中科院研究生院图论讲义习题1

中科院研究生院图论讲义习题1
中科院研究生院图论讲义习题1

第一章习题

1. 对任何简单图G ,(1) 证明:(1)

()2

G υυε?≤;(2)

(1)

()2

G υυε?=

当且仅当G K ν?。

2. 证明:(1)

,()m n K mn ε=;(2) 若G 是完全二部图,则2

()4

G υε≤

3. 图G 有21条边,12个3度顶点,其余顶点的度均为2,求图G 的阶数。

4. 证明:任何简单图必有至少两个顶点具有相等的度。

5. 设G 是简单图,求G 的所有不同的生成子图的个数(包括G 本身和空图)。

6. 证明:任何图中,奇度顶点的个数总是偶数(包括0)。并由此证明:在任一次聚会上握过奇数

次手的人必为偶数个。

7. 证明或反证:如果u 和v 是图G 中仅有的具有奇数度的顶点,则G 包含一条u , v 路。

8. 证明:若4υ≥且1+=νε,则存在)(G V v ∈使得3)(≥v d 。由此证明: n 个球队比赛(4n ≥),

已赛完n +1场,则必定有一个球队已参加过至少3场比赛。

9. 在一个运动联盟中,将所有运动队组织成两个赛区,每个赛区有13个队,能否恰当安排比赛使

得每个队在其所在赛区中进行9场比赛而与另一个赛区中的运动队进行4场比赛?

10. 在平面上有n 个点12{,,,}n S x x x =???,其中任两个点之间的距离至少是1。证明在这n 个点中,

距离为1 的点对数不超过3n 。

11. 某次会议有n 人参加,其中有些人互相认识,但每两个互相认识的人,都没有共同的熟人,每

两个互不认识的人都恰好有两个共同的熟人。证明每一个参加者都有同样数目的熟人。 12. 在一个化学实验室里,有n 个药箱,其中每两个不同的药箱恰有一种相同的化学品,而且每种

化学品恰好在两个药箱中出现,问:(1)每个药箱有几种化学品?(2)这n 个药箱中共有几种不同的化学品?

13. 在一次舞会中,A 、B 两国留学生各(2)n n >人,A 国每个学生都与B 国一些(不是所有)学生跳

过舞,B 国每个学生至少与A 国一个学生跳过舞。证明一定可以找到A 国两个学生12,a a 及B 国两个学生12,b b ,使得1a 和12,b a 和2b 跳过舞,而1a 和22,b a 和1b 没有跳过舞。 14. 证明:2ε

δυ

≤Δ,(其中

υ

称为顶点平均度)。

15. 令G 是至少有两个顶点的图。证明或反证:(1) 删除一个度为()G Δ的顶点不会增加顶点的平均

度;(2) 删除一个度为()G δ的顶点不会减小顶点的平均度。 16. 令G 是一个顶点平均度为2a ε

υ

=

的无圈图。(1) 证明:G x ?的顶点平均度至少为a 当且仅当

()2

a

d x ≤

。(2) 利用(1)的结果给出一个算法来证明:如果0a >,则G 有一个最小度大于2a 的

子图。

17. 如果2,υευ≥<,则连通图G 至少有两个1度顶点。

18. 令u 和v 是简单图G 中的相邻顶点。证明:u v 至少属于G 中的()()()d u d v G υ+?个三角形。 19. 证明含有n 个顶点的k 正则图有

2

kn

条边。 20. 证明:在k 度正则图G 中,)2(mod 0≡νk ,即正则图的阶数和度数不可能同时为奇数。( 21. 证明:围长为4的k 正则图至少含有2k 个顶点; 围长为5的k 次正则图至少有2

1k +个顶。 22. 证明:若),(E Y X G ∪=是一个k 度正则二部图,则||||Y X =。 23. 证明连通图中两条最长路必有公共顶点。

24. 若G 是简单图且k G ≥)(δ,则G 有长为至少k 的路;如果2k ≥,则G 还包含一个长至少为1

k +的圈。

25. 每个无圈图G 都有一个二部子图至少包含

()

2

G ε条边。

26. 证明:(a) εν>时,图中有圈。 (b) 4εν≥+时,图中有两个无公共边的圈。 27. 证明:若G 是1

()2

G υδ?≥

的简单图,则G 是连通图。(

28. 证明:(a) 若()e E G ∈,则()()()1G G e G ωωω≤?≤+;(()G ω表示图G 的连连同分支数)。

(b) 若()v V G ∈,则()()()1G G v G ωωω≤?≤+未必成立,试举反例。 29. 证明:若G 是连通图,且每顶皆偶次,则1

()()2

G v d v ω?≤

。 30. 证明或反证:如果G 是一个n 顶点简单图,且其最大度是2n ??????、最小度是12

n ???????

,则G 是连

通的。

31. 在一电路中,A ,B 两点间连接着一电阻,问至少要多少电阻,怎样连接,才能使得任意损坏9

个电阻时,A 点与B 点的电路仍连通且不短路? 32. 证明G H ?当且仅当G H ?。

33. 证明:如果图G 不连通,则其补图G 必连通。

34. 如果图G 满足G G ?,则称G 是自补图。证明:若υ阶图G 是自补图,则,(mod )014υ=。 35. 一个非连通简单图的补图一定是连通图吗?说明理由。

36. 证明 从一个88×的方格棋盘中去掉对角的两个小方格后,不能被12×和21×的矩形覆盖。 37. 令G 是一个4顶点图,删除其中的一个点后得到的子图系列如下,试确定G 。

38. 下面两图是否同构?

39. 讨论下列三个图的同构性

40. 证明:Peterson 图与下列图同构

41. 已知n 阶简单图G 有m 条边,各顶点的度数均为3,(1) 若36m n =?,证明G 在同构意义下

唯一,并求,m n ;(2) 若6n =,证明G 在同构意义下不唯一。 42 若图G 有n 个顶点,1n ?条边,则G 一定是树吗?说明理由。 43 证明非平凡树中最长路的起点和终点都是叶子(1度点)。 44 证明恰有两个叶子的树必是路。

45 证明:若G 是树且k ≥Δ,则G 至少有k 个1度顶点。 46 证明每个树都是二部图。

47 设i n 表示树T 中度为i 的顶点的个数。(1) 证明对非平凡树T 的叶子数1n 有下面公式成立:

13453

2232(2)i i n n n n i n ∞

==++++???=+?∑

.

c b

u v

t s

(2)证明

1

i

i in ∞

=∑只依赖于树T 的顶点数。

48 不含圈的图称为森林(forest ),证明:

(1)G 是森林当且仅当w ?=νε;

(2)无孤立点的森林至少有2w 个1度顶点。 这里w 表示G 的连通分支数,孤立点指零度顶点。 49 证明:具有m 条边的任意n 顶点图至少有1m n ?+个圈。

50 令T 是一棵n 顶点数,对于2i k ≤≤的每个i 值,树中有一个度为i 的顶点;其余的1n k ?+个

顶点都是叶子。确定n 并表示成k 的形式。

51 令T 是一棵非平凡树,其中所有与叶子相邻的顶点的度至少为3,证明:T 中某一对叶子有公共

的相邻顶点。

52 令G 是一个连通的n 顶点图,证明:G 恰有一个圈当且仅当G 恰有n 条边。

53 令T 是一棵树,证明:T 的顶点全为奇度点当且仅当对()e E T ?∈,T e ?的两个连通分支都具有奇数的阶。

54 令T 是一棵阶为偶数的树,证明:T 恰有一个生成子图使得其中每个顶点的度均为奇数。 55 证明:若T 是一个具有k 条边的树,G 是一个简单图且()G k δ≥,则G 含有与T 同构的子图。 56 令G 是一棵树,其中2k 个顶点具有奇数度,证明:G 可分解成k 条路。 57 对4n ≥,令G 是满足()23G n ε≥?的简单n 点图,证明:G 有两个等长的圈。

58 令u 是连通图G 的一个顶点,证明不可能选出从u 到其他各顶点的最短路使得这些路的并是一

棵树。 59 令T 、T ′是连通图G 的两棵生成树,对于()()e E T E T ′∈?,证明存在一条边()()e E T E T ′′∈?,

使得T e e ′′+?和T e e ′?+都是G 的生成树。

60 设G 是一个加权的连通图并且其各边上的权值互不相同。不使用Kruskal 算法,证明:G 只有一

棵权值最小的生成树(提示:利用上题结论)。

61 为n 阶完全图n K 的所有边分配整数权值。假设一个圈的权值是该圈上所有边的权值之和。证明:

所有圈的权值均为偶数当且仅当具有奇数权值的那些边构成的子图是一个生成二部图。(提示:对于具有偶数权值的边构成的子图,其任意连通分量都是一个完全图)。 62 求下图中从u 0到其余各点的最短路。

63 修改Kruskal 算法用以:

(1) 求赋权连通图中的最大权生成树;(2)求不连通赋权图中的最小权生成森林。 64 证明:直径为k ,围长为21k +的图是正则图。

65 证明: 对任一简单连通图G 有rad diam 2rad G G G ≤≤。

66 证明: 对任意树T ,若只有一个中心,则diam 2rad T T =,若有两个中心,则diam 2rad 1T T =?. 67 设G 是一个简单图。证明:若diam 3G ≥,则diam 3G ≤;若rad 3G ≥,则rad 2G ≤。 68 证明: 若G 是自补图,则diam 3G ≤。 69 证明:任一非平凡自补图的直径为2或3。

70 设G 是直径为2的简单图,且2)(?=ΔνG ,则42?≥νε。 71 Peterson 图是否二部图?试求其围长、半径、直径。

72 如果4n ≥,证明直径为2且最大度为n -2的n -顶点简单图的最小边数是2n -4。

73 令x 和y 是图G 中顶点v 的两个不同的邻点,证明:如果G 是一棵树,则离心率

2()()()e v e x e y ≤+。

74 证明树T 的中心是一个顶点当且仅当diam 2rad T T =。

75 证明:一棵树要么只有一个重心,要么有两个相邻的重心。(提示:对相邻顶点u 和v ,考虑

()()g u g v ?)。

76 令G 是一棵树,它有n 个顶点、k 个叶子且最大度为k 。(1) 证明G 是k 条具有同一个公共端点

的路的并。(2) 确定diam G 的可能的最大值和最小值。 77 证明:具有n +1条边的任意n 顶点图的围长最大值为223n +??

?

???

。 78 证明:在所有直径为k 但不是树的图中,21k +是围长的最大值(提示:证明若G 有一个长至

少为22k +的圈,则G 必有长度更小的圈)。 79 已知图G 如下:

(1)求G 的邻接矩阵A 和关联矩阵M ;

(2)求2

3

4

,,A A A ,说明从顶点b 到d 长度为1,2,3,4的路分别有几条。

c

思考题1. 网络会议

某种网络会议系统允许三个地点同时进行网络会议。下图描述的是一个传输网络,其中圆圈代表客户所在的城市,每条线段两端的客户都可以直接通话。为了让三地同时通话,公司需要激活一些直接连接,使得三个客户端连通。由于激活不同的直接连接的费用不同,公司希望你为它找一个最省钱的激活方式。

例如下图中,为了连接客户1,4,6,最好的方式是激活加粗的直接连接,总费用是27.

思考题2. 公平会面

两位外交官处在不同的城市A和B,他们打算请你选择一座城市X作为他们会面的地点,并分别为他们制定详细的到达路线。为公平起见,两位外交官行走的路线总长要一样,任何一位外交官不能经过同一座城市两次,并且除了会面地点外,两位外交官不会到达过同一座城市。在这个基础上,你应该使得路线长度最短。假设这样的会面地点和到达路线一定存在。

课后习题答案

第一章 液压传动概述 液压传动系统由哪几部分组成各组成部分的作用是什么 解答:液压传动由以下四部分组成: (1)动力元件(液压泵):它是把原动机输出的机械能转换成油液压力能的元件。作用:给液压系统提供压力油,是液压系统的心脏。 (2)执行元件:包括液压缸和液压马达等。 作用:把油液的压力能转换成机械能以驱动工作机构的元件。 (3)控制元件:包括压力、方向、流量控制阀。作用:是对液压系统中油液的压力、流量和流动方向进行控制和调节的元件。 (4)辅助元件:除上述三项以外的、液压系统中所需的其它装置。如油箱、滤油器、油管、管接头等。作用:保证液压系统有效工作,寿命长。 第二章 液压泵和液压马达 要提高齿轮泵的压力需解决哪些关键问题通常都采用哪些措施 解答:(1)困油现象: 采取措施:在两端盖板上开卸荷槽。(2)径向不平衡力:采取措施:缩小压油口直径;增大扫膛处的径向间隙; 过渡区连通;支撑上采用滚针轴承或滑动轴承。(3)齿轮泵的泄漏: 采取措施:采用断面间隙自动补偿装置。 齿轮泵的模数 mm m 4=,齿数9=z ,齿宽mm B 18=,在额定压力下,转速min 2000r n =时,泵的 实际输出流量min 30L Q =,求泵的容积效率。 解答:()() 2 2630 0.876.6~7 6.69418200010v t q q q zm bn η-= ===????? YB63型叶片泵的最高压力MPa P 3.6max =,叶片宽度mm B 24=,叶片厚度mm 25.2=δ,叶片数 12=Z ,叶片倾角?=13θ,定子曲线长径mm R 49=,短径mm r 43=,泵的容积效率9.0=v η,机械效率 90.0=m η,泵轴转速min 960r n =,试求:(1) 叶片泵的实际流量是多少(2)叶片泵的输出功率是多少 解答: (1) ()()()()() 22 223 322cos 20.0490.04320.0490.0430.024120.0249600.9cos131.0210v R r q R r bz Bn m s πηφπ-??=--???? ?-?? =--?????????? =? (2) 633 6.310 1.0210 6.4210N pq -==???=?出 斜盘式轴向柱塞泵的斜盘倾角?=20β,柱塞直径mm d 22=,柱塞分布圆直径mm D 68=,柱塞数7=z ,机械效率90.0=m η,容积效率97.0=v η,泵转速min 1450r n =,泵输出压力MPa p 28=,试计算:(1)平

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

2004图论复习题答案

图论复习题答案 一、判断题,对打,错打 1.无向完全图是正则图。 () 2.零图是平凡图。() 3.连通图的补图是连通图.() 4.非连通图的补图是非连通图。() 5.若连通无向简单图G中无圈,则每条边都是割边。() 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。() 7.任何树都至少有2片树叶。() 8.任何无向图G都至少有一个生成树。() 9.非平凡树是二分图。() 10.所有树叶的级均相同的二元树是完全二元树。() 11.任何一个位置二元树的树叶都对应唯一一个前缀码。() 12. K是欧拉图也是哈密顿图。() 3,3 13.二分图的对偶图是欧拉图。() 14.平面图的对偶图是连通图。() 页脚内容1

15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。() 二、填空题 1.无向完全图K6有15条边。 2.有三个顶点的所有互不同构的简单无向图有4个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有10片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集有n-1个,基本圈有m-n+1个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要加k/2条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。 (2)求D的可达性矩阵。 (3)求D的强分图。 解:(1) a b c d e 图1 页脚内容2

页脚内容3 M=????????????????000101000000001 010*******M 2=?? ? ? ??????? ?????010******* 000101000001000 M 3=????????????????10000 01000010000001010000M 4=??? ???? ? ??? ?????00010 01000 100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4=????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??????????? ?? ???010000001000010 1000001000 +??? ???? ? ??? ?? ???100000100001000 0001010000 + ????????????????00010 01000100000100000010 =??? ???? ???? ?? ???21020 1301011111 020******* D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4)=??? ???? ? ????? ???110101********* 1101011011 b c d e 图1

图论 张先迪 李正良 课后习题答案

习题一 作者---寒江独钓 1.证明:在n 阶连通图中 (1) 至少有n-1条边; (2) 如果边数大于n-1,则至少有一条闭迹; (3) 如果恰有n-1条边,则至少有一个奇度点。 证明: (1) 若G 中没有1度顶点,由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 若G 中有1度顶点u ,对G 的顶点数作数学归纳。 当n=2时,结论显然;设结论对n=k 时成立。 当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k. (2) 考虑G 中途径: 121:n n W v v v v -→→→→L 若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。于是: 1i i j i v v v v +→→→→L 为G 中一闭途径,于是 也就存在闭迹。 (3) 若不然,G 中顶点度数至少为2,于是由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 这与G 中恰有n-1条边矛盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1 (3) 2n?2 。 证明 :u 1的两个邻接点与v 1的两个邻接点状况不同。所以, 两图不同构。 4.证明下面两图同构。 u 1 v 1

证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。 (a) v 2 v 3 u 4 u (b)

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

课后习题及答案

1 文件系统阶段的数据管理有些什么缺陷试举例说明。 文件系统有三个缺陷: (1)数据冗余性(redundancy)。由于文件之间缺乏联系,造成每个应用程序都有对应的文件,有可能同样的数据在多个文件中重复存储。 (2)数据不一致性(inconsistency)。这往往是由数据冗余造成的,在进行更新操作时,稍不谨慎,就可能使同样的数据在不同的文件中不一样。 (3)数据联系弱(poor data relationship)。这是由文件之间相互独立,缺乏联系造成的。 2 计算机系统安全性 (1)为计算机系统建立和采取的各种安全保护措施,以保护计算机系统中的硬件、软件及数据; (2)防止其因偶然或恶意的原因使系统遭到破坏,数据遭到更改或泄露等。 3. 自主存取控制缺点 (1)可能存在数据的“无意泄露” (2)原因:这种机制仅仅通过对数据的存取权限来进行安全控制,而数据本身并无安全性标记 (3)解决:对系统控制下的所有主客体实施强制存取控制策略 4. 数据字典的内容和作用是什么 数据项、数据结构 数据流数据存储和加工过程。 5. 一条完整性规则可以用一个五元组(D,O,A,C,P)来形式化地表示。 对于“学号不能为空”的这条完整性约束用五元组描述 D:代表约束作用的数据对象为SNO属性; O(operation):当用户插入或修改数据时需要检查该完整性规则; A(assertion):SNO不能为空; C(condition):A可作用于所有记录的SNO属性; P(procdure):拒绝执行用户请求。 6.数据库管理系统(DBMS)

:①即数据库管理系统(Database Management System),是位于用户与操作系统之间的 一层数据管理软件,②为用户或应用程序提供访问DB的方法,包括DB的建立、查询、更 新及各种数据控制。 DBMS总是基于某种数据模型,可以分为层次型、网状型、关系型、面 向对象型DBMS。 7.关系模型:①用二维表格结构表示实体集,②外键表示实体间联系的数据模型称为关系模 型。 8.联接查询:①查询时先对表进行笛卡尔积操作,②然后再做等值联接、选择、投影等操作。 联接查询的效率比嵌套查询低。 9. 数据库设计:①数据库设计是指对于一个给定的应用环境,②提供一个确定最优数据模 型与处理模式的逻辑设计,以及一个确定数据库存储结构与存取方法的物理设计,建立起 既能反映现实世界信息和信息联系,满足用户数据要求和加工要求,又能被某个数据库管 理系统所接受,同时能实现系统目标,并有效存取数据的数据库。 10.事务的特征有哪些 事务概念 原子性一致性隔离性持续性 11.已知3个域: D1=商品集合=电脑,打印机 D3=生产厂=联想,惠普 求D1,D2,D3的卡尔积为: 12.数据库的恢复技术有哪些 数据转储和和登录日志文件是数据库恢复的

图论1-3藏习题解答

学号:0441 姓名:张倩 习题1 4.证明图1-28中的两图是同构的 证明:将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

m=2:m=3:

m=4:m=5:m=6:

因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 ()1 1 123121,1,,1,,,=d d n d d d d d π++---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v1,v2,…,vn },对于G 中的路v1v2…vk,若vk 与v1邻接,则构成一个圈。若vi1vi2…vin 是一条路,由于 2,因此,对vin ,存在点vik 与之邻接,则vik vinvik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 18.证明:若()e E G ∈,则()()()1G G e G ωωω≤-≤+. 证明:若e 为G 的割边,则()()1G e G ωω-=+,若e 为G 的非割边,则 ()()G e G ωω-=,所以,若()e E G ∈,则有()()()1G G e G ωωω≤-≤+. 习题2 1.证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,

图论习题

习题八 8.1 设V={u,v,w,x,y}, 画出图G: (V ,E). (1) E={(u,v),(u,x),(v,w),(v,y),(x,y)} (2) E={(u,v),(v,w),(w,x),(w,y),(x,y)} 再求每个结点的次数。 8.2 设G 是具有4个结点的完全图: (1) 写出G 的所有子图; (2) 写出G 的所有生成子图。 8.3 画出一个多重图,使它们的邻接矩阵为 1300301101220 120?? ? ? ? ??? . 8.4 对于图1,试求 (1) 从a 到h 的所有基本通路; (2) 从a 到h 的所有简单通路; (3) 从a 到h 的距离。 h e d 图1 8.5 图2中哪个有欧拉通路、有欧拉回路、有汉密尔顿通路、有汉密尔顿回路? b c e 图2 8.6 图G 1,G 2的邻接矩阵分别为A 1,A 2,试求: (1) 2323 1122,,,A A A A ; (2) 在G 1内列出每两个结点间的距离; (3) 列出G 1,G 2中的所有基本回路。 100110000011 00101010001001A ?? ? ? ?= ? ? ?? ?, 20 0011000 0000110001000101010010010000 1000000100000A ?? ? ? ? ? = ? ? ? ? ??? 8.7 设有向图D 如下,试求: (1) 每个结点的入次与出次; (2) 它的邻接矩阵M D ; (3) D 是强连通、弱连通还是单向连通? (4) 求从a 到c 长度小于或等于3的通路数。

8.8 D 是具有结点v 1、v 2、v 3、v 4的有向图,它的邻接矩阵表示如下: 0111011011011 00 0?? ? ? ? ??? (1) 画出这个图; (2) D 是强连通还是单向连通? (3) 求从v 1到v 1长度是3的回路,从v 1到v 2、v 1到v 3、v 1到v 4长度是3的通路数。 习题九 9.4 设有代数表示式如下:4 2 (35)(2) x y a b c -+,试画出这个表示式的树. 第四篇 1. 在图G=(V,E)中,结点次数与边数的关系是下面4个中的哪一个? (1) deg()2||i v E = (2) deg()||i v E = (3) deg()2||v V v E ∈=∑ (4) deg()||v V v E ∈=∑ 2. 设G 是n 个结点的无向完全图,则图G 的边数是多少?设D 是n 个结点的有向完全图,则图D 的边数又是多少? 3. 仅有一个结点是图称为什么图? 4. 设G=(V ,E)为无向简单图,|V|=n ,?(G)为G 中结点的最大次数,请指出下面4个中哪个不等式是正确的。 (1) ?(G)n (4) ?(G )≥n. 5. 图G 与G ’的结点和边分别存在一一对应关系是G 与G ’同构的充分必要条件吗?说明之。 (1)充分条件 (2)必要条件 (3)充要条件 (4)非充分也非必要条件 6. 设V={a ,b ,c ,d }, 则与V 能构成强连通图的边集合是下面4个中哪一个? (1) E ={(a ,d ),(b ,a ),(b ,d ),(c ,b ),(d ,c )}; (2) E ={(a ,d ),(b ,a ),(b ,c ),(b ,b ),(d ,c )}; (3) E ={(a ,c ),(b ,a ),(b ,c ),(d ,a ),(d ,c )}; (4) E ={(a ,d ),(b ,c ),(a ,d ),(b ,d ),(c ,d )}; 7.设图G=和G ’=, 若_______,则G ’是G 的真子图,若_________,则G ’是G 的生成子图。 8. 在无向图中,结点间的连通关系具有_______性, _______性,______ 性,是_____关系。 9. 图的通路中边的数目称为___,结点不重复的通路是___通路,边不重复的通路是___通路。 10.设G 是一个无向图,V={v 1,…,v 8 }, E ={(v 1,v 2),(v 2,v 3), (v 3,v 1) , (v 1,v 5), (v 5,v 4), (v3,v4), (v 1,v 8)}. (1) 出G 的图解; (2) 图是否有孤立结点? (3) 出各结点的次数。 11. 有21条边的无向图中有多少个结点?其中3个结点次数为4,其余均为3. 12. 给定图G=(V ,E ),如图

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。证明这n 个人中必有3个人互相认识。 注:[n /2]表示不超过n /2的最大整数。 证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。由条件可知,G 是具有n 个顶点的简单图,并且有 (1)对每个顶点x , )(x N G ≥[n /2]; (2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有 两个顶点相邻。 需要证明G 中有三个顶点两两相邻。 反证,若G 中不存在三个两两相邻的顶点。在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。 情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。故k ≠r+1,同理t ≠r+1。所以t=r,k=r 。记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。若x i0y j0?E ,则与x i0相邻的顶点只能是(N G (x 1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G (y 1)-{x j0})∪{w}。但与w 相邻的点至少是3,故N G (x 1)∪N G (y 1)中存在一个不同于x i0和y j0顶点z 与w 相邻,不妨设z ∈N G (x 1),则z ,w ,x i0两两相邻,矛盾。 题1:已知图的结点集V ={a ,b ,c ,d }以及图G 和图D 的边集合分别为: E (G )={(a ,a ), (a ,b ), (b ,c ), (a ,c )} E (D)={, , , , } 试作图G 和图D ,写出各结点的度数,回答图G 、图D 是简单图还是多重图? 解: a d a d b c b c 图G 图D 例2图

张清华图论课后题答案.

第1章 图论预备知识 1.1 解:(1) p={φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (2) p={,{a},{{b,c}},{a,{b,c}}} (3) p={,{}} (4) p={,{},{{}},{,{}}} (5)p={,{{a,b}},{{a,a,b}},{{a,b,a,b}},{{a,b},{a,a,b}},{{a,b},{a,b,a,b}},{{a,b},{a,a,b},{a,b,a,b}}} 1.2 解:(1) 真 (2) 假 (3)假 (4)假 1.3 解:(1) 不成立,A={1} B={1,2} C={2} (2) 不成立,A={1} B={1,2} C={1,3} 1.4 证明:设(x,y)∈(A ∩B)X(C ∩D) 说明x ∈A ∩B,y ∈C ∩D 由于 x ∈A,y ∈C 所以 (x,y) ∈A X C 由于x ∈B,y ∈D 所以 (x,y) ∈B X D 所以 (x,y) ∈(A X C )∩(B X D ) 反过来,如果(x,y )∈(A X C) ∩(B X D ) 由于 (x,y) ∈(A X C )所以 x ∈A,y ∈C 由于 (x,y) ∈(B X D )所以x ∈B,y ∈D 所以x ∈(A ∩B) y ∈(C ∩D) 所以 (x,y) ∈(A ∩B)X(C ∩D) 所以(A ∩B)X(C ∩D)= (A X C) ∩(B X D ) 1.5 解:Hasse 图 φφφφφφφφφ

极大元{9,24,10,7} 极小元{3,2,5,7} 最大元{24} 最小元{2} 1.6 解 (2)关系图为: (3)不存在最大元,最小元为{2} 1.7 解:(1)R={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>} (2)略 (3)I A ?R 故R 是自反的。 <1,2>∈R <2,3>R 但是<1,3> ?R 故不满足传递性 1.8 解:(1) 不成立 A={1} B={2} C={3} D={4} 则左式={<1,3>,<1,4>,<2,3>,<2,4>} 右式={<1,3>,<2,4>} (2) 不成立 A={1,3} B={1} C={2,4} D={2} 则左式={<3,4>} 右式={<1,4>,<3,2>,<3,4>} (3) 不成立 A={1} B={2} C={3} D={4} 则左式={<1,3>,<1,4>,<2,3>,<2,4>} 右式={<1,3>,<2,4>} (4) 成立 证明:设 ∈(A-B)X C ?x (A-B)∧ y C ?x A ∧x B ∧ y C A X C ∧ B X C (A X C)-(B XC) 故得 (A-B )X C=(A X C )-(B X C ) ∈∈∈∈∈∈?∈∈?∈

习题参考解答(图论部分)

习题十 1. 设G 是一个(n ,m)简单图。证明:,等号成立当且仅当G 是完全图。 证明:(1)先证结论: 因为G 是简单图,所以G 的结点度上限 max(d(v)) ≤ n-1, G 图的总点度上限为 max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。根据握手定理,G 图边的上限为 max(m) ≤ n(n-1)/2,所以。 (2) =〉G 是完全图 因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。所以,G 的每个结点的点度都为n-1,G 为完全图。 G 是完全图 =〉 因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数 。■ 2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。 证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。与题设m = n+1,矛盾。因此,G 中存在顶点u ,d (u )≥3。■ 3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5) 解:除序列(1)不是图序列外,其余的都是图序列。因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。 可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。最后,将奇数序列对应的点两两一组,添加连线即可。下面以(2)为例说明: (6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5} 每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)

组合数学与图论复习题与参考答案

组合数学与图论复习题及答案 1.Show that if n+1 integers are chosen form the set {1,2, …,2n},then there are always two which differ by at most 2. 从{1,2, …,2n}中选出n+1个数,在这n+1个数中,一定存在两个数,其中一个整数能整除另外一个整数。 任何一个数都可以写成2k*L,其中k是非负数,L是正奇数。现在从1到2n 之间只有n个奇数。由于有n+1个数都能表示成2k*L,而L的取值只有n中,所以有鸽子洞原理知道,至少有两个数的L是一样的,于是对应k小的那个就可以整除k大的另一个数。 2.Show that for any given 52 integers there are exist two of them whose sum, or else difference, is divisible 100. 设52个整数a 1,a 2 ,…,a 52 被100除的余数分别是r 1 ,r 2 ,…,r 52 ,而任意一 个数被100除余数为0,1,2,…,99,一共100个。他们可以分为51个类{0},{1,99},{2,98},…,{49,51},{50}。将这51个集合视为鸽笼,则将 r 1,r 2 ,…,r 52 放入51个笼子中,至少有两个属于同一个笼子,所以要么有ri=rj, 要么有ri+rj=100,也就是说ai-aj|100或者ai+aj|100。 3.从1,2,3,…,2n中任选n+1个数,证明在这n+1个数中至少有一对数互质。 鸽子洞原理,必有两个数相邻,相邻的两个数互质 4.Prove that Ramsey number R(p,q)≤R(p,q-1)+R(p-1,q). 令N=R(p,q-1)+R(p-1,q),从N个人中中随意选取一个a,F表示与a相识的人,S表示与a不相识的人。 在剩下的R(p,q-1)+R(p-1,q)-2+1个人中,由鸽子洞原理有,或者F中有R(p,q-1)人,或者S中有R(p-1,q)人。如果F中有R(p,q-1)人,则与a相识的人为p个;如果S中有R(p-1,q)人,则与a不相识的人有p个。所以有R(p,q)≤R(p,q-1)+R(p-1,q) 5.There are 10 people, either there are 3 each pair of whom are acquainted, or there are 4 each pair of whom are unacquainted。 从10人中随意选一个人p,F表示与p相识的人,S表示与p不相识的人若F中至少有4人,如果至少有4人不相识,则满足题设;如果有2人相识,则加上p有3人相识,也满足题设。 若F中至多有3人,则S中至少有6人,6人中至少有3人相识,或者不相识。如果相识则满足题设,如果不相识加上p不相识的人就有4个,也满足题设。6.In how many ways can six men and six ladies be seated at round table if the men and ladies to sit in alternate seats? 6个男的先进行圆排列,然后6个女的插入空位。 7.In how many ways can 15 people be seated at round table if B refuses to sit next to A? What if B only refuses to sit on A right?

1 《邓稼先》课后习题参考答案

1 《邓稼先》课后习题参考答案 思考探究 一、通读全文,把握文意,回答下列问题。 1.初读课文时,哪些句段最让你感动?反复细读后,再想想这些内容是否最 能体现全文所要表达的思想情感。 2.找出文中表现奥本海默与邓稼先两人不同个性、品质的词语及细节,思考 作者为什么要进行对比,通过对比得出了怎样的结论。 参考答案:1.作者饱含真情,于字里行间高度赞扬了邓稼先深沉的爱国主义精神和将个人生命奉献给祖国国防事业的崇高情怀。这样的句段很多,如:“对这一转变做出了巨大贡献的,有一位长期以来鲜为人知的科学家——邓稼先。”“一次井下突然有一个信号测不到了,大家十分焦虑,人们劝他回去,他只说了一句话:‘我不能走。’”…… 2.文中的奥本海默与邓稼先两人的个性、品质截然不同。奥本海默是 锋芒毕露,读研究生时就常打断别人的报告,即便到了中年,成了名人,有时还会这样。而邓稼先“是一个最不要引人注目的人物”“忠厚平实”“真诚坦白,从不骄人”“没有小心眼儿,一生喜欢‘纯’字所代表的品格”“最有中国农民的朴实气质”;“他没有私心,人们绝对相信他”,“文革”中能说服两派群众组织,能说服工宣队、军宣队。作者把奥本海默与邓稼先进行对比,鲜明地突出邓稼先的精神品质,自然而然地得出结论:“邓稼先是中国几千年传统文化孕育出来的有最高奉献精神的儿子”“邓稼先是中国共产党的理想党员”。 二、有感情地朗读课文第五部分,想一想:这部分开头引用《吊古战场文》, 有什么作用?结尾处又引用儿时学到的“‘五四’时代的一首歌”,表达了怎样的情感? 参考答案:课文第五部分开头引用《吊古战场文》,把读者引入中国历史的深处,让人从中国传统文化的角度去思考。结尾处引用自己儿时学到的“‘五四’时代的一首歌”,说明了邓稼先就是一个典型的中国男儿,他有着为祖国而献身的崇高的精神品质。

图论与组合数学期末复习题含答案

组合数学部分 第1章 排列与组合 例1: 1)、求小于10000的含1的正整数的个数; 2、)求小于10000的含0的正整数的个数; 解:1)、小于10000的不含1的正整数可看做4位数,但0000除外.故有9×9×9×9-1=6560个.含1的有:9999-6560=3439个 2)、“含0”和“含1”不可直接套用。0019含1但不含0。在组合的习题中有许多类似的隐含的规定,要特别留神。不含0的1位数有19个,2位数有29个,3位数有39个,4位数有49个 不含0小于10000的正整数有() ()73801919999954321=--=+++个含0小于10000的正整数9999-7380=2619个。 例2: 从[1,300]中取3个不同的数,使这3个数的和能被3整除,有多少种方案? 解:将[1,300]分成3类: A={i|i ≡1(mod 3)}={1,4,7,…,298}, B={i|i ≡2(mod 3)}={2,5,8,…,299}, C={i|i ≡0(mod 3)}={3,6,9,…,300}. 要满足条件,有四种解法: 1)、3个数同属于A; 2)、3个数同属于B ; 3)、3个数同属于C; 4)、A,B,C 各取一数;故共有3C(100,3)+1003=485100+1000000=1485100。 例3:(Cayley 定理:过n 个有标志顶点的数的数目等于2-n n ) 1)、写出右图所对应的序列; 2)、写出序列22314所对应的序列; 解: 1)、按照叶子节点从小到大的顺序依次去掉节点(包含与此叶子 节点相连接的线),而与这个去掉的叶子节点相邻的另外一个点值则记入序列。如上图所示,先去掉最小的叶子节点②,与其相邻的点为⑤,然后去掉叶子节点③,与其相邻的点为①,直到只剩下两个节点相邻为止,则最终序列为51155.。 2)、首先依据给定序列写出(序列长度+2)个递增序列,即1234567,再将给出序列按从小到大顺序依次排列并插入递增序列得到:7。我们再将给出序列22314写在第一行,插入后的递增序列写在第二行。如下图第一行所示: ??→????? ??--②⑤67112223344522314??→???? ? ??--②⑥11223344672314 ??→????? ??--③②11233447314??→???? ? ??--①③11344714

图论及其应用

图和子图 图 图 G = (V, E), 其中 V = {νv v v ,......,,21} V ---顶点集, ν---顶点数 E = {e e e 12,,......,ε} E ---边集, ε---边数 例。 左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。不过今后对两者将经常不加以区别。 称 边 ad 与顶点 a (及d) 相关联。也称 顶点 b(及 f) 与边 bf 相关联。 称顶点a 与e 相邻。称有公共端点的一些边彼此相邻,例如p 与af 。 环(loop ,selfloop ):如边 l 。 棱(link ):如边ae 。 重边:如边p 及边q 。 简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。 一条边的端点:它的两个顶点。 记号:νε()(),()().G V G G E G ==。 习题 1.1.1 若G 为简单图,则 εν≤?? ?? ?2 。 1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。 同构 在下图中, 图G 恒等于图H , 记为 G = H ? V (G)=V(H), E(G)=E(H)。 图G 同构于图F ? V(G)与V(F), E(G)与E(F)之间各存在一一对应关系,且这二对应关系保持关联关系。 记为 G ?F 。 注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。 d e f G = (V, E) y z w c G =(V , E ) w c y z H =(V ?, E ?) ?a ? c ? y ? e ?z ? F=(V ??, E ??)

课后题答案

第七章 一、填空 1.柯尔伯格经长期研究,发现儿童和成人道德判断的发展经历三个水平:A〃前习俗-水平,B、习俗水平,c。后习俗水平,大多数少年的道德评价处于习俗--水平。 2.克拉斯沃尔等人提出的价值内化经历了五个阶段。它们是A〃----注意-,B〃—反应-,C〃----评价--,D〃---组织--,E〃--价值性格化--。 3.心理学认为态度和品德都包括:A。----认知-- ,B.----情感-,C。--行为三个成分。 4.态度与品德的区别在于;A.--态度的范围大于品德—,B〃价值内化程度不同--。 5.社会心理学家凯尔曼提出的态度改变需要经历的三个阶段为:A。--顺从--,B.------认同----,C。---内化---- 。 6.态度的功能有:A。----价值表现--,B。-------调节--和C。---过滤----。7.社会学习理论是由----班杜拉---提出来的,适合解释------社会--行为。8.费斯廷格提出的四种认知失调情境是:A.----逻辑不一致---,B。-----与社会风气不一致--,C。------与一贯行为不一致---,D。--与过去经验不一致---。 二、概念与原理的解释和运用 1.某些教科书把态度和品德分别安排在两章教授。这两个概念可能的关系 是:A c.态度是 一种比品德更稳定的心理品质;D.品德是态度形成与改变的条件。 2.让寝室里的同学共同讨论制订出寝室守则,这种方法是:A.说服 用群体规定;C.价值观辨析;D.角色扮演。 3.在一个好的集体里,差生的不良言行很少有市场;在一个不好的集体里, 好学生也会附和不良言行。这一现象的适当解释是A. 众;c老师的威信;D.认知失调。 4.甲孩子因偷吃东西,打破一只碗;乙孩子因帮妈妈洗碗,打破15只碗。 童;B.小学儿童;C.中学生;D.无法确定。 5.假如家长想用看电视作为强化物奖励儿童认真按时完成家庭作业的行为,最适合的安排是:A.让儿童看完电视后立即督促他们完成作业;B.规定每周看 电视的适当时间;c. 看电视。 6.国外有座收费的桥。当局规定,凡乘一人的车收税,乘两人以上的车可免收税,于是人们纷纷多人乘一辆车过桥。根据强化原理,这种行为最适当的解

相关文档
最新文档