旋风除尘器课程设计说明书

旋风除尘器课程设计说明书
旋风除尘器课程设计说明书

环境工程专业

课程设计说明书题目:(SZL4-13锅炉除尘系统设计)

姓名:

班级:

学号:

指导教师:

课程名称:大气污染控制

设计时间:

目录

任务书 (3)

摘要 (5)

除尘系统计算 (6)

一、烟气量、烟尘和二氧化硫浓度计算 (6)

二、除尘器选型 (7)

三、除尘器设计计算 (7)

四、烟囱设计 (8)

五、系统阻力计算 (10)

六、风机的计算与选用 (11)

七、系统中烟气温度的变化 (12)

结论 (12)

参考文献 (12)

颗粒污染物控制课程设计任务书

适用专业 环境工程

一、课程设计题目

某燃煤采暖锅炉房烟气除尘系统的设计

二、课程设计的目的

通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD 绘制工程图、使用技术资料、编写 设计说明书的能力。

三、设计原始资料

锅炉型号:SZL4—13型,共4台(2.8MW ?4) 设计耗煤量:380Kg/h /台 排烟温度:160℃

烟气密度(标准状态下):1.34 kg /m 3

空气过剩系数:α=1.4

排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa 冬季室外温度:-20℃

空气中含水(排标准状态下)10g/kg 烟气其它性质按近似空气计算 煤的工业分析值:

Y

C =68% Y

H =4% Y S =1% Y

O =5%

Y N =1% Y W =6% Y A =15% Y

V =13%

按锅炉大气污染物排放标准(GB13271—2001)中二类一时段标准执行。

四、计划安排

1、资料查询0.5天

2、及设计计算(4.5天)

3、说明书编制及绘图(5天)

五、设计内容和要求

1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算

2、净化系统设计方案的分析确定

3、除尘器的选择和比较

确定除尘器的类型、型号及规格,并确定其主要运行参数。

4、管布置及计算:确定各装置的位置及管道布置

并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力

5、风机及电机的选择设计

根据净化系统所处理烟气量、烟气温度、系统阻力等计算选择风机种类、型号及电动机的种类和功率。

六、成果

1、设计说明书

设计说明书按设计程序编写,包括方案的确定、设计计算、设备选择和有关设计的简图(工艺管网简图和设备外形图)等内容。课程设计说明书应有封面、目录、前言、正文、小结及参考文献等内容,书写工整或打印输出,装订成册。

2、图纸

(1)除尘器图一张(2号图)。系统图应按比例绘制、标出设备部件编号,并附明细表。

(2)除尘系统平面布置图、剖面布置图各一张(1号或2号),可以有局部放大图(3号)。布置图应按比例绘制。锅炉房及锅炉的绘制可以简化,但能表明建筑的外形和主要结构形式。在在图上中应有指北针方位标志。

七、主要参考资料

(1)郝吉明,马广大主编。大气污染控制工程。北京高教出版社,2002。

(2)吴忠标主编,大气污染控制工程。北京科学技术出版社,2002。

(3)胡传鼎著,通风除尘设备设计手册。北京化学工业出版社,2003。

(4)张殿印,王纯主编。除尘工程设计手册。北京化学工业出版社,2003。

(5)工业锅炉房设计手册。

(6)风机样本

指导教师:教研究室主任:

2009年6月15日2009年6月15日

摘要

现在我国正处于经济快速发展的时期,随着人们对生活质量的不断提高,对空气的清洁程度要求也越加严格,但是伴随各种工业的蓬勃发展以及北方的生活供暖所,污染气体的排放是不可避免的,排放出的大量烟尘成为了大气颗粒污染物的重要组分之一,所以污染气体的治理措也施随之发展,为了满足人们对清洁空气的要求,达到适宜的环境空气质量,需要将锅炉排放出的烟气引入装除尘设备,因此本次设计的题目是燃煤采暖锅炉房烟气除尘系统的设计,设计目的是使燃煤烟气的排放满足相关标准的规定。

设计的大概过程如下所述:

一、除尘器设计

本次设计的除尘器的是立式多管旋风除尘器。

根据任务书给出的相关数据计算出锅炉的实际烟气量,进而计算出相关的其他因素,即包括旋风除尘器中旋风子的数量,多管旋风除尘器的外壳尺寸,以及进气口、出气口距地面的高度和大小。根据所得数据可粗略的画出旋风除尘器的结构与布置。

二、烟气管道的布置

由上计算出的实际烟气量和烟气流速计算出排烟管道的直径,并进行园整,再用园整后的管径反推出实际烟气流速。管道规定设计为钢制,壁厚为0.75毫米。设计出管道的大致布置图,根据自己的想法涉及管路的铺设,已达到管道的铺设路径越短,阻力损失越小为宜,再根据除尘手册里查找相关弯管的阻力系数,计算弯管的局部阻力损失。同时,计算出圆管与除尘器进、出口连接处的管道天方地圆的角度、长度以及通过手册查出的阻力系数计算出阻力损失,根据所得的具体尺寸绘制出锅炉房烟气管道的布置图。

三、风机的计算和选型

由上可以得出的结论是弯管以及天方地圆的局部压力损失,和烟道铺设的沿程压力损失,进一步求得总的压力损失。根据已知公式所得数据可计算出风机的风量,风机的风压以及电动机功率。最后根据所得的三个数据在相关书籍中选出适合的风机型号。最后求得电动机功率,看其是否满足风机功率的要求,若符合要求,则设计成功,若不符合,则还需要重新选择风机的型号。

通过以上三个步骤,可以设计出一个具体的采暖锅炉房以及其烟气除尘系统的锅炉、除尘器、风机以及管道的型号、尺寸和具体的管道分布位置,然后用CAD绘制出除尘器的结构图,除尘系统的平面布置图以及俯视图各一张,按设计图纸构建的锅炉房以减少烟尘的排放量,达到改善环境空气质量的目的。

本次设计主要是对燃煤采暖锅炉房烟气除尘系统进行设计,要求使用多管旋风除尘器,并达到国家标准。根据含尘浓度、粒度分布、烟气密度等特征及除尘要求、允许的阻力损失和制造条件、造价等因素进行全面分析,合理选择除尘器的型号。应该明确的是,锅炉的排烟特点是烟气量大,而且烟气流量变化很大,在选用除尘器时,联用旋风除尘器与文丘里水膜除尘器,使烟气流量的变化与除尘器的烟气流速相适应,以期在锅炉工况变动时均能得到良好的除尘效果。

在课程设计过程中,感谢同组人员的配合,感谢各位老师的指导,由于本人水平有限,缺点和错误在所难免,希望读者提出宝贵的批评和建议。

除尘系统计算

一、烟气量、烟尘和二氧化硫浓度计算

1、标准状态下理论空气量

)7.07.056.5867.1(76.40Y Y Y Y a O S H C V -++= (m 3/kg)

)/(97.6%)57.0%17.0%456.5%68867.1(76.430Kg m V a =?-?+?+??=

式中 Y

C ,Y

H ,Y S ,Y

O ----分别为煤中各元素所含的质量分数。

2、标准状态下理论烟气量

Y

a a Y Y Y Y fg N V V W H S C V 8.079.0016.024.12.11)375.0(867.1000++++++= (m3/kg)

)

/(42.7%

18.097.679.097.6016.0%624.1%42.11%)1375.0%68(867.130Kg m V fg =?+?+?+?+?+?+?=

式中 Y

Y

N W ,----分别为煤中水分和N 元素的质量分数

3、标准状态下的实际烟气量

0)1(016.1a fg fg V V V -+=α(m 3

/kg)

/kg)(m 25.1097.6)14.1(016.142.73=?-?+=fg

V

式中 α为空气过剩系数 标准状态下烟气流量

?=fg V Q 设计耗煤量=10.25×380=3895 (m 3

/h )

4、标准状态下烟气含尘浓度

610??=fg

y

V A f C (m g / m 3)

)

m / g (m 1034.21025

.10%

15%16336?=??=

C 式中 Y

A f ,分别为排烟中飞灰占煤中不可燃成分和煤中不可燃成分的含量的质量分数

5、标准状态下烟气中二氧化硫浓度计算

61022

?=fg

y SO V S C (m g / m 3)

)/(1095.11025

.10%

123362m mg C so ?=??=

6、实际工况下的实际烟气量

T

T V V fg fg /

/

?=

)/(26.16273

)

160273(25.10'3Kg m V fg =+?=

式中T T ,/分别为工况下和标准状态下的烟气温度(K )

二、除尘器的选择和尺寸的确定 1、除尘器应达到的效率

1

2

1S S -

=η 100% %32.89%1002340

250

1=?-

=η 式中 21,S S 分别为除尘器进口和出口的烟气中颗粒物的流量(kg/h)

2、除尘器的选择

工况下烟气流量

T

QT Q ''=

(m 3

/h) 式中Q 为标准状态下的烟气流量,m 3

/h

'T 为工况下烟气温度,K T 为标准状态下温度,273K

8.6178273)160273(3895'=+?=Q (m 3/h)

烟气流速为

)/(72.13600

8

.61783600'3s m Q == 3、旋风子个数的确定

8.28214

8

.6178214'===Q n (个) 取30个 以5×6排列 4、除尘器的长度与宽度、高度 mm e 320= mm f 175=

长度 mm f n e S 16302175)15(3202)1(1=?+-?=?+-?= 宽度 mm f n e N 19502175)16(3202)1(2=?+-?=?+-?=

式中e 代表纵(横)向旋风子中心线间距,mm ;f 代表旋风子中心线至除尘器壳体内壁间距,mm

高度 旋风子筒高 mm h 11001= 积尘斗高 mm h 2.12392= 排尘筒直径 mm D N 200= 排尘筒高度 mm h 2003= 排尘筒离地高度 mm h 8004=

除尘器进口管高度 mm d 1331= v 取10m/s

mm

n d e v Q n d e v Q H 32.145]

606)133320[(108

.6178278]60)[(278]60)[(3600100021212=+?-??=

+-=

+-?=

式中v 为除尘器进口管内烟气的平均流速,m/s ;1d 为旋风子的内管直径,mm

出气口的面积 'v 取9m/s 219.09

72.1'm v Q A ===

出气口长度 mm N a 1750210019502100=?-=?-=

出气口宽度 mm m a A b 6.1081086.075

.119

.0===

= 出气口法兰宽度 mm b h 6.3082006.1082005=+=+= 除尘器总高度

mm H h h h h h H 12.379332.1456.3088002002.1239110054321=+++++=+++++=总 三、管布置及计算:确定各装置的位置及管道布置

1、管径的确定 v

Q D g π4=

(m )

式中

g

Q ---工况下烟气流量(m 3

/s )

v ---烟气流速(m/s ) v 取12m/s mm m v

Q D g

3.4274273.012

14.372

.144==??=

=

π

圆整取外径450mm 壁厚0.75mm 内径 mm d 5.448275.04501=?-= 由公式v

Q D g π4=可计算出实际烟气流速:

)/(9.104485.014.372

.1442

2

s m D Q v g

=??=

=

π

2、烟囱的设计

(1) 首先确定共用一个烟囱的所有锅炉的总蒸发量(t/h),然后根据锅炉大气污染物排放标准

中的规定(见表—1)确定烟囱的高度。

表—1 锅炉烟囱高度表(H)

锅炉总额定出力(t/h ) <1 1~2 2~6 6~10 10~20 26~35 烟囱最低高度/m

20

25

30

35

40

45

锅炉总额定出力:4×4=16(t/h ) 固选定烟囱高度为40m (2)烟囱直径的计算

烟囱出口内径可按下式计算

V

Q d Z

0188

.0=(m) 式中 z Q ---通过烟囱的总烟气量;

V---按表—3选取的烟囱出口流速,(m/s )。

表—3 烟囱出口烟气流速(m/s )

通风方式 运行情况

全负荷 最小负荷 机械通风 10~20 4~5 自然通风

6~10

2.5~3

选定v =4m/s m d 48.14

4

8.61780188.0=??=

圆整取1.5m 烟囱底部直径

H i d d ??+=221(m ) 式中 2d --烟囱出口直径,(m);

i

--烟囱锥度,通常取i

=0.02~0.03 m d 08.34002.0248.11=??+= (3)烟囱的抽力

B t t H S p

K Y ?+-+=)2731

2731(

0342.0

式中 k t --外界空气温度,(℃) p t --烟囱内烟气平均温度,(℃); B —当地大气压,(Pa)。

Pa S y 2201086.97)160

2731

202731(

400342.03=??+--??=

四、系统阻力计算 1、磨擦压力损失

密度换算

3

/84.0433

27334.1160

273273

m

kg =?=+?

=标实ρρ 对于圆管

Pa

Pa v D L p L 5.212

9.1084.045.07.902.0)

(2

2

2

=??

?=?=?ρλ

式中 L —管道长度,(m); D —管道直径,(m);

ρ--烟气密度,(kg/m 3

)

B --当地大气压力,(Pa); v --管中气流平均速度(m/s );

λ--磨擦阻力系数,可查手册,(一般对于金属管道 λ可取0.02,水泥和砖砌管道可取0.04)。 2、局部压力损失

Pa

Pa v p 16.1182

9.1084.055.029.1084.078.02

9.1084.005.0229.1084.023.04)

(2

2

22

22

=??

+??+??

?+???=?

=?ρξ

式中 ξ--异形管件的局部阻力系数;

v --与ξ对应的断面管气流平均速度(m/s );

∑=+++=++?+?=Pa P P

P P P 66.143980050016.118

5.212

1

除炉

五、风机及电机的选择设计

1、标况风机风量

h

m h m B t Q k Q p Y /2.703686.97325

.1012731602733895)1.01()

/(325.101273273)1(33

1=?+??+=?+??+=标 式中 !k --管道漏风系数,一般在0.1~0.15之间,取值0.1; Q --标态下烟气流量,(m 3

/h );

p t --风机前温度,管道不长时可取锅炉排烟温度(℃)。

2、风机风压计算

Pa

Pa B t t S P k H Y p Y Y 6.121034.1293

.186.97325.101250273160273)22066.1439

()2.01()

(293

.1325.101273273))(1(2=?

?++?-?+=??++-+=∑标ρ

式中 2k —安全系数,除尘管道在0.15~0.20之间,取值0.2;

∑P --系统总阻力;

Y t --风机性能表中给出的试验气体温度(℃),Y5—47系列为250℃; Y ρ--标准状态下烟气的密度,1.34(kg/m 3

)。

3、电动机功率

KW

KW H Q N Y Y e 4.595.06.010*******.16.12102.7036)

(100036002

1=?????=

?=ηηβ

式中 1η--风机在全压头时的效率(一般风机为0.6,高效风机约为0.9); 2η--机械传动效率,皮带传动时为0.95;

β--电机备用系数,对引风机为1.3。

根据电动机的功率,风机的转速,传动方式选择电机型号Y4-70Ⅱ(Y4-70-13)。

六、系统中烟气温度的变化

1、烟气在管道中的温度降

V

C Q F

q t ??=

?1(℃)

式中 Q --标准状态下的烟气流量,(m 3

/h );

V C --标准状态下烟气的比热容(1.352 ~ 1.357kJ/m 3);

F —烟道散热面积,(m 2

);

--q 烟道单位面积散热损失(室内4187kj.h,室外5443kJ.h)。

2、烟气在烟囱中的温度降

D

A H t ?=

?2(℃)

式中 H---烟囱高度(m);

D---合用同一个烟囱的所有锅炉额定蒸发量之和,(t/h) A –降温系数,可由表--1查得。

表—1 烟囱温降系数

烟囱种类 钢烟囱(无衬筒)

钢烟囱(有衬筒) 砖烟囱

(H<50m,壁厚<0.5 m) 砖烟囱

(H<壁厚>0.5 m)

A

2

0.8

0.4

0.2

七、结论

大气污染控制是我们的主要专业课之一,这次课程设计历时两个星期,经过这两个星

期的实践和体验,我学到了很多知识。课程设计有着深远的意义,它不仅让我们综合理论知识来运用到设计和创新,还让我更深一步的了解到旋风除尘器的构造和除尘的机理。对CAD 软件的掌握更加的熟练了。

八、参考文献

(1)郝吉明,马广大主编。大气污染控制工程。北京高教出版社,2002。 (2)吴忠标主编,大气污染控制工程。北京科学技术出版社,2002。 (3)胡传鼎著,通风除尘设备设计手册。北京化学工业出版社,2003。

(4)张殿印,王纯主编。除尘工程设计手册。北京化学工业出版社,2003。 (5)工业锅炉房设计手册。 (6)风机样本。

旋风除尘器的设计与计算

一、实习目的 1、进一步了解旋风除尘器的有关计算 2、熟悉用CAD画效果图 3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素; 二、设计题目 设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。已知条件为:处理气量Q=1300m3/h,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表: 设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。 提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。 三、旋风除尘器的工作原理 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 (2)尘粒的运动:

切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。 (2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。 (3)XLT 旋风除尘器的主要特点 (4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。可用于10μm 以上颗粒的去除,符合此题的题设条件。 1.3影响旋风除尘器除尘效率的因素 (1)入口风速 由临界计算式知,入口风速增大,c d 降低,因而除尘效率提高。但是风速过大,压力损失也明显增大 (2)除尘器的结构尺寸 其他条件相同,筒体直径愈小,尘粒所受的离心力愈大,除尘效率愈大。筒体高度对除尘效率影响不明显,适当增大锥体长度,有利于提高除尘效率。减小排气管直径,有利于提高除尘效率。 (3)粉尘粒径和密度 大粒子离心力大,捕集效率高,粒子密度愈小,越难分离,本题中<5m μ的粒子质量频率约25%,所以导致除尘效率变低,以至于达不到除尘标准。 (4)灰斗气密性 若气密性不好,漏入空气,会把已经落入灰斗的粉尘重新带走,降低了除尘效率。 四、设计计算 1旋风除尘器各部分尺寸的确定 1.1形式的选择 根据国家规定的粉尘排放标准、粉尘的性质、允许的阻力和制造条件、经济性合理选择旋风除尘器的形式,选通用型旋风除尘器。 1.2 确定进口风速 设:风速u=20m/s 1.3 确定旋风除尘器的尺寸 (1)进气口面积A 的确定 进气口截面一般为长方形,尺寸为高度H 和宽度B ,根据处理气量Q 和进气速度u 可得 u Q A =

旋风式除尘器的正确使用(精)

旋风式除尘器的正确使用 风式除尘器是依靠含尘气体在除尘器内快速旋转、离心力促使颗粒粉尘与气体分离,因此其结构、原理与其他机械式除尘器截然不同,运行操作和维护管理也显得特别重要。旋风式除尘器的操作包括启动、运行、停车,维护工作主要是常见故障的分析、排除和预防。 关键词 颗粒粉尘旋风除尘运行操作维护管理 1 旋风除尘器的正确操作 1.1启动前的准备工作 1)检查各连接部位是否连接牢固。 2)检查除尘器与烟道,除尘器与灰斗,灰斗与排灰装置、输灰装置等结合部的气密性,消除漏灰、漏气现象。 3)关小挡板阀,启动通风机、无异常现象后逐渐开大挡板阀,以便除尘器通过规定数量的含尘气体。 1.2运行时技术要求 1)注意易磨损部位如外筒内壁的变化。 2)含尘气体温度变化或湿度降低时注意粉尘的附着、堵塞和腐蚀现象。 3)注意压差变化和排出烟色状况。因为磨损和腐蚀会使除尘器穿孔和导致粉尘排放,于是除尘效率下降、排气烟色恶化、压差发生变化。 4)注意除尘器各部位的气密性,检查旋风筒气体流量和集尘浓度的变化。 1.3作业后的技术工作 1)为防止粉尘的附着和腐蚀,除尘作业结束后让除尘器继续运行一段时间,直到除尘器内完全被清洁空气置换后方可停止除尘器运行。 2)消除内筒、外筒和叶片上附着的粉尘,清除灰斗内的粉尘。 3)必要时修补磨损和腐蚀引起的穿孔。

4)检查各部位的气密性,必要时更换密封元件。 5)按照使用说明书的规定对风机进行例行保养。 2 旋风式除尘器的维护 旋风式除尘器运行时应稳定运行参数、防止漏风和关键部位磨损、避免粉尘的堵塞,否则将严重影响除尘效果。 2.1稳定运行参数 旋风式除尘器运行参数主要包括:除尘器入口气流速度,处理气体的温度和含尘气体的入口质量浓度等。 1)入口气流速度。对于尺寸一定的旋风式除尘器,入口气流速度增大不仅处理气量可提高,还可有效地提高分离效率,但压降也随之增大。当入口气流速度提高到某一数值后,分离效率可能随之下降,磨损加剧,除尘器使用寿命缩短,因此入口气流速度应控制在18~23m/s范围内。 2)处理气体的温度。因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。所以高温条件下运行的除尘器应有较大的入口气流速度和较小的截面流速。 3)含尘气体的入口质量浓度。浓度高时大颗粒粉尘对小颗粒粉尘有明显的携带作用,表现为分离效率提高。 2.2防止漏风 旋风式除尘器一旦漏风将严重影响除尘效果。据估算,除尘器下锥体或卸灰阀处漏风1%时除尘效率将下降5%;漏风5%时除尘效率将下降30%。旋风式除尘器漏风有三种部位:进出口连接法兰处、除尘器本体和卸灰装置。引起漏风的原因如下: 1)连接法兰处的漏风主要是螺栓没有拧紧、垫片厚薄不均匀、法兰面不平整等引起的。 2)除尘器本体漏风的主要原因是磨损,特别是下锥体。据使用经验,当气体含尘质量浓度超过10g/m3时,在不到100天时间里可以磨坏3mm的钢板。 3)卸风装置漏风的主要原因是机械自动式(如重锤式)卸灰阀密封性差。 2.3预防关键部位磨损 影响关键部磨损的因素有负荷、气流速度、粉尘颗粒,磨损的部位有壳体、圆锥体和排尘口等。防止磨损的技术措施包括:

旋风除尘器课程设计

引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。

第一章旋风除尘器的除尘机理及性能 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、中央集尘净化和原材料回收设备。 旋风除尘器内的压力分布 一般旋风除尘器内的压力分布如图2—2所示。依据对旋风除尘器的工作原理、结构形式、尺寸以及气体的温度、湿度和压力等分析和试验测试,其压力损失的主要影响因素可归纳如下: (1)结构形式的影响

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

旋风除尘器工作原理

旋风式除尘器的组成及内部气流 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 编辑本段行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器 JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器

旋风除尘器(精)

旋风除尘器是利用气流旋转过程中作用在粉尘上的离心力,使粉尘从含尘气流中分离出来的设备。旋风除尘器的结构原理及优缺点 普通旋风除尘器的结构如图1所示,它是由进口、筒体、锥体、排出管(筒)4部分组成的。含尘气流由除尘器进口沿切线方向进入除尘器后,沿外壁由上向下作旋转运动,这股从上向下旋转的气流称为外旋涡。外旋涡到达锥体底部后,转而向上,沿轴心向上旋转,最后从排出管排出。这股从下向上的气流称为旋涡。向下的外旋涡和向上的旋涡旋转方向是相同的。气流作旋转运动时,粉尘在离心力的作用下甩向外壁,到达外壁的粉尘在下旋气流和重力的共同作用下沿壁面落入灰斗。 图1 旋风除尘器 1—进口 2—筒体 3—锥体 4—排出管 旋风除尘器的优缺点 旋风除尘器的优点有:(1)结构简单,造价低;(2)除尘器中没有运动部件,维护保养方便; (3)可耐400℃高温,如采用特殊的耐高温材料,还可以耐受更高的温度;(4)除尘器敷设耐磨衬后,可用以净化含高磨蚀性粉尘的烟气。其缺点是:(1)对捕集微细粉尘(小于5μm)和尘粒密度小的粉尘(如纤维性粉尘)除尘效率不高;(2)由于除尘效率随筒体直径的增加而降低,因而单个除尘器的处理风量受到一定限制。 影响旋风除尘器性能的主要因素 1.进口速度。旋风除尘器气流的旋转速度,是由进口速度造成的。增加进口速度,能

提高除尘器气流的旋转速度vt,使尘粒所受到的离心力(尘粒所受离心力,式中:m为尘粒质量,kg;vt为尘粒的旋转速度,可近似认为等于该点气流的旋转速度,m/s;r为旋转半径,m)增大,从而提高除尘效率,同时也增大了除尘器的处理风量。但进口速度不宜过大,过大会导致除尘器阻力急剧增加(除尘器阻力与进口速度的平方成正比),耗电量增大,而且,当进口速度增大到一定限度后,除尘效率的增加就非常缓慢,甚至有所下降。这主要是由于除尘器部涡流加剧,破坏了正常的除尘过程造成的。因此,最适宜的进口速度一般应控制在12~20m/s之间。 2.筒体直径和高度。由离心力公式可知,在同样的旋转速度下,简体直径越小(简体直径减小,旋转半径也减小),尘粒受到的离心力越大,除尘效率越高,但处理风量减小。目前常用的旋风除尘器,直径一般不超过800mm。风量较大时,可用几台除尘器并联运行或采用多管旋风除尘器。 增加简体高度,从直观上看可以增加气流在除尘器的旋转圈数,有利于尘粒的分离,使除尘效率提高。但筒体加高后,外旋下降的含尘气流和旋上升的洁净气流之间的紊流混合也要增加,从而使带人洁净气流的尘粒数量增多。故简体不宜太高,一般取筒体高度为2D(D 为筒体直径)左右。 3.锥体高度。在锥体部分,由于断面不断减小,尘粒到达外壁的距离也逐渐减小,气流的旋转速度不断增加,尘粒受到的离心力不断增大,这对尘粒的分离都是有利的。现代的高效旋风除尘器大都是长锥体就是这个原因。目前国的高效旋风除尘器,如ZT型和XCX型也都是采用长锥体,锥体高度为(2.8~2.85)D。 4.除尘器底部的严密性。旋风除尘器无论是在正压下还是在负压下运行,其底部(即排尘口)总是处于负压状态,如果除尘器底部不严密,从外部渗入的空气就会把正在落人灰斗的一部分粉尘带出除尘器,使除尘效率显著下降。所以如何在不漏风的情况下进行正常排尘,是旋风除尘器运行中必须重视的一个问题。 在收尘量不大时,可在除尘器底部设固定灰斗定期排尘;在收尘量较大,要求连续排尘时,可采用锁气器,常用的锁气器有翻板式、压板式和回转式几种。 5.粉尘的性质。尘粒密度越大,粒径越大,离心力越大,除尘效率也就越高。因而旋风除尘器一般不适用于处理细微的纤维性粉尘。对非纤维性粉尘,粒径太小时,效率也不高。用于处理粒径大、密度大的矿物性粉尘效果好。 几种常用的旋风除尘器 旋风除尘器的发展虽然经历了一百多年的历史,但到目前为止,其结构形式方面的研究工作一直都在继续进行,因而出现了许多结构形式,下面介绍常用的几种。 1.多管旋风除尘器。如前所述,旋风除尘器的效率是随着简体直径的减小而增加的,但直径减小,处理风量也减小。当要求处理风量较大时,如将几台旋风除尘器并联起来使用,占地面积太大,管理也不方便,因此就产生了多管组合的结构形式。多管除尘器是把许多小直径(100~250mm)的旋风子并联组合在一个箱体,合用一个进气口、排气口和灰斗。为使风

旋风除尘器电除尘器课程设计

旋风除尘器电除尘器课 程设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

目录一.设计内容 (3) 1.设计基础资料 (3) 2.设计要求 (3) 二.设计计算 (3) 1.集气罩设计 (3) 2.风量计算 (4) 3.旋风除尘器设计选型 (4) 4.旋风除尘器效率计算 (7) 5.二级除尘器设计选型 (8) 6.管道设计计算 (12) 7.风机和电机的选择 (17) 8.排气烟囱的设计 (18) 三.心得体会与总结 (19) 参考文献 (20) 附图 (21) 题目:水泥厂配料车间粉尘污染治理工程(课程)设计一.设计内容 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm

●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘器本体结构图 ●编制设计说明书 二.设计计算 1.集气罩设计 集气罩的设计原则: ①改善排放粉尘有害物的工艺和环境,尽量减少粉尘排放及危害。 ②集气罩尽量靠近污染源并将其包围起来。 ③决定集气罩的安装位置和排气方向。 ④决定开口周围的环境条件。 ⑤防止集气罩周围的紊流。 ⑥决定控制风速。

本设计采用密闭集气罩,密闭罩设计的注意事项:密闭罩应力求密闭,尽量减少罩上的孔洞和缝隙;密闭罩的设置应不妨碍操作和便于检修;应注意罩内气流的运动特点。 搅拌机上方采用整体密闭集气罩,尺寸φ2000×500(高度)mm 。 传送带上方采用局部密闭集气罩,尺寸1210×1210mm 。 2.风量计算 对于整体集气罩,取断面风速为s 对于局部集气罩,取断面风速为s 总风量 /s 5.748m 0.73260.67826Q 2Q Q 3 21=?+?=+= 3.旋风除尘器的设计选型 1) 设计选型 一级除尘系统采用旋风除尘器,其特点是旋风除尘器没有运动部件,制作、管理十分方便;处理相同风量的情况下体积小,价格便宜;作为预除尘器使用时,可以立式安装,亦可以卧式安装,使用方便;处理大风量是便于多台联合使用,效率阻力不受影响,但是也存在着除尘效率不高,磨损严重的问题。 普通除尘器是由进风管、筒体、锥体和排气管组成。含尘气体进入除尘器后,沿外壁由上而下做旋转运动,同时少量气体沿径向运动到中心区域。当旋转气流的大部分到达锥体底部后,转而向上沿轴心旋转,最后经排出管排出。 旋风除尘器净化气量应与实际需要处理的含尘气体量一致。选择除尘器直径时应尽量小些;旋风除尘器入口风速要保持18—23m/s ;选择除尘器时,要根据工况考虑阻力损失及结构形式,尽可能减少动力消耗减少,便于制造维护;结构密闭要好,确保不漏风。

旋风式除尘器使用说明书

旋风除尘器 使 用 说 明 书

目录 目录 (1) 一、概述 (2) 二、构造和原理 (3) 三、分类说明 (4) 四、设备特点 (5) 五、旋风除尘器的维护方法 (6) 六、排尘口堵塞及预防措施 (7) 七、启动前的准备工作 (8) 八、检修注意事项 (9)

一、概述 旋风除尘器广泛地应用于各个行业除尘系统中,本设计针对旋风除尘器的结构及工作原理,分析影响旋风除尘器压力损失的因素,介绍了旋风除尘器内部流场和除尘机理。针对旋风除尘器除尘效率问题进行了分析,总结了现有改进方案,指出存在的不足,并结合前人的改进思路提出了新的改进方案,以提高旋风除尘器的分离效率,为进一步挖掘旋风除尘器的潜在性能开辟新的思路。 二、旋风除尘器的结构及原理 1旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。

1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图2—1 旋风除尘器 2.2 旋风除尘器的性能及其影响因素 2.2.1旋风除尘器的技术性能 (1)处理气体流量Q 处理气体流量Q是通过除尘设备的含尘气体流量,除尘器流量为给定值,一般以体积流量表示。高温气体和不是一个大气压情况时必须把流量换算到标准状态,其体积m3/h或m3/min表示。 (2)压力损失 旋风除尘器的压力损失△p是指含尘气体通过除尘器的阻力,是进出口静压之差,是除尘器的重要性能之一。其值当然越小越好,因风机的功率几乎与它成正比。除尘器的压力损失和管道、风罩等压力损失以及除尘器的气体流量为选择风机的依据。 压力损失包含以下几个方面: ①进气管内摩擦损失; ②气体进入旋风除尘器内,因膨胀或压缩而造成的能量损失; ③与容器壁摩擦所造成能量损失; ④气体因旋转而产生的能量消耗; ⑤排气管内摩擦损失,以及由旋转气体转为直线气体造成的能量损失; ⑥排气管内气体旋转时的动能转换为静压能所造成的损失等。 (3)除尘效率 一般指额定负压的总效率和分级效率,但由于工业设备常常是在

旋风除尘器设计计算

1.1、工作原理 ⑴气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成; 气流沿外壁由上向下旋转运动:外涡旋; 少量气体沿径向运动到中心区域; 旋转气流在锥体底部转而向上沿轴心旋转:内涡旋; 气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度 图1 ⑵尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗; 上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2、影响旋风器性能的因素 ⑴二次效应-被捕集粒子的重新进入气流 在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。 ⑵比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加, 一般取排出管直径d e= (0.6?0.8) D ;

特征长度(natural length)-亚历山大公式: D21/3 I = 2.3 d e ( ) A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于I,筒体和锥体的总高度以 不大于5倍的筒体直径为宜。 ⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意、。在不漏风的情况下进行正常排灰 ⑷烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善; 入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降; 效率最高时的入口速度,一般在10-25m/s范围。 2、设计方案的确定 根据含尘浓度、粒度分布、密度等烟气特征及除尘要求、允许的阻力和制造条件等因素选择适宜的处理方式,然后进行计算,核对。如果所选的方式符合标准并且除尘效率高和阻力要求,就证明所选的方案是可行的,否则需要重新选取新的方案设计。直到符合标准为止。 3、工艺设计计算 3.1、选择旋风除尘器的型式 选XLP/B型旁路式旋风除尘器 3.2、选择旋风除尘器的入口风速 一般进口的气速为12 ~25m/s。取进口速度=15m/s。 3.3、计算入口面积A 已知烟气的流量Q=2000m3/h,v=l5m/s 则入口面积A= Q/3600v = 0.037m2 3.4、入口高度a、宽度b的计算 查几种旋风除尘器的主要尺寸比例表得: 入口宽度b=£=0.136m

《旋风除尘器》课程设计要点

引言 引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。 1

大气课程设计 2 第一章旋风除尘器的除尘机理及性能 1.1 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

旋风除尘器设计h

韶关学院 《大气污染控制工程》课程设计任务书 化学与环境工程学院 2011级环境工程专业 题目旋风除尘器系统的设计 起止日期:2014年5月21日至2014年5月28日学生姓名:学号: 指导教师:梁凯 教研室主任:年月日审查 系主任:年月日批准

设计题目(题目来自网络) 设计要求:根据设计参数设计出使用的旋风除尘器。

目录 1、前言 (5) 1.1、工作原理 (5) 1.2、影响旋风器性能的因素 (6) 2、旋风除尘器的特点 (7) 3、旋风除尘器型号选择 (7) 4、选择XLP/B型旋风除尘器的理由 (7) 5、工艺设计计算 (7) 5.1、除尘效率 (7) 5.2、压力损失 (7) 5.3、其他部件的尺寸 (7) 6、除尘效率计算及校核 (7) 6.1、除尘效率计算 (7) 6.2、除尘效率校核 (7) 7、课程设计心得 (10)

1、前言 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1、工作原理 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。 图1

高效旋风除尘器设计毕业设计设计说明书

唐山学院毕业设计 设计题目:高效旋风除尘器设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

旋风除尘工艺流程设计

旋风除尘工艺流程设计 一、旋风除尘器原理 旋风除尘器是利用旋转气流所产生的离心力(由于物体旋转而产生脱离旋转中心的力,离心力是一种惯性的表现,实际是不存在的。为使物体做圆周运动,物体需要受到一个指向圆心的力即向心力。若以此物体为原点建立坐标,看起来就好像有一股与向心力大小相同方

向相反的力,使物体向远离圆周运动圆心的方向运动。(当物体受力不足以提供圆周运动所需向心力时,看起来就好像离心力大于向心力了,物体会做远离圆心的运动,这种现象叫做“离心现象”))将尘粒从合尘气流中分离出来的除尘装置。它具有结构简单,体积较小,不需特殊的附属设备,造价较低。阻力中等,器内无运动部件,操作维修方便等优点。旋风除尘器一般用于捕集5-15微米以上的颗粒、除尘效率可达80%以上,近年来经改进后的特制旋风除尘器、其除尘效率可达95%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。 旋风除尘器内气流与尘粒的运动概况: ①旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上。形成上升的内旋气流,并由除尘器的排气管排出。 ②自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向.上随上升的中心气流一同从排气管排出,分散在其中的尘粒也随同被带走。 二、旋风除尘器工作过程 如图所示,旋风式除尘器由筒体1、锥体2,进气管3、排气管4

旋风除尘器课程设计说明书

环境工程专业 课程设计说明书题目:(SZL4-13锅炉除尘系统设计) 姓名: 班级: 学号: 指导教师: 课程名称:大气污染控制 设计时间:

目录 任务书 (3) 摘要 (5) 除尘系统计算 (6) 一、烟气量、烟尘和二氧化硫浓度计算 (6) 二、除尘器选型 (7) 三、除尘器设计计算 (7) 四、烟囱设计 (8) 五、系统阻力计算 (10) 六、风机的计算与选用 (11) 七、系统中烟气温度的变化 (12) 结论 (12) 参考文献 (12)

颗粒污染物控制课程设计任务书 适用专业 环境工程 一、课程设计题目 某燃煤采暖锅炉房烟气除尘系统的设计 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD 绘制工程图、使用技术资料、编写 设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4—13型,共4台(2.8MW ?4) 设计耗煤量:380Kg/h /台 排烟温度:160℃ 烟气密度(标准状态下):1.34 kg /m 3 空气过剩系数:α=1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa 冬季室外温度:-20℃ 空气中含水(排标准状态下)10g/kg 烟气其它性质按近似空气计算 煤的工业分析值: Y C =68% Y H =4% Y S =1% Y O =5% Y N =1% Y W =6% Y A =15% Y V =13% 按锅炉大气污染物排放标准(GB13271—2001)中二类一时段标准执行。 四、计划安排 1、资料查询0.5天 2、及设计计算(4.5天) 3、说明书编制及绘图(5天) 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较 确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计

DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计

课程设计说明书 课程名称:大气污染控制工程班级:1360050108 姓名:丁婷婷 指导教师:王丹丹 能源与水利学院

大气污染课程设计任务书 一、课程教学目的 大气污染控制工程课程设计是大气污染控制工程课程的重要实践性环节,是环境工程专业学生在校期间第一次较全面的大气污染控制设计能力训练,在实现学生总体培养目标中占有重要地位。 通过本课程学习,掌握《大气污染控制工程》课程各基本原理和基本设计方法的应用,培养环境工程专业学生解决实际问题的能力。结合前续课程《大气污染控制工程》的内容,本课程内容为,运用各种污染物的不同控制、转化、净化原理和设计方法,进行除尘、除硫、脱氮等大气污染控制工程设计,使学生在大气污染控制工程方面得到工程训练。 (1)通过课程设计实践,树立正确的设计思想,培养综合运用大气污染控制设计课程和其他先修课程的理论与生产实际知识来分析和解决大气污染控制设计问题的能力。 (2)学习大气污染控制设计的一般方法、步骤,掌握大气污染控制设计的一般规律。 (3)进行大气污染控制设计基本技能的训练:例如计算、绘图、查阅资料和手册、运用标准和规范。

二、设计题目 1.DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计 2.设计原始资料 锅炉型号:DLP2-13 即,单锅筒纵置式抛煤机炉,蒸发量2t/h,出口蒸汽压力13MPa 设计耗煤量:350kg/h 设计煤成分:C Y=60.5% H Y=3% O Y=4% N Y=1% S Y=1.5% A Y=18% W Y=12%;V Y=15%;属于中硫烟煤 排烟温度:160℃ 空气过剩系数=1.4 飞灰率=21% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头10个。 3.设计内容及要求 (1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。 (2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。 (3)除尘设备结构设计计算 (4)脱硫设备结构设计计算 (5)烟囱设计计算 (6)管道系统设计,阻力计算,风机电机的选择 (7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少3张A4图,并包括系统流程图一张。

旋风除尘器设计

学院班级:资环学院 环境工程 09-01班 学号:310913020127 姓名:张思凯 日期:2011-12-16

一、设计题目 设计要求:旋风除尘器+湿法脱硫除尘,最后实现污染物的达标排放,根据自己的设计,计算出最终污染物的排放浓度和年排放量 提交文件:设计+旋风除尘器图(专用纸手绘)

二、旋风除尘器理的工作原理(摘抄) 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走 2. 旋风除尘器的特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。适用于工业炉窑烟气除尘和工业通风除尘;工业气力输送系统气固两相分离与物料气力烘干回收。(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。(3)旋风除尘器捕集<5μm颗粒的效率不高,一般可以作为高浓度除尘

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

XCX旋风除尘器 设计说明书 学院:环境科学与工程学院 专业:环境工程 姓名:李昊(0920169,前期计算) 林毅(0920179,CAD画图) 费磊(0920156,计划书制作) 胡五钢(0920164,后期整理)指导老师:万锐

目录 一.旋风除尘器简介···································· 二.XCX旋风除尘器的结构及特点··························· 三.XCX旋风除尘器原理及其优点··························· 四.选型依据········································· 五.影响XCX旋风除尘器效的因素··························· 六.影响XCX旋风除尘器压降的因素························· 七.结论与建议·······································八.参考文献········································

一、旋风除尘器简介 旋风除尘器是利用旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置.旋风除尘器用于工业生产以来,已有百余年历史。该类分离设备机构简单、制造容易、造价和运行费用较低,对于捕集分离5μm以上的较粗颗粒粉尘,净化效率很高所以在矿山、冶金、耐火材料、建筑材料、煤炭、化工及电力工业部门应用极为普遍。但旋风除尘器对于5μm 以下的较细颗粒粉尘(尤其是密度小的细颗粒粉尘)净化效率极低所以旋风分离器通常用于粗颗粒粉尘的净化或用于多级净化时的初步处理 二、XCX旋风除尘器的结构及特点 旋风除尘器也称作旋风分离器,是利用器内旋转的寒碜气体所产生的离心力,将粉尘从气流中分离出来的一种干式气固分 离装置。它主要由排灰管、圆锥体、圆柱体、进气管、 排气管以及顶盖组成。 旋风除尘器具有以下特点: 1.结构简单,器身无运动部件,不需要特殊的附属 设备,占地面积小,制造,安装投资较少。 2.操作维护简便,压力损失中等,动力消耗不大, 运转,维护费用较低。 3.操作弹性较大,性能稳定,不受含尘气体的浓度, 温度限制。对于粉尘的物理性质无特殊的要求同时可根 据化工生产的不同要求,选用不同的材料制作或内衬不 同的耐磨,耐热的材料,以提高使用寿命。 旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器,其除尘效率可达5%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。

相关文档
最新文档