ansysworkbench热分析研究教程

ansysworkbench热分析研究教程
ansysworkbench热分析研究教程

6-1

A.几何模型

B.组件-实体接触

C.热载荷

D.求解选项

E.结果和后处理

F. 作业6.1

? 本节描述地应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural

? 提示:在ANSYS 热分析地培训中包含了包括热瞬态分析地高级分析

K T T= Q T –在稳态分析中不考虑瞬态影响

–[K]可以是一个常量或是温度地函数

–{Q}可以是一个常量或是温度地函数

? 固体内部地热流(Fourier’s Law)是[K]地基础;

? 热通量、热流率、以及对流在{Q}为边界条件;

?对流被处理成边界条件,虽然对流换热系数可能与温度相关?在模拟时,记住这些假设对热分析是很重要地.

–体、面、线

?线实体地截面和轴向在DesignModeler中定义

? 热分析里不可以使用点质量(PointMass)地特性?壳体和线体假设:

–壳体:没有厚度方向上地温度梯度

–线体:没有厚度变化,假设在截面上是一个常量温度? 但在线实体地轴向仍有温度变化

唯一需要地材料特性是导热性(ThermalConductivity)

?Thermal Conductivity在

Engineering Data中输入

?温度相关地导热性以表格形式输

若存在任何地温度相关地材料特性,就将导致非线性求解.

–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball地解释).

–总结:

–Pinball区域决定了什么时候发生接触,并且是自动定义地,同时还给了一个相对较小地值来适应模型里地小间距.

? 默认情况下,假设部件间是完美地热接触传导,意味着界面上不会发生温度实际情况下,有些条件削弱了完美地热接触传导:

T

T

x

? (T

q = TCC target

- T conta ct

– 式中T contact 是一个接触节点上地温度, T target 是对应目标节点上地温度

–默认情况下,基于模型中定义地最大材料导热性KXX 和整个几何边界框地对角线ASMDIAG ,TCC 被赋以一个相对较大地值.

TCC = KXX ?10,000/ ASMDIAG

– 这实质上为部件间提供了一个完美接触传导

? 在ANSYS Professional或更高版本,用户可以为纯罚函数和增广拉格朗日方程定义一个有限热接触传导(TCC).

–在细节窗口,为每个接触域指定TCC输入值

–如果已知接触热阻,那么它地相反数除以接触面积就可得到TCC值

–Spotweld在CAD软件中进行定义(目前只有DesignModeler和Unigraphics 可用).

T2 T1

热流量:

– 热流速可以施加在点、边或面上.它分布在多个选择域上. – 它地单位是能量比上时间(energy/time )

?完全绝热(热流量为0): ?热生成:

– 内部热生成只能施加在实体上

– 它地单位是能量比上时间在除以体积(energy/time/volume )

正地热载荷会增加系统地能量.

– 可以删除原来面上施加地边界条件 ? 热通量:

– 热通量只能施加在面上(二维情况时只能施加在边上) – 它地单位是能量比上时间在除以面积( e nergy/time/area )

温度、对流、辐射:

?完全绝热条件将忽略其它地热边界条件 ? 给定温度:

– 给点、边、面或体上指定一个温度 – 温度是需要求解地自由度

? 至少应存在一种类型地热边界条件,否则,如果热量将源源不断地输入到系统中,稳

态时地温度将会达到无穷大.

? 另外,给定地温度或对流载荷不能施加到已施加了某种热载荷或热边界条件地表面上 .

?对流:

– 只能施加在面上(二维分析时只能施加在边上) – 对流q 由导热膜系数 h ,面积A ,以及表面温度T surface 与环境温度T ambient 地差值

来定义. q = hA (T

surface - T

ambient

)

– “h ” 和 “T ambient ” 是用户指定地值

– 导热膜系数 h 可以是常量或是温度地函

?与温度相关地对流:

–为系数类型选择

Tabular(Temperature)

–输入对流换热系数-温度表格数据

–在细节窗口中,为h(T)指定温度地处理方式

?几种常见地对流系数可以从一个样本文件中导入.新地对流系数可以保存在文件中.

?辐射:

– 施加在面上(二维分析施加在边上)

(4 4

)

– 式中:

Q R = σεFAT surface

- T ambient

? σ=斯蒂芬一玻尔兹曼常数

? ε =放射率

? A =辐射面面积

? F = 形状系数(默认是1)

– 只针对环境辐射,不存在于面面之间(形状系数假设为1) – 斯蒂芬一玻尔兹曼常数自动以工作单位制系统确定

在projectschematic里建立一个SSThermalsystem

(SS热分析)

?在Mechanical 里,可以使用Analysis Settings为热

分析设置求解选项.

–注意,第四章地静态分析中地AnalysisDataManagement选项在这里也可以使用.

Ansys12.0 Mechanical教程-5热分析

Workbench -Mechanical Introduction 第六章 热分析

概念 Training Manual ?本章练习稳态热分析的模拟,包括: A.几何模型 B B.组件-实体接触 C.热载荷 D.求解选项 E E.结果和后处理 F.作业6.1 本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了?本节描述的应用一般都能在ANSYS DesignSpace Entra ANSYS Structural 提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析 ?ANSYS

Training Manual 稳态热传导基础 ?对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得: ()[]{}(){} T Q T T K =?假设: –在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数

稳态热传导基础 Training Manual ?上述方程基于傅里叶定律: ?固体内部的热流(Fourier’s Law)是[K]的基础; ?热通量、热流率、以及对流在{Q}为边界条件; ?对流被处理成边界条件,虽然对流换热系数可能与温度相关 ?在模拟时,记住这些假设对热分析是很重要的。

A. 几何模型 Training Manual ?热分析里所有实体类都被约束: –体、面、线 ?线实体的截面和轴向在DesignModeler中定义 ?热分析里不可以使用点质量(Point Mass)的特性 ?壳体和线体假设: –壳体:没有厚度方向上的温度梯度 –线体:没有厚度变化,假设在截面上是一个常量温度 ?但在线实体的轴向仍有温度变化

ansys中的热分析复习过程

a n s y s中的热分析

【转】热-结构耦合分析 知识掌握篇 2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发 生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如 热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳 态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法. 21.1.1 热分析基本知识

ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度 而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存 在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换 过程. 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统 的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变 化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率, 热边界条件以及系统内能随时间都有明显变化. ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度, 对流,辐射,绝热,生热. 热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示. 表21.1 热分析单元列表

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

热分析边界条件的施加

热分析边界条件的施加 稳态热分析可以直接在实体模型或单元模型上施加5种载荷(边界条件)。 1)恒定温度(TEMP) 恒定温度作为自由度约束施加在温度已知的边界上。 命令:D。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Temperature。 2)热流率(HEAT) 热流率作为节点集中载荷,主要用于线单元模型中,(通常,在线单元模型上不能施加对流或热流密度载荷);如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS将仅考虑温度。 命令:F。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flow。 3)对流(CONV) 对流边界条件作为面载荷施加于实体的外表面,它仅可施加于实体单元和壳单元模型上,对于线模型,可以通过对流线单元LINK34施加对流载荷。 命令:SF。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Convection。 4)热流密度(HFLUX) 热流密度也是一种面载荷。如果通过单位面积的热流率已知,或能通过计算得到时,可以在模型相应的外表面施加热流密度载荷。输入的值为正时,代表热流流入单元。热流密度也仅适用于实体单元和壳单元。热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算。 命令:SF。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flux。

航空发动机主轴承热分析边界条件处理方法

航空发动机主轴承热分析边界条件处理方法 苏 壮,李国权 (中航工业沈阳发动机设计研究所航空发动机动力传输航空科技重点实验室,沈阳110015) 航空发动机 Aeroengine 摘要:为了提高航空发动机主推力球轴承热分析的计算精度,对轴承的摩擦发热和对流换热边界条件进行了分类及研究。应用ANSYS 有限元分析软件,采用将摩擦热按体积生热率处理和将摩擦热按热流密度处理的2种不同方式,对边界条件进行了加载,分别对试验器状态的发动机主轴承进行了热分析计算,并与试验测量结果进行了对比。计算结果表明:采用表面效应单元加载热流密度的方式得到的轴承温度分布更理想,内部热点温度更集中,热点温度比按体积生热率加载的高。2种边界条件处理方法均已应用到航空发动机润滑系统热分析中,提高了航空发动机润滑系统热分析的准确性。 关键词:主轴承;热分析;边界条件;摩擦发热;对流换热;航空发动机中图分类号:V233.4 文献标识码:A doi :10.13477/https://www.360docs.net/doc/443082803.html,ki.aeroengine.2015.03.014 Boundary Condition Processing Method of Aeroengine Main Bearing Thermoanalysis SU Zhuang ,LI Guo-quan (Key Laboratory of Power Transmission Technology for Aeroengine ,AVIC Shenyang Engine Design and Research Institute ,Shenyang 110015,China ) Abstract:In order to improve the thermoanalysis calculation accuracy of the aeroengine main thrust ball bearing,the friction heat and convection heat transfer boundary condition of the aeroengine main bearing were classified and researched.By using ANSYS,two different methods were applied in managing the frictional heat with volumetric heat generation rate and with the heat flux ,those two boundary conditions were loaded onto the main bearing.The results of calculation indicate that the bearing tem-perature distribution which obtained by loading heat flux on the surface effect element is better,the internal hot spots of temperature is more concentrate,and the temperature of internal hot spots is higher than that with loading heat generation on volume.Two methods were applied in the thermoanalysis of the aeroengine lubrication system,and the thermoanalysis accuracy of the aeroengine lubrication system was increased. Key words:main bearing ;thermoanalysis ;boundary condition ;frictional heat ;convection heat transfer ;aeroengine 收稿日期:2014-04-06基金项目:航空动力基础研究项目资助 作者简介:苏壮(1975),男,高级工程师,主要从事航空发动机润滑系统设计工作;E-mail :happysm427@https://www.360docs.net/doc/443082803.html, 。引用格式: 第41卷第3期Vol.41No.3Jun.2015 0引言 滑油系统是航空发动机的重要组成部分[1],而热分析是航空发动机滑油系统设计的基础[2]。通过滑油系统热分析计算,可以初步确定发动机滑油系统在整个飞行包线内滑油的温度水平、主轴承的工作温度及轴承腔温度场,并最终确定系统循环量、系统冷却方案及轴承腔的冷却隔热措施[3]。 对航空发动机主轴承的热分析是滑油系统热分析中的重要环节,轴承腔内由轴承旋转产生的摩擦热以及密封装置的摩擦热是主要的生热热源[4], 航空发动机主轴承是滑油系统进行冷却和润滑的关键部件,由于主轴承自身的发热量较高,其 换热边界条件的准确确定和加载决定了主轴承热分析的精度。准确计算主轴承的工作温度对提高滑油系统热分析精度具有重要的理论意义和工程价值。 本文对航空发动机主轴承的边界条件进行了分类及研究。 1航空发动机主轴承热分析概述 航空发动机主轴承热分析主要包括以下几个方面: (1)轴承内部生热的计算。轴承内部的生热主要由摩擦热引起,需要计算由摩擦力矩引起的摩擦热的大小。

热分析实验

材料的综合热分析实验 一、实验目的 1、掌握两种常用的热分析方法─差热分析法和热重法的基本原理和分析方法, 2、差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析和热重法的基本原理 1、差热分析法(Differential Thermal Analysis,DTA) 差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。 样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差?T=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差?T<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差?T>0。上述温差?T(称为DTA信号)经检测和放大以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差?T=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差?T≠0,差热电偶的电势信号经放大和A/D转换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。 差热曲线直接提供的信息主要有峰的位置、峰的形状和个数、峰的面积,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与焓变有关。

基于ANSYSWORKBENCH的摩擦生热分析

本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。 【问题描述】 在一个定块上,有一个滑块。在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。 定块的尺寸:宽5mm,高1.25mm,厚1mm 滑块的尺寸:宽1.25mm,高1.5mm,厚1mm 材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K) (注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381. 【问题分析】 关键技术分析: 此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。这就是说,只能用一个耦合单元来计算摩擦生热问题。 解决该问题的基本思路如下: (1) 使用瞬态结构动力学分析系统 (2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。 (3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。 (4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。

(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。需要自定义结果,提取温度。 (6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。 (7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。 (8)在DM中创建两个草图,然后根据草图得到面物体。再对这两个面物体进行平面 应力的分析。 (9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。 【求解过程】 1.进入ANSYS WORKBENCH14.5 2. 创建瞬态结构分析系统 3.设置材料属性。 双击engineering data,加入新材料,命名为al,设置属性如下。

ANSYS热分析-表面效应单元

ANSYS热分析指南(第五章) 第五章表面效应单元 5.1简介 表面效应单元类似一层皮肤,覆盖在实体单元的表面。它利用实体表面的节点形成单元。因此,表面效应单元不增加节点数量(孤立节点除外),只增加单元数量。 ANSYS 5.7中热分析专用表面效应单元为SURF151(2-D)以及SRUF152(3-D)。有关单元的详细描述请参阅《ANSYS Element Reference》。 5.2表面效应单元在热分析中的应用 利用表面效应单元可更加灵活地定义表面热载荷: 当热流密度和热对流边界条件同时施加于同一表面时,必须将其中一个施加于实体单元表面,另一个施加在表面效应单元。建议将热对流边界施加于表面效应单元。 可将热对流边界条件中的流体温度施加于孤立节点上,将对流系数施加于表面单元,这样,可更灵活地控制对流载荷。 当对流系数随温度变化时,表面效应单元可提供设置计算对流系数的选项。 表面效应单元还可以用于模拟点与面的辐射传热。 5.3表面效应单元的有关热分析设置选项 SURF151是单元可用于多种载荷和表面效应的应用。可以覆盖在任何二维热实体单元的表面(除轴对称谐波单元PLANE75和PLANE78外)。该单元可用于二维热分析,多种载荷和表面效应可以同时存在。SURF151单元有2到4个节点,如考虑对流传热和辐射的影响需要定义一个外部节点。传热量和热对流量以表面载荷的形式施加在单元上。详细单元说明请参见《ANSYS Theory Reference》。 SURF152是三维热表面效应单元,可用于多种载荷和表面效应的应用。它可以覆盖在任何三维热单元的表面,该单元可用于三维热分析。该单元中多种载荷和表面效应可以同时存在。详细单元说明请参见《ANSYS Theory Reference》。 选定单元: 命令:ET

DSC TG综合热分析实验(可打印修改)

华南师范大学实验报告 专业:材料化学年级:2008级 课程名字:近代材料分析测试技术实验项目:综合热分析实验 实验类型:验证实验时间:2011年5月6日指导老师:石光老师实验评分: 实验六:综合热分析实验 一、实验目的 1.了解综合热分析仪的原理及仪器装置、操作方法。 2.通过实验掌握热重分析的实验技术。 3.使用综合分析仪分析高聚物的热效应和热稳定性。 二、实验原理 在程序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器。刚开始加热时,试样和参比物以相同温度升温,试样没有热效应,DSC曲线上为平直的基线。当温度上升到试样产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,于是DSC曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)。若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时DSC曲线上表现为放热峰。再进一步加热,晶体开始熔融而需要吸收热量,其DSC 曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能再使试样温度升高,直到等于参比物的温度,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据DSC曲线可以确定高聚物的转变和特征温度。 三.仪器和试剂 交联壳聚糖微球、吸附了重金属的交联壳聚糖微球,聚丙烯,高密度聚乙烯,a-Al2O3、STA409PC综合热分析仪。 四、实验步骤 (一)操作条件

1、实验室门应轻开轻关,尽量避免或减少人员走动。 2、计算机在仪器测试时,不能上网或运行系统资源占用较大的程序。 3、充入保护气体。 4、吹扫气体。 5、恒温水浴保证测量天平工作在一个恒定的温度下。 (二)试样准备 1、检查并保证测试试样及其分解物。 2、坩埚(包括参比坩埚)预先进行热处理到等于或高于其最高测量温度。 3、保证与测量坩埚底部接触良好,样品应适量,确保测量精度。 4、对于热反应剧烈或在反应过程中易产生气泡的样品,应适当减少样品量。 5、炉子内部温度必须保持恒定(室温),天平稳定后的读数才有效。 6、测试必须保证样品温度(达到室温)及天平均稳定后才能开始。 7、先将试样制成细粉状并通过80~100目的筛孔,称取聚丙烯和低压聚乙烯的混合物 (重量比3:1混合)10mg装入试样坩埚、隋性参比物a-Al2O3填充于另一坩埚中,样品量一般不超过坩埚容积的2/3,把装样的坩埚在清洁的石台上轻墩数次,使样品松紧适中。 (三)开机 (1)开机过程无先后顺序。恒温水浴及其他仪器应至少提前1h打开。 (2)开机后,首先调整保护气体及吹扫气体输出压力及流速并待其稳定。 (四)样品测试程序 以使用TG-DSC样品支架进行测试为例,升温速度除特殊要求外,一般为 10~30K/min。 (五)测试结果分析 1)仪器测试结束后打开Tools菜单,从下拉菜单中选择Run analysis program 选项,进入软件界面。 2)在分析软件界面中点击工具栏中的Segments按钮,打开Segments对话框, 去掉Segments对话框中的“1”、“2”复选项,点击OK按钮关闭对话框。 3)点击工具栏上的“X-time/X-temperature”转换开关,使横坐标由时间转换 成温度。 4)点击待分析曲线使之选中,然后点击工具栏上的“1st Derivative”一次微 分按钮,屏幕上出现一条待分析曲线的一次微分曲线。 5)完成全部分析内容后,即可打印输出,测试分析操作结束。 五、影响综合热分析的因素 1、升温速率

实验十九差热分析

实验十九 差热分析 一、目的意义 差热分析(DTA ,differentialthermal analysis)是研究相平衡与相变的动态方法中的 一种,利用差热曲线的数据,工艺上可以确定材料的烧成制度及玻璃的转变与受控结晶等工 艺参数,还可以对矿物进行定性、定量分析。 本实验的目的: 1.了解差热分析的基本原理及仪器装置; 2.学习使用差热分析方祛鉴定未知矿物。 二、基本原理 差热分析的基本原理是:在程序控制温度下;将试样与参比物质在相同条件下加热或 冷却,测量试样与参比物之间的温差与温度的关系,从而给出材料结构变化的相关信息。 物质在加热过程中,由于脱水,分解或相变等物理化学变化,经常会产生吸热或放热 效应。差热分析就是通过精确测定物质加热(或冷却)过程中伴随物理化学变化的同时产生 热效应的大小以及产生热效应时所对应的温度,来达到对物质进行定性和/或定量分析的目 的。 差热分析是把试样与参比物质(参比物质在整个实验温度范围内不应该有任何热效应, 其导热系数,比热等物理参数尽可能与试样相同,亦称惰性物质或标准物质或中性物质) 置于差热电偶的热端所对应的两个样品座内,在同一温度场中加热。当试样加热过程中产生 吸热或放热效应时,试样的温度就会低于或高于参比物质的温度,差热电偶的冷端就会输出 相应的差热电势。如果试样加热过程这中无热效应产生,则差热电势为零。通过检流计偏转 与否来检测差热电势的正负,就可推知是吸热或放热效应。在与参比物质对应的热电偶的冷 端连接上温度指示装置,就可检测出物质发生物理化学变化时所对应的温度. 不同的物质,产生热效应的温度范围不同,差热曲线的形状亦不相同(如图16-2所示)。 把试样的差热曲线与相同实验条件下的已知物质的差热曲线作比较,就可以定性地确定试洋 的矿物组成。差热曲线的峰(谷)面积的大小与热效应的大小相对应,根据热效应的大小, 可对试样作定量估计。 三.仪器设备与装置 差热分析所用的设备主要由加热炉, 差热电偶,样品座及差热信号和温度的显 示仪表等所组成。 加热炉依据测量的温度范围不同有低 温型(800-1000C 0以下),中温型1200C 0以下),高温型(1400-1600C 0以下). 差热电偶是把材质相同的两个热电偶 的相同极连接在一起,另外两个极作为差 热电偶的输出极输出差热电势。差热分析 装置示意图如16-1所示。 差热分析仪是将差热分析装置中的 样品室,温度显示,差热信号采集及记录 全部自动化的一种分析仪器。依据组合方 式不同,有DTA-TG 型DAT-DSC(differen- 图17-1 差热分析装置示意图 tial scan ningcalorimetry)型,有的综 图16-1 V-电压表A-电流表 R1,R2-检流计

ANSYS热分析详解解析

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

实验一 综合热分析实验

实验一综合热分析实验 一、目的要求 1.了解综合热分析仪的基本构造、原理及方法。 2.了解实验条件的选择。 3.掌握热分析样品的制样方法。 4.掌握对样品的热分析图谱进行相关分析和计算。 二、综合热分析仪的结构、原理及性能 综合热分析仪是在程序控制温度下同步测定物质的重量变化、温度变化和热效应的装置。一般地,综合热分析仪主要由程序控制系统、测量系统、显示系统、气氛控制系统、操作控制和数据处理系统等部分组成。 1.TG的结构、原理及性能 热重法(TG)是在程序控制温度下,测量物质的质量与温度关系的一种热分析技术。热重法记录的是热重曲线(TG曲线),它以质量作为纵坐标,以温度或时间为横坐标,即m—T曲线。 热重法通常有下列两种类型:等温热重法:在恒温下测定物质质量变化与时间的关系;非等温热重法:在程序升温下测定物质质量变化与温度的关系。 热重法所用仪器称为热重分析仪或热天平,其基本构造是由精密天平和程序控温的加热炉组成,热天平是根据天平梁的倾斜与重量变化的关系进行测定的,通常测定重量变化的方法有变位法和零位法两种。①变位法是利用物质的质量变化与天平梁的倾斜成正比的关系,用差动变压器直接控制检测。②零位法是靠电磁作用力使因质量变化而倾斜的的天平梁恢复到原来的平衡位置,施加的电磁力与质量变化成正比,而电磁力的大小与方向是通过调节转换结构中线圈中的电流实现的,因此检测此电流即可知质量变化。天平梁倾斜由光电元件检出,经电子放大后反馈到安装在天平衡量上的感应线圈,使天平梁又回到原点。 SDTQ600综合热分析仪采用水平双杆双天平的结构设计。一臂作为水平天平零位平衡测量,另一臂作为高灵敏度DTA的热电偶。同时,一臂用来装填试样,测量质量变化,给出的重量信号为样品臂和参比臂的重量信号差;另一臂作参比,用来测量DTA和修正TG。水平双天平结构设计能够同时检测TG质量变化及DTA 差热变化,也会自动扣除天平的热膨胀和浮力效应。双臂天平结果漂移更小,基

热分析实验

热分析实验(演示试验) 一、实验目的和意义 1、了解差热分析的仪器装置及使用方法。 2、掌握差热分析的基本原理和具体步骤。 二、实验原理 (一)差热分析的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT 试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,化合或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 在进行差热分析时,将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 三、实验方法和步骤 (一)试样制备 1、试样过筛满足DTA分析细度要求。 2、将试样放置到DTA测试仪器的样品台。 (二)差热分析仪试验 1、首先请开启外部冷却水,开启DTA电源和配套电脑,设备预热20~30分钟。 2、开启DTA的测试软件,在相应的栏目中设定扫描温度范围、扫描速度、测试样品等各项参数。 3、启动DTA开始测试,得到DTA测试图谱。 (三)注意事项 1、做实验时,放完样品后,炉子一定要向下放好,如没有放下炉子,在实验时会把加热炉烧坏。 2、做实验前先打开电源。 3、通冷却水,保证水畅通。 4、参比物放在支撑杆左侧,测试物放在右侧。 5、每次升温,炉子应冷却到室温左右。 6、开始做实验时,放下炉子后应稳定5分钟左右开始进行数据采集(保证炉膛温度均匀)。 7、升温过程中如果出现异常情况,应先关闭仪器电源。 8、实验结束后应继续通冷却水30分钟左右。 四、主要实验装置和仪器 差热分析仪、电子天平等 五、实验数据记录与处理 (一)DTA试样制备要求

热分析实验指导

实验六 热分析实验 一、目的与要求 1.了解热重分析的仪器装置及实验技术。 2.了解差热分析的仪器装置及实验技术。 3熟悉综合热分析的特点,掌握综合热曲线的分析方法。 4.测绘矿物的热重曲线和差热分析曲线,解释曲线变化的原因。 二、原理 1 热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。如图1所示:加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由天平记录。 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG 曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A (固)→B (固)+C (气)的典型热重曲线如图2所示。 图2 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 图1 热重分析仪原理

热重曲线上质量基本不变的部分称为基线或平台,如图2中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图3,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。 图3 CaC 2O 4·H 2O 的热重曲线 2、综合热分析 DTA 、DSC 、TG 等各种单功能的热分析仪若相互组装在一起,就可以变成多功能的综合热分析仪,如DTA -TG 、DSC -TG 、DTA -TMA (热机械分析)、DTA -TG -DTG (微商热重分析)组合在一起。综合热分析仪的优点是在完全相同的实验条件下,即在同一次实验中可以获得多种信息,比如进行DTA -TG -DTG 综合热分析可以一次同时获得差热曲线、热重曲线和微商热重曲线。根据在相同的实验条件下得到的关于试样热变化的多种信息,就可以比较顺利地得出符合实际的判断。 综合热分析的实验方法与DTA 、DSC 、TG 的实验方法基本类同,在样品测试前选择好测量方式和相应量程,调整好记录零点,就可在给定的升温速度下测定样品,得出综合热曲线。 综合热曲线实际上是各单功能热曲线测绘在同一张记录纸上,因此,各单功能标准热曲线可以作为综合热曲线中各个曲线的标准。利用综合热曲线进行矿物鉴定或解释峰谷产生的

ansys中的热分析

知识掌握篇 2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发 生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如 热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳 态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度 而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存 在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换 过程. 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统 的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变 化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率, 热边界条件以及系统内能随时间都有明显变化. ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度, 对流,辐射,绝热,生热. 热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表 所示. 表热分析单元列表 单元类型名称说明 线性 LINK32 LINK33 LINK34 LINK31 两维二节点热传导单元 三维二节点热传导单元 二节点热对流单元 二节点热辐射单元 二维实体

热分析实验方案

一、实验目的 1.了解热分析法的种类、仪器装置及使用方法。 2.掌握几种热分析法的基本原理、测试技术及影响测量准确性的因素。 3.掌握热分析法在聚合物结晶中的分析原理,并能对实验结果做出解释。 二、方法简介: 1. 热重分析法 热重分析法( TG )是在程序温度控制下,测量物质的质量随温度变化的一种实验技术。一般有静态法和动态法两种类型:静态法是在恒温下测定物质质量变化与温度的关系,将试样在各给定温度加热至恒重,该法用来研究固相物质热分解的反应速率和测定反应速度常数。动态法是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。 由热重分析记录的质量变化对温度的关系曲线称为热重曲线( TG 曲线)。 曲线横坐标为温度,纵坐标为质量,如热分解反应 A(s) → B(s)+ C(g) 的热重 曲线如图 1 所示。图中 T i 为起始温度,即累积质量变化达到热天平可检测的温度;

Tf 为终止温度,即累积质量变化达到最大值时的温度;热重曲线上质量基本不变的部分称为基线或平台。若试样初始质量为 W0 ,失重后试样质量为 W1 ,测失重百分数为 2.差示扫描量热法(DSC) DSC的技术方法是按照程序改变温度,使试样与标样之间的温度差为零。测量两者单位时间的热能输入差。就是说,使物转移过程中的温度和热量能够加以定量物质在加热过程中会在某温度下发生分解、脱水、氧化、还原和升华等一系 列的物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随物 质的结构和组成而异,因此可以利用物质的热重曲线来研究物质的热变化过程,推测反应机理及产物。 将实验以一定的升温速度加热至熔点以上,恒温一定时间,以充分消除试样的热历史,然后,迅速降温至测试温度进行等温结晶。由于结晶时放出结晶潜热,所以出现一个放热峰,见图。基线开始向放热方向偏离时,作为开始结晶的时间(t0),重新回到基线时,作为结晶结束的时间(t=t∞),则t时刻的结晶程度为 式中 xt、x∞是结晶时间为t及无限大时非晶态转变为晶态的分数;At、A∞为0~t时间及0~∞时间DSC曲线所包含的面积。

实验七 热重分析及综合热分析

实验七热重分析及综合热分析 一、实验目的与任务 1. 了解热重分析的仪器装置及实验技术。 2. 熟悉综合热分析的特点,掌握综合热曲线的分析方法。 3. 测绘矿物的热重曲线和综合热曲线,解释曲线变化的原因。 二、热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。图16示出了上海天平仪器厂生产的PRT-1型普通热天平结构原理图;加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由人工开启天平并记录。自动化程度高的热天平由磁心和差动变压器组成的位移传感器检测和输出试样质量变化引起天平失衡的信号,经放大后由记录仪记录。 图16 PRT-1型热天平结构原理图 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A(固)→B(固)+C(气)的典型热重曲线如图17所示。

图17 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 热重曲线上质量基本不变的部分称为基线或平台,如图17中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图18,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。

相关文档
最新文档