时取等号。所以当x =6时,y min =25 2)当x <0时,->-

>x x

036

0,, ()()-+-?? ???≥--?? ???=x x x x 3623612 11213)]36

()[(13=-≤-

+--=∴x

x y 当且仅当-=-

x x

36

,即x =-6时取等号,所以当x =-6时,y max =-=13121. 例2. 当x >0时,求y x x

=+49

2的最小值。

错解:因为x y x x x x x

>=+

≥?=049249622, 所以当且仅当492x x =即x =943

时,y x

min ==6

2183。

分析:用均值不等式求“和”或“积”的最值时,必须分别满足“积为定值”或“和为定值”,而上述解法中4x 与

9

2

x 的积不是定值,导致错误。 正解:因为x y x x x x x x x x

>=+=++≥??=0492293229

3362223

3,

当且仅当29

2x x

=,即x =3623时等号成立,所以当x =3623

时,y min =3363。

例3. 求y x x x R =

++∈22

54

()的最小值。

错解:因为y x x x x x x =

++=++

+≥+?

+=22

22

22

54

414

2

414

2,所以y min =2

分析:忽视了取最小值时须x x 22414

+=

+成立的条件,而此式化解得x 2

3=-,无解,所

以原函数y 取不到最小值2。 正解:令()t x t =

+≥242,则y t t

t =+≥1

2()

又因为t ≥1时,y t t =+1是递增的。所以当t =2,即x =0时,y min =5

2

例4.已知+

∈R y x ,且

14

1=+y

x ,求y x u +=的最小值. 错解:44411≥?≥+=

xy xy

y x ,82≥≥+=∴xy y x u ,u ∴的最小值为8. 分析:解题时两次运用均值不等式,但取等号条件分别为y

x 4

1=和y x =,而这两个式子不能同时成立,故取不到最小值8. 正解:94545)41)(

(=+≥++=++=x

y

y x y x y x u 当且仅当

x

y

y x =4即6,3==y x 时等号成立. u ∴的最小值为9. 综上所述,应用均值不等式求最值要注意:

一要正:各项或各因式必须为正数;

二可定:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;

三能等:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值。

技巧一:凑项 例1:已知5

4x <

,求函数14245

y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1

(42)

45

x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--??

231≤-+=, 当且仅当1

5454x x

-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数

例2. 当时,求(82)y x x =-的最大值。

解析:由

知,,利用基本不等式求最值,必须和为定值或积为定值,注意到

2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

技巧三: 分离

例3. 求2710

(1)1

x x y x x ++=

>-+的值域。 解:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

21)591

y x x ≥+?

+=+((当且仅当x =1时取“=”号)。 技巧四:换元

解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22

(1)7(1+10544

=5t t t t y t t t t

-+-++=

=++)

当,即t =时,4

59y t t ≥?=(当t =2即x =1时取“=”号)。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a

f x x x

=+的单调性。

例:求函数22

4

y x =

+的值域。

2

4(2)x t t +=≥,则2

24

y x =+2

21

4(2)4

x t t t x =

+=+≥+

因1

0,1t t t >?=,但1t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。 因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52

y ≥。 所以,所求函数的值域为5,2??+∞????

技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且

19

1x y

+=,求x y +的最小值。 解:

19

0,0,1x y x y >>+=,()1991061016y x x y x y x y x y

??∴+=++=++≥+= ???

当且仅当

9y x x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

巩固练习:

1、已知:b n m a y x =+=+2

2

2

2

,且b a ≠,则ny mx +的最大值为( )

(A)ab (B)2b a + (C)2

2

2b a + (D)222b a +

2、若+

∈R y x a ,,,且y x a y x +≤+恒成立,则a 的最小值是( )

(A)22 (B)2 (C)2 (D)1

3、已知下列不等式:①)(233

+

∈>+R x x x ;②),(3

2

2

3

5

5

+

∈+≥+R b a b a b a b a ; ③)1(22

2

--≥+b a b a .其中正确的个数是( ) (A)0个 (B)1个 (C)2个 (D)3个 4、设+

∈R b a ,,则下列不等式中不成立的是( )

(A)4)11)((≥++b a b a (B) ab ab b a 222≥+ (C)21≥+ab

ab (D)ab b a ab

≤+2

5、设+

∈R b a ,且2242,12b a ab S b a --==+的最大值是( ) (A)12- (B)

212- (C)12+ (D)2

1

2+ 6、若实数b a ,满足2=+b a ,则b

a 33+的最小值是( )

(A)18 (B)6 (C)32 (D)432 7、若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .

8、若+

∈R y x ,,且12=+

y x ,则

y

x 1

1+的最小值为 . 基本不等式 知识点:

1. (1)若R b a ∈,,则ab b a 22

2

≥+ (2)若R b a ∈,,则2

2

2b a ab +≤ (当且仅当b a =时取

“=”)

2. (1)若*,R b a ∈,则ab b a ≥+2

(2)若*

,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)

(3)若*

,R b a ∈,则2

2??

? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1

2x x

+

≥ (当且仅当1x =时取“=”)

若0x <,则1

2x x

+

≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x

+≥+≥+≤即或 (当且仅当b a =时取“=”)

4.若0>ab ,则2≥+a

b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b

b a b a b a

+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2

)2(

2

22b

a b a +≤

+(当且仅当b a =时取“=”) 注意:

(1)当两个正数的积为定植时,可以求它们的和的最小值,

当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用

应用一:求最值 例:求下列函数的值域

(1)y =3x 2+

1

2x

2

(2)y =x +1

x

解:(1)y =3x 2+1

2x 2 ≥2

3x 2·1

2x 2 =

6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1

x

≥2

x ·1

x

=2; 当x <0时, y =x +1x = -(- x -1

x )≤-2

x ·1

x

=-2 ∴值域为(-∞,-2]∪[2,+∞)

解题技巧

技巧一:凑项

例 已知5

4x <

,求函数14245

y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1

(42)45

x x --不是常数,所以对42x -要进行拆、凑项,

5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?

?231≤-+=

当且仅当1

5454x x

-=

-,即1x =时,上式等号成立,故当1x =时,max 1y =。

技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。 解析:由

知,

,利用均值不等式求最值,必须和为定值或积为定值,此题为

两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑

上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

变式:设2

3

0<

-x ∴2922322)23(22)23(42

=??

? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即??

?

??∈=23,043x 时等号成立。

技巧三: 分离

技巧四:换元

例:求2710

(1)1

x x y x x ++=

>-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

21)591

y x x ≥+?

=+((当且仅当x =1时取“=”号)。 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t=时,4

59y t t

≥?=(当t=2即x =1时取“=”号)。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a

f x x x

=+的单调性。

例:求函数2

2

4

y x =

+的值域。

24(2)x t t +=≥,则2

24

y x =+221

4(2)4

x t t t x =

+=+≥+

因10,1t t t >?=,但1

t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故5

2

y ≥。

所以,所求函数的值域为5,2??+∞????

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。

例:已知0,0x y >>,且19

1x y

+=,求x y +的最小值。

错解..:

0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ??+=++≥= ???

故 ()min 12x y += 。

错因:解法中两次连用均值不等式,在2x y xy +≥x y =,在1992x

y

xy

+≥号成立条件是

19

x y

=即9y x =,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。 正解:

19

0,0,1x y x y >>+=,()1991061016y x x y x y x y x y ??∴+=++=++≥+= ???

当且仅当9y x

x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

技巧七

例:已知x ,y 为正实数,且x 2

y 2

2

=1,求x 1+y 2

的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab ≤

a 2+

b 2

2

同时还应化简

1+y 2

y 2

前面的系数为 1

2

, x

1+y 2 =x 2·1+y 22

2

x ·

12 +y 22

下面将x ,

12 +y 2

2

分别看成两个因式: x ·

12 +y 2

2 ≤x 2+(

12 +y 2

2

)22

x 2+y 22 +1

2 2

=3

4

即x

1+y 2 = 2 ·x

12 +y 22 ≤ 34

2

技巧八:

已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab

的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,

再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15

令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16

t

≥2

t ·16

t

=8

∴ ab ≤18 ∴ y ≥

1

18

当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥2

2 ab

令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2

ab ≤3 2 ,ab ≤18,∴y ≥

1

18

点评:①本题考查不等式

ab b

a ≥+2

(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+

R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关

系,由此想到不等式ab b

a ≥+2

(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.

技巧九、取平方

例:

求函数15()22y x =<<的最大值。

解析:注意到21x -与52x -的和为定值。 22

44(21)(52)8y x x ==+

≤+-+-=

又0y >,所以0y <≤当且仅当21x -=52x -,即3

2

x =时取等号。 故max y =。

应用二:利用均值不等式证明不等式

例:已知a 、b 、c R +

∈,且1

a b c ++=。求证:1111118a b c ??????

---≥ ???????????

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2

”连乘,又111a b c a a a -+-==≥ 解:

a

、b 、c R +

∈,1a b c ++=。

111a b c a

a a -+-==≥

。同理11b -≥,11c -≥

111221118ac ab a b c a b c ??????---≥= ???????????

。当且仅当13a b c ===时取等号。 应用三:均值不等式与恒成立问题 例:已知0,0x y >>且

19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。 解:令,0,0,

x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞

应用四:均值定理在比较大小中的应用: 例:若

)2

lg(),lg (lg 21,lg lg ,1b

a R

b a Q b a P b a +=+=

?=>>,则R Q P ,,的大小关系是 . 分析:∵1>>b a ∴0lg ,0lg >>b a

2

1

=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R>Q>P 。

利用基本不等式求最值的技巧Word文档

利用基本不等式求最值的技巧 在运用基本不等式ab b a 222≥+与2b a ab +≤ 或其变式解题时,要注意如下技巧 1:配系数 【例1】已知2 30<-x ,从而 8 9)2232(21)]23(2[21)23(2=-+?≤-=-=x x x x x x y ,当且仅当)23(2x x -=即43=x 时,8 9max =y . 说明:这里运用了2)2(b a ab +≤. 2:添加项 【例2】已知23>x ,求3 22-+=x x y 的最小值. 【分析】按照“积定和最小”的思路,由于322-? x x 不是定值,所以应把x 变凑成23)32(21+-x ,使得13 22)32(21=-?-x x 为定值. 【解】由于2 3>x ,所以032>-x ,于是 2 723322)32(21223322)32(21322=+-?-≥+-+-=-+=x x x x x x y , 当且仅当322)32(21-=-x x 即25=x 时,2 7min =y . 3:分拆项 【例3】已知2>x ,求2 632-+-=x x x y 的最小值. 【分析】按照“积定和最小”的思路,必须把2 632-+-=x x x y 分拆成两项,再配凑适当的系数,使得其积为定值.

【解】由于2>x ,所以, 3124)2(2124)2(2)2(3)22(26322=+-?-≥+-+-=---+-=-+-=x x x x x x x x x x y 当且仅当2 42-=-x x 即4=x 时,3min =y . 4:巧用”1”代换 【例4】已知正数y x ,满足12=+y x ,求y x 21+的最小值. 【解】注意到844244)21()2(21=+?≥++=+?+=+x y y x x y y x y x y x y x ,当且仅当x y y x =4即2 1,41==y x 时,8)21(min =+y x . 一般地有,2)())((bd ac y d x c by ax +≥++,其中d c b a y x ,,,,,都是正数.这里巧妙地利用”1”作出了整体换元,从而使问题获得巧解. 【例5】已知正数z y x ,,满足1=++z y x ,求z y x 941++的最小值. 【解】注意到y z z y x z z x x y y x z y x z y x z y x 499414)941()(941++++++=++?++=++ 36492924214=?+?+?+≥y z z y x z z x x y y x ,当且仅当x y y x =4,x z z x =9,y z z y 49=即2 1,31,61===z y x 时,36)941(min =++z y x . 5:换元 【例6】已知c b a >>,求c b c a b a c a w --+--=的最小值. 【解】设c b y b a x -=-=,,则c a y x -=+,y x ,都是正数,所以42≥++=+++=x y y x y y x x y x w ,当且仅当x y y x =即b c a 2=+时,

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

基本不等式求值的类型与方法-经典大全

基本不等式求最值的类型与方法-经典大全

————————————————————————————————作者:————————————————————————————————日期: 2

5 6 专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b ab +≤≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,]b a -∞-,[,)b a +∞;单调递减区间:(0, ]b a ,[,0)b a -. 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- 3 2 111 31222(1) x x x --≥??+-312≥+52=, 当且仅当 211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:①30,3202 x x << ->Q ∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3 (32)[]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ②0,sin 0,cos 02 x x x π << >>Q ∴,则0y >,欲求y 的最大值,可先求2y 的最 大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2 x x x =??22231sin sin 2cos 4()2327x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π << tan 2x ?=,即tan 2x arc =时 “=”号成立,故 此函数最大值是 23 9 。 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则 x a b ab 2-ab 2a b - o y

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b ab +≤≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,]b a -∞,[,)b a +∞;单调递减区间:(0,b a ,[,0)b a . 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1)y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 3 2 111 31 222(1)x x x --≥??-312≥+52=, 当且仅当 211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 30,3202 x x <<->∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3 (32)[]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2 x x x =??22231sin sin 2cos 4()2327x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π << tan 2x ?=2x arc = “=”号成立,故 23 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则 x a b ab 2-ab 2a b - o y

利用基本不等式求最值的类型及方法

1 利用基本不等式求最值的类型及方法 1 解析:y x 2(x 1) (x 2(x 1) 1) 芳 1(x 1) -1 ?」1(x 1) 2 2 2(x 1) 、几个重要的基本不等式: ① a 2 b 2 2ab a 2 b 2 ab (a 、b R ),当且仅当a = b 时,"=”号成立; 2 1 2 2(x 1) ② a b 2 ab 2 a b ab (a 、b R ),当且仅当a = b 时,“=”号成立; 2 当且仅当 1)即x 2时,“ 5 ”号成立,故此函数最小值是 -。 2 ③ a 3 b 3 c 3 3abc 3 abc ― b 3 3 3 c ( (a 、 立; ④ a b c 3v abc abc a b 3 c (a abc 3 a 、 b 、 c R ),当且仅当a = b = c 时,“=”号成 b 、 c R ),当且仅当a = b = c 时,“=”号 成立? 注:①注意运用均值不等式求最值时的条件:一 “正”、二“定”、三“等”; 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型n :求几个正数积的最大值。 例2、求下列函数的最大值: ①y x 2 (3 2x)(0 x 2 ② y sin xcosx(0 x ) 2 ② 熟悉一个重要的不等式链: b 2 2 解析:①Q 0 x - ,? 3 2 2x ?- y 当且仅当 (3 2x)(0 x 3 2x 即 x ,?? sin x 2 3 x x (3 2x) 3 )x x (3 2x) [ ] 1 , 2 3 1时,“=”号成立,故此函数最大值是 1 。 0,cos x 0,则y 0 ,欲求y 的最大值,可先求y 2的最大值。 二、函数 f(x) ax X b 0)图象及性质 (1)函数 f(x) ax b a 、 X b 0图象如图: ⑵函数 f(x) ax b a 、 X b 0性质: ①值域:( J 2 ab] [2 一ab,); ②单调递增区间:( 2 . 4 2 y sin x cos x 当且仅当 故此函数最大值是 sin 2 x sin 2 x coSx 1 2 2 2 (sin x sin x 2cosx) 2 1 sin 2 x sin 2x 2co^ x 3 4 「 -------- —) 刃 .2 sin x 2cos x (0 tan x 2,即 x arctan^^ 时“=”号成立, );单调递减区间: b ], a ,[ (0, ,0) ? 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型川:用均值不等式求最值等号不成立。 4 x — x 例 3、若 x 、y R ,求 f (x ) (0 x 1)的最小 值。 三、用均值不等式求最值的常见类型 类型I :求几个正数和的最小值。 解法一:(单调性法)由函数 f(x) K ax - (a 、b 0)图象及性质知,当 x (0,1]时,函数 x 例1、求函数y 1 x 2^(x 1) 的最小值。 f (x ) x -是减函数。证明: x 任取 X 2 (0,1]且 0 禺 X 2 1,则 f(xj f(X 2) (X 1 X 2) (— —) (X 1 X 2)4 匹 为 (X 1 X 2)4 , x-1 X 2 X !X 2 X 1X 2

基本不等式求最值教学设计

“基本不等式求最值”的教学设计 一、教材分析 (一)本节教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书数学北师大版·必修5“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材;同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质. (二)教材处理 依据新大纲和新教材,本节分为二个课时进行教学.第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和平均值定理(均值不等式)及它的几何解释.掌握应用定理解决某些数学问题.第二课时讲解应用平均值定理解决某些最值问题和实际问题.本节课为第二课时。为了讲好这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题. (三)教学目标 1.知识目标: (1)会利用“均值不等式”解决某些最值问题; (2)掌握获得“均值不等式”条件的常用方法。 2.能力目标: (1)学生对问题的探索、研究、归纳,能总结出一般性的解题方法和解题 规律,提高学生的抽象概括能力。 (2)通过学生的口头表述和书面表达提高学生的数学表达和数学交流的能力。 (3)通过例题、变式练习及应用题的解决树立学生的化归思想; (4)通过实际问题发展学生的数学应用意识。 3.德育目标:通过具体问题的解决,增强科学严谨的治学态度,体会“探究学习”在学习过程中的作用,使学生体验成功,增强学习数学的自信心。 (四)教学重点、难点、关键

重点:用均值不等式求解最值问题的思路和基本方法。 难点:均值不等式的使用条件,合理地应用均值不等式。 关键:理解均值不等式的约束条件,掌握化归的数学思想是突破重点和难点的关键。 二、学情分析 我所教的两个班都是文科平行班,大部分学生数学基础较差;学生的理解能 力,运算能力,思维能力等方面参差不齐;但学生有学好数学的自信心,有一定 的学习积极性。 三、教法分析 (一)教学方法 为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标,采用启发探究式学习。其中,在探索结论时,采用发现法;在定理的应用及其条件的教学中采用归纳法;在训练部分,主要采用讲练结合法进行。 (二)教学手段 根据本节知识特点,为突出重点,突破难点,增加教学容量,利用计算机和实物投影辅导教学。 四、教学过程设计 1.复习回顾: 重要不等式:”成立。 时,“当且仅当时,当==≥+∈b a ab b a R b a ,2,22 均值不等式:”成立。时,“当且仅当时,当==+≤∈+b a b a ab R b a ,2 , (设计意图:通过对上节课所学知识的回顾,让学生加深对基本不等式的理解,为下面的求最值做铺垫。) 2.思考探索: 1.把36写成两个正数的积,当这两个数取何值时,它们的和最小? 2.把18写成两个正数的和,当这两个数取何值时,它们的积最大? 设计意图:让学生自己尝试用均值不等式解决最值问题,从而引出下面的结论:当a,b 为正实数时, (1)若ab 为定值,则当a=b 时,其和a+b 有最小值。 (2) 若a+b 为定值,则当a=b 时,其积ab 有最大值。 3.应用基本不等式求最值的条件:

基本不等式求最值技巧

基本不等式求最值技巧 一. 加0 在求和的最小值时,为了利用积的定值,有时需要加上零的等价式。 例1. 已知,且,求的最小值。 解:因为,所以,所以, ,所以。式中等号当且仅当时成立,此时。所以当时, 取最小值。 例2. 设,且,求的最小值。 解:因为,,所以,所以,且。 所以 式中等号当且仅当时成立,此时。将它代入 中得。所以当时,取最小值 。

2. 乘1 在求积的最大值时,为了凑出和的定值,有时需要乘上1的等价式。 例3. 已知,且,求xyz的最大值。 解:因为,且, 所以 式中等号当且仅当时成立,此式可写为,令其比值为t,则,,,把它们代入,解得。所以当, 时,xyz取最大值。 3. 拆式 在运用基本不等式求最值时,为满足解题需要,有时要进行拆式。 例4. 求函数的最小值。 解:因为,所以, 所以

式中等号当且仅当时成立,解得,所以当时,。例5. 设且,求的最小值。 解:因为, 所以 式中等号当且仅当时成立,此时,所以当时,取最小值3。 4. 拆幂 在求积的最大值时,为了满足和为定值时对项数的要求,有时要拆幂。 例6. 设,求函数的最大值。 解:因为,所以 所以 式中等号当且仅当时即时成立。所以当时,。例7. 设,且为定值,求的最大值。

解:因为 所以 式中等号当且仅当时成立,此时。 所以当,取最大值。 5. 平方 在求积的最大值时,有时要凑出和的定值很困难,但积式平方后却容易凑出和的定值。 例8. 设,且为定值,求的最大值。 解:因为, 所以 所以 式中等号当且仅当时成立,此时

所以当时,取最大值。 例9. 已知,求的最大值。 解:因为,所以, 所以 所以。式中等号当且仅当,即时成立。所以当时,。

专题27 应用基本不等式求最值的求解策略高中数学黄金解题模板

【高考地位】 基本不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。应用基本不等式求最值时,要把握基本不等式成立的三个条件“一正二定三相等”,忽略理任何一个条件,就会导致解题失败,因此熟练掌握基本不等式求解一些函数的最值问题的解题策略是至关重要的。【方法点评】 方法一凑项法 使用情景:某一类函数的最值问题 解题模板:第一步根据观察已知函数的表达式,通常不符合基本不等式成立的三个条件“一正二定三相等”,将其配凑(凑项、凑系数等)成符合其条件; 第二步使用基本不等式对其进行求解即可; 第三步得出结论. 例1已知 5 4 x<,求函数1 42 45 y x x =-+ - 的最大值。 【答案】 max 1 y=. 第三步,得出结论:

故当1x =时,max 1y =。学#科网 点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 【变式演练1】【江苏省盐城市阜宁中学2017-2018学年高二上学期第一次学情调研数学(文)试题】函数 4 2(0)y x x x =-->的最大值为________. 【答案】-2 【解析】4422242y x x x x ?? =---+≤-- ??? =2=, 当且仅当4 x x = ,即x =2时,“=”成立 【变式演练2】【2018届山西高三上期中数学(理)试卷】当1x >时,不等式1 1 x a x + ≥-恒成立,则实数a 的取值范围是( ) A .(,2]-∞ B .[2,)+∞ C .[3,)+∞ D .(,3]-∞ 【答案】D 【解析】 考点:均值不等式. 方法二 分离法 使用情景:某一类函数的最值问题 解题模板:第一步 首先观察已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式; 第二步 把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式; 第三步 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求的结果.

基本不等式求最值的类型及方法,经典大全

专题:基本不等式求最值的类型及方法 解析:y x 1 2(x 1) (x 2(x 1) 1) 2(x L 2LJ 2 1(x 1) 2 2 2(x 1) 、几个重要的基本不等式: ①a 2 b 2 2ab ab a 2 b 2 (a 、 x 1 x 1 33 立; b R),当且仅当a = b 时,“=”号成立; 2 2(x 1) ③a 3 成立? 注: 二、函数 b 3 2 ab ab 2 (a 、 当且仅当 b R ),当且仅当a = b 时,“=”号成立; 2(x 2(x 1)2 1)即x 2时,“ 5 ”号成立,故此函数最小值是 - 2 3 c 3 3abc abc — b 3 c 3 3 -(a 、 b 、 R ),当且仅当a = b = c 时,“=”号成 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型n :求几个正数积的最大值。 例2、求下列函数的最大值: 3 3 ----- abc , b c 3v abc abc ---------------- (a 、 3 ① 注意运用均值不等式求最值时的条件: ② 熟悉一个重要的不等式链: ab f(x) ax b (a 、 x 0)图象及性质 (1)函数 f (x) ax a 、 0图象如图: (2)函数 f(x) ax a 、 0性质: ①值域: ,2 ab] [2 ab,); R ),当且仅当a = b = c 时,“=”号 定 、三 等 ; 2 2 a b J -------------- 2 ①y x 2 解析:①Q 0 ?- y (3 2x)(0 x x - ,? 3 2 当且仅当 2 . 4 2 y sin x cos x 当且仅当 故此函数最大值是 (3 2x)(0 ②单调递增区间:( );单调递减区间: :], (0, ] , ,0). 2x x 3 2x 即 x ,?? sin x 2 sin 2 x sin 2 x .2 sin x 2 ② y sin xcosx(0 x ) 2 3 x x (3 2x) 3 )x x (3 2x) [ ] 1 , 2 3 1时,“=”号成立,故此函数最大值是 1 。 0,cos x 0,则y 0 ,欲求y 的最大值,可先求y 2的最大值。 coSx 2cos x (0 1 2 2 2 (sin x sin x 2cosx) 2 1 sin 2 x sin 2x 2co^ x 3 4 二 -------- —) 刃 tan x 2,即 x arctan^^ 时“=”号成立, 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型川:用均值不等式求最值等号不成立。 4 x — x 例 3、若 x 、y R ,求 f (x) (0 x 1)的最小值。 三、用均值不等式求最值的常见类型 类型I :求几个正数和的最小值。 解法一:(单调性法)由函数 f(x) K ax 一(a 、b 0)图象及性质知,当 x (0,1]时,函数 x 例1、求函数y x 1 2(x 1)的最小值。 2(x 1)2 f (x) x -是减函数。证明: x 任取 X 2 (0,1]且 0 禺 X 2 1,则

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

用基本不等式求最值六种方法

用基本不等式求最值六种方法一.配项 例1:设x>2,求函数y=x+9 2 x- 的最小值 解析:y=x-2+ 9 2 x- +2≥8 当x-2= 9 2 x- 时,即x=5时等号成立 例2:已知a,b是正数,满足ab=a+b+3,求ab的最小值 法1:ab=a+b+3≥当a=b3即ab≥9当a=b=3时 等号成立。 法2:已知可化为(a-1)(b-1)=4.又ab=(a-1)+(b-1)+5≥9当a-1=b-1=2时等号成立,即a=b=3 二.配系数 例3:设0b>0,求2a+16 () a b b - 的最小值 解析:2a+16 () a b b -=2 a b b -+ ()+16 () a b b - ≥4(a-b)b+16 () a b b - ≥ 当时,等号成立。 四.平方升次 例5:当x>0时,求函数的最大值。 解析:y2=x2+4-x2≤4+[x2)2] =8 当,即时,y取得最大值. 五.待定系数法 例6:求y=2sinx(sinx+cosx)的最大值。

解析:y=2sin 2x+2sinxcosx =2 sin 2x+ 2sin (cos )x a x a (a>0) ≤2 sin 2x+222sin cos x a x a + =a+22(21)sin a a x a +- 若为定值,则221a a +-=0,+1, 所以y 时成立。 六. 常值代换 例7:已知x>0,y>0,且x+2y=3,求1x +1y 的最小值 解析:1x +1y =13(x+2y)( 1x +1y )=1+13( 2y x +x y )≥1+23 当且仅当2y x =x y ,且x+2y=3,即-1),y=32)时, 取得最小值为1+23

基本不等式求最值的策略

例谈用基本不等式求最值的四大策略 摘要 基本不等式ab b a ≥+2 (0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。本文将结合几个实例谈谈运用基本不等式求最值的三大策略。 关键字:基本不等式 求和与积的最值 策略 一、基本不等式的基础知识[1] 基本不等式: 如果0,0>>b a ,则 ab b a ≥+2 ,当且仅当b a =时等号成立。 在基本不等式的应用中,我们需要注意以下三点: “一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。 “二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。 “三相等”: b a =是ab b a =+2 的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。 二、利用基本不等式求最值的四大策略 策略一 利用配凑法,构造可用基本不等式求最值的结构 通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。 题型一 配凑系数 例1 设230<-x

基本不等式求最值技巧总结

高三复习讲义: 基本不等式求最值总结 一、直接法 1.求函数2log log (2)x y x x =+的值域 2.1,1,,a b x y R >>∈,若3,x y a b a b ==+=11x y +的最大值 3.设01,01a x y <<<≤<,且log log 1a a x y ?=,求xy 的最大值 4.已知0a b >>,求216()a b a b + -的最小值 二、凑系数 5.当04x <<时,求(82)y x x =-的最大值 6.设0,0x y >>,且3212x y +=,求xy 的最大值 三、凑项 7.已知54x <,求函数14245y x x =-+-的最大值 8.设,x y z n N >>∈*,且 11n x y y z x z +≥---恒成立,求n 的最大值 9.设01,,x a b R +<<∈,求 1a b x x +-的最小值 四、凑、配、拆 10.已知52x ≥,求24524 x x y x -+=-的最小值 11.当0x >时,求22121 x x y x x ++=++的最小值 12.若对于任意的0x >, 231x a x x ≤++恒成立,求a 的取值范围 13.已知1x >-,求2158 x y x x += ++的最大值 五、基本不等式失效

14.求函数2 y = 15.求4sin (0)sin y x x x π=+<<的值域 六、1的整体代换 16.已知正数,x y 满足4x y +=,求使不等式14m x y +≥,恒成立的实数m 的取值范围 17.已知,x y R +∈,且20x y xy +-=,若222x y m m +>+恒成立的m 的取值范围 18.函数22(0,1)x y a a a +=->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,求12m n +的最小值 19.已知正数,,x y z 满足1x y z ++=,求 149x y z ++的最小值 七、凑和为定值 20.已知正数,a b 满足2223a b +=,求 21. 已知,x y R +∈,且2 2 12y x +=,求 22.已知30x -<<,求 八、构造不等式 23.设,x y R +∈,且()1xy x y -+=,求x y +的最小值 24. ,x y R +∈,且228x y xy ++=,求2x y +最小值 25.已知1,1x y >->-,且(1)(1)4x y ++=,求x y +的最小值 九、平方 26. 求y 27.设,,a b c R +∈,且1a b c ++= 28.设,x y R +∈≤a 的最小值

相关文档
最新文档