中考复习专题二次函数分类讲解复习以及练习题含答案

中考复习专题二次函数分类讲解复习以及练习题含答案
中考复习专题二次函数分类讲解复习以及练习题含答案

1、二次函数的定义

定义: y=ax2 + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式

练习:1、y=-x2,y=2x2-2/x ,y=100-5 x2,y=3 x2-2x3+5,其中是二次函数的有____个。

2.当m_______时,函数y=(m+1)χ - 2χ+1 是二次函数?

2、二次函数的图像及性质

例2:已知二次函数

(1)求抛物线开口方向,对称轴和顶点M 的坐标。

(2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。

抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值

y=ax2+bx+c(a>0)

y=ax 2+bx+c (a<0)

由a,b 和c 的符号确定

由a,b 和c 的符号确定 a>0,开口向上

a<0,开口向下

在对称轴的左侧,y 随着x 的增大而

在对称轴的左侧,y 随着x 的增大而

???? ??--a b ac a b 44,22???

? ??--a b ac a b 44,22a

b

x 2-

=直线a

b

x 2-

=

直线

2

3

212-+=

x x y

(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?

(4)x为何值时,y<0?x为何值时,y>0?

3、求抛物线解析式的三种方法

1、一般式:已知抛物线上的三点,通常设解析式为________________

y=ax2+bx+c(a≠0)

2,顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________求出表达式后化为一般形式.

y=a(x-h)2+k(a≠0)

3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2) (a≠0)

练习:根据下列条件,求二次函数的解析式。

(1)、图象经过(0,0), (1,-2) , (2,3) 三点;

(2)、图象的顶点(2,3),且经过点(3,1) ;

(3)、图象经过(0,0), (12,0) ,且最高点的纵坐标是3 。

例1已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。

解:∵二次函数的最大值是2

∴抛物线的顶点纵坐标为2

又∵抛物线的顶点在直线y=x+1上

∴当y=2时,x=1

∴顶点坐标为( 1 , 2)

∴设二次函数的解析式为y=a(x-1)2+2

又∵图象经过点(3,-6)

∴-6=a (3-1)2+2 ∴a=-2

∴二次函数的解析式为y=-2(x-1)2+2

即: y=-2x2+4x

4、a,b,c符号的确定

抛物线y=ax2+bx+c的符号问题:

(1)a的符号:由抛物线的开口方向确定

(2)C的符号:由抛物线与y轴的交点位置确定.

(3)b的符号:由对称轴的位置确定

(4)b2-4ac的符号:由抛物线与x轴的交点个数确定

(5)a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y 值决定。

当x=1时,y>0,则a+b+c>0

当x=1时,y<0,则a+b+c<0

当x=1时,y=0,则a+b+c=0

(6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c的符号由x=-1

时,对应的y值决定。

当x=-1,y>0,则a-b+c>0

当x=-1,y<0,则a-b+c<0

当x=-1,y=0,则a-b+c=0

练习

1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号

为()

A、a<0,b>0,c>0

B、a<0,b>0,c<0

C、a<0,b<0,c>0

D、a<0,b<0,c<0

2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()

A、a>0,b>0,c=0

B、a<0,b>0,c=0

C、a<0,b<0,c<0

D、a>0,b<0,c=0

3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c 、△的符号为()

A、a>0,b=0,c>0,△>0

B、a<0,b>0,c<0,△=0

C、a>0,b=0,c<0,△>0

D、a<0,b=0,c<0,△<0

熟练掌握a,b, c,△与抛物线图象的关系(上正、下负)(左同、

右异)

4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和二、三、四象限,

判断a、b、c的符号情况:a 0,b 0,c 0.

5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,且它的顶点在第三象限,

则a、b、c满足的条件是:a 0,b 0,c 0.

6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,那么这个二次函数

图象的顶点必在第象限

先根据题目的要求画出函数的草图,再根据图象以及性质确定结果(数形结合的思想)

7.已知二次函数的图像如图所示,下列结论。⑴a+b+c=0 ⑵

a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a

其中正确的结论的个数是()

A 1个

B 2个

C 3个

D 4个

要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x 轴、y 轴的交点的位置,注意运用数形结合的思想。

5、抛物线的平移

左加右减,上加下减 练习

⑴二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象; 二次函数y=2x2的图象向 平移 个单位可得到y=2(x-3)2的图象。 ⑵二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2(x+1)2+2的图象。

引申:

(3

)由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.

y=x2-5x+6

6二次函数与

一元二次方程的关系

一元二次方程根的情况与b2-4ac 的关系

我们知道:代数式b2-4ac 对于方程的根起着关键的作用.

二次函数y=ax2+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax2+bx +c=0的解。

二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况: (1)有两个交点b2 – 4ac > 0 (2)有一个交点b2 – 4ac= 0 (3)没有交点 b2 – 4ac< 0

y=x 4

1

25(2-

-=x y .

2422

,1a

ac

b b x -±-=∴

若抛物线y=ax2+bx+c与x轴有交点,则b2 – 4ac≥0

例(1)如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线 y=x2-2x+m与x轴有____个交点.

(2)已知抛物线 y=x2 – 8x +c的顶点在 x轴上,则c=____.

(3)一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是____.

7二次函数的综合运用

1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.

解:?抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同

? a=1或-1

又?顶点在直线x=1上,且顶点到x 轴的距离为5, ? 顶点为(1,5)或(1,-5) 所以其解析式为:

(1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5 展开成一般式即可.

2.若a+b+c=0,a ?0,把抛物线y=ax2+bx+c 向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式. 分析:

(1)由a+b+c=0可知,原抛物线的图象经过(1,0) (2) 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线

练习题

1.直线y =3 x -1与y =x -k 的交点在第四象限,则k 的范围是………………( )

(A )k <

31 (B )3

1

<k <1 (C )k >1 (D )k >1或k <1 【提示】由???-=-=k x y x y 13,解得???

????-=-=.

2312

1k y k x 因点在第四象限,故21k ->0,

231k -<0.

∴ 3

1

<k <1.

【答案】B .

【点评】本题应用了两函数图象交点坐标的求法,结合了不等式组的解法、象限内点的坐标符号特征等.

2.二次函数y =ax 2

+bx +c 的图象如图,则下列各式中成立的个数是…………( )

(1)abc <0; (2)a +b +c <0; (3)a +c >b ; (4)a <-2

b . (A )1 (B )2 (C )3 (D )4 【提示】由图象知a <0,-

a

b

2>0,故b >0,而c >0,则abc <0.当x =1时,y >0,即a +c -b >0;当x =-1时,y <0,即a +c -b <0. 【答案】B .

【点评】本题要综合运用抛物线性质与解析式系数间的关系.因a <0,把(4)a <-

2

b

两边同除以a ,得1>-a b 2,即-a b 2<1,所以(4)是正确的;也可以根据对称轴在x =1的左侧,判断出-a

b 2<1,两边同时乘a ,得a <-2

b

,知(4)是正确的.

3.若一元二次方程x 2

-2 x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经

过…………………………………………………………………………………( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限

【提示】由??=4+4 m <0,得m +1<0,则m -1<0,直线过第二、三、四象限. 【答案】A .

【点评】本题综合运用了一元二次方程根的判别式及一次函数图象的性质.注意,题中问的是一次函数图象不经过的象限.

4.如图,已知A ,B 是反比例函数y =

x

2的图象上两点,设矩形APOQ 与矩形MONB 的面积为S 1,S 2,

则………………………………………………………………( ) (A )S 1=S 2 (B )S 1>S 2 (C )S 1<S 2 (D )上述(A )、(B )、(C )都可能 【提示】因为S APOQ =|k |=2,S MONB =2,故S 1=S 2. 【答案】A .

【点评】本题可以推广为:从双曲线上任意一点向两坐标轴引垂线,由这点及两个垂足和原点构成的矩形的面积都等于|k |.

5.若点A (1,y 1

),B (2,y 2

),C (?,y 3

)在反比例函数y =-x

k 1

2+的图象上,则( )

(A )y 1=y 2=y 3 (B )y 1<y 2<y 3 (C )y 1>y 2>y 3 (D )y 1>y 3>y 2

【提示】因-(k 2+1)<0,且-(k 2+1)=y 1=2 y 2=??y 3,故y 1<y 2<y 3.或用图象法求解,因-(k 2

+1)<0,且x 都大于0,取第四象限的一个分支,找到在y 轴负半轴上y 1,y 2,y 3 的相应位置即可判定. 【答案】B .

【点评】本题是反比例函数图象的性质的应用,图象法是最常用的方法.在分析时应注意本题中的-(k 2

+1)<0.

6.直线y =ax +c 与抛物线y =ax 2

+bx +c 在同一坐标系内大致的图象是……( )

(A ) (B ) (C ) (D )

【提示】两个解析式的常数项都为c ,表明图象交于y 轴上的同一点,排除(A ),(B ).再从a 的大小去判断. 【答案】D .

【点评】本题综合运用了一次函数、二次函数的性质.(B )错误的原因是由抛物线开口向上,知a >0,此时直线必过第一、三象限.

7.已知函数y =x 2-1840 x +1997与x 轴的交点是(m ,0)(n ,0),则(m 2-1841 m +1997)(n 2

-1841 n +1997)

的值是……………………………………………( )

(A )1997 (B )1840 (C )1984 (D )1897

【提示】抛物线与x 轴交于(m ,0)(n ,0),则m ,n 是一元二次方程x 2-1840 x +1997=0的两个根.所以m

2

-1840 m +1997=0,n 2

-1840 n +1997=0,mn =1997.

原式=[(m 2-1840 m +1997)-m ][(n 2

-1840 n +1997)-n ]=mn =1997. 【答案】A .

【点评】本题揭示了二次函数与一元二次方程间的联系,应用了方程的根的定义、根与系数的关系等知识点,并要灵活地把所求代数式进行适当的变形.

8.某乡的粮食总产量为a (a 为常数)吨,设这个乡平均每人占有粮食为y (吨),人口数为x ,则y 与x 之间

的函数关系为……………………………………………( )

(A ) (B ) (C ) (D ) 【提示】粮食总产量一定,则人均占有粮食与人口数成反比,即y =

x

a

.又因为人口数不为负数,故图象只能是第一象限内的一个分支. 【答案】D .

【点评】本题考查反比例函数图象在实际问题中的应用.(A )错在画出了x <0时的图象,而本题中x 不可能小于0.

(二)填空题(每小题4分,共32分)

9.函数y =

12-x +

1

1

-x 的自变量x 的取值范围是____________. 【提示】由2 x -1≥0,得x ≥2

1

;又x -1≠0,x ≠1.综合可确定x 的取值范围.

【答案】x ≥2

1

,且x ≠1.

10.若点P (a -b ,a )位于第二象限,那么点Q (a +3,ab )位于第_______象限. 【提示】由题意得a >0,a -b <0,则b >0.故a +3>0,ab >0. 【答案】一.

11.正比例函数y =k (k +1)1

2--k k x 的图象过第________象限.

【提示】由题意得k 2

-k -1=1,解得k 1=2,k 2=-1(舍去),则函数为y =6 x . 【答案】一、三.

【点评】注意求出的k =-1使比例系数为0,应舍去.

12.已知函数y =x 2

-(2m +4)x +m 2

-10与x 轴的两个交点间的距离为22,则m =___________.

【提示】抛物线与x 轴两交点间距离可应用公式

|

|a ?来求.本题有

?

)10(4)42(22--+m m =5616+m =2

2,

故m =-3. 【答案】-3.

【点评】抛物线与x 轴两交点间距离的公式为

|

|a ?,它有着广泛的应用.

13.反比例函数y =

x

k

的图象过点P (m ,n ),其中m ,n 是一元二次方程x 2

+kx +4=0的两个根,那么P 点坐标是_____________.

【提示】P (m ,n )在双曲线上,则k =xy =mn ,又mn =4,故k =4. 【答案】(-2,-2).

【点评】本题是反比例函数、一元二次方程知识的综合应用.由题意得出k =mn =4是关键.

14.若一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数值y 的范围是-11≤y ≤9,则函数解

析式是___________.

【提示】当k >0时,有???+=+-=-b k b k 69211,解得?????

-==

.

625b k

当k <0时,有???+-=+=-b k b k 29611,解得?????

=-

=.

425b k

【答案】y =25x -6或y =-2

5

x +4.

【点评】因k 是待定字母,而k 的不同取值,导致线段分布象限不一样,自变量的取值与函数取值的对应关系

也就不同.故本例要分k >0时自变量最大值对应函数最大值,与k <0时自变量最大值对应函数最小值两种情形讨论.

15.公民的月收入超过800元时,超过部分须依法缴纳个人收入调节税,当超过部分不足500元时,税率(即所

纳税款占超过部分的百分数)相同.某人本月收入1260元,纳税23元,由此可得所纳税款y (元)与此人月收入x (元)(800<x <1300)间的函数关系为____________. 【提示】因1260-800=460,

460

23

=5%,故在800<x <1300时的税率为5%. 【答案】y =5%(x -800).

【点评】本题是与实际问题相关的函数关系式,解题时应注意并不是每个人月收入的全部都必须纳税,而是超过800元的部分才纳税,故列函数式时月收入x 须减去800.

16.某种火箭的飞机高度h (米)与发射后飞行的时间t (秒)之间的函数关系式是h =-10 t 2

+20 t ,经

过_________秒,火箭发射后又回到地面.

【提示】火箭返回地面,即指飞行高度为0,则-10 t 2

+20 t =0,故t =0或t =20. 【答案】20.

【点评】注意:t =0应舍去的原因是此时火箭虽在地面,但未发射,而不是返回地面. (三)解答题

17.(6分)已知y =y 1+y 2,y 1 与x 成正比例,y 2 与x 成反比例,并且x =1时y =4,x =2时y =5,求当x =4

时y 的值.

【解】设y 1=k 1x ,y 2=

x

k 2,则y =k 1x +

x

k 2.

把x =1时y =4,x =2时y =5分别代入上式,得

??

???+=+=22542121k k k k ,

解得

∴ 函数解析式为y =2 x +

x 2. 当x =4时,y =2×4+42=217

∴ 所求的y 值为2

17

【点评】本题考查用待定系数法求函数解析式.关键在于正确设出y 1,y 2 与x 的函数解析式.注意两个比例系数应分别用k 1,k 2 表示出来,而不能仅用一个k 值表示.

18.(6分)若函数y =kx 2

+2(k +1)x +k -1与x 轴只有一个交点,求k 的值. 【提示】本题要分k =0,k ≠0两种情况讨论.

【解】当k =0时,y =2 x -1,是一次函数,此时,直线与x 轴必有一个交点.

当k ≠0时,函数为二次函数,

此时,??=4(k +1)2

-4 k (k -1)

=12 k +4=0.

∴ k =-

3

1. ∴ 所求的k 值为0或-

3

1. 【点评】注意,当问题中未指明函数形式,而最高次项系数含字母时,要注意这个系数是否为0.函数图象与x 轴有一个交点包括两种情形:当函数是一次函数时,直线与x 轴必只有一个交点;当函数是二次函数时,在??=0的条件下,图象与x 轴只有一个交点.

19.(8分)已知正比例函数y =4 x ,反比例函数y =

x

k

.(1)当k 为何值时,这两个函数的图象有两个交点?k 为何值时,这两个函数的图象没有交点?(2)这两个函数的图象能否只有一个交点?若有,求出这个交

点坐标;若没有,请说明理由. 【解】由y =4 x 和y =

x

k

,得 4 x 2

-k =0,??=16 k .

(1)当??>0,即k >0时,两函数图象有两个交点;

当??<0,即k <0时,两函数图象没有交点;

(2)∵ 比例系数k ≠0,故??≠0.

∴ 两函数图象不可能只有一个交点.

20.(8分)如图是某市一处十字路口立交桥的横断面在平面直角坐标系中的一个示意图,横断面的地平线为x 轴,横

断面的对称轴为y 轴,桥拱的D ′GD 部分为一段抛物线,顶点G 的高度为8米,AD 和AD ′是两侧高为5.5米的立柱,OA 和OA ′为两个方向的汽车通行区,宽都为15米,线段CD 和CD ′为两段对称的上桥斜坡,其坡度为1∶4.(1)求桥拱DGD ′所在抛物线的解析式及CC ′的长.(2)BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区,试求AB 和A ′B ′的宽.(3)按规定,汽车通过桥下时,载货最高处和桥拱之间的距离不可小于0.4米,今有一大型运货汽车,装载上大型设备后,其宽为4米,车载大型设备的顶部与地面的距离为7米,它能否从OA (OA ′)安全通过?请说明理由.

【分析】欲求函数的解析式,关键是求出三个独立的点的坐标,然后由待定系数法求之.所以关键是由题中线段的长度计算出D 、G 、D ′的坐标,当然也可由对称轴x =0解之.

至于求CC ′、AB 、A ′B ′的数值,则关键是由坡度的定义求解之;到底能否安全通过,则只需在抛物线的解析式中令x =4,求出相应的y 值,即可作出明确的判断.

【解】(1)由题意和抛物线的对称轴是x =0,可设抛物线的解析式为y =ax 2

+c .

由题意得G (0,8),D (15,5.5)

∴ ??

?=+=.

5.52258

c a c

∴ ?????

=-=.

8901c a

∴ y =2

901x -+8.

又 AC AD =4

1且AD =5.5,

∴ AC =5.5×4=22(米).

∴ CC ′=2C =2×(OA +AC )=2×(15+22)=74(米). ∴ CC ′的长是74米. (2)∵

BC EB =4

1

,BE =4, ∴ BC =16.

∴ AB =AC -BC =22-16=6(米).

A ′

B ′=AB =6(米).

(3)此大型货车可以从OA (OA ′)区域安全通过.

在y =2901x -

+8中,当x =4时,y =-901×16+8=45

37

7,而 45

377-(7+0.4)=4519

>0, ∴ 可以从OA 区域安全通过.

21.(8分)已知二次函数y =ax 2

+bx +c 的图象抛物线G 经过(-5,0),(0,

2

5

),(1,6)三点,直线l 的解析式为y =2 x -3.(1)求抛物线G 的函数解析式;(2)求证抛物线G 与直线l 无公共点;(3)若与l 平行的直线y =2 x +m 与抛物线G 只有一个公共点P ,求P 点的坐标. 【分析】(1)略;(2)要证抛物线G 与直线l 无公共点,就是要证G 与l 的解析式组成的方程无实数解;(3)直线y =2 x +m 与抛物线G 只有一个公共点,就是由它们的解析式组成的二元二次方程组有一个解,求出这组解,就得P 点的坐标.

【解】(1)∵ 抛物线G 通过(-5,0),(0,

2

5

),(1,6)三点, ∴ ????

???++==--=c

b a

c c b a 6255250,

解得 ???

?

???===.

25321c b a

∴ 抛物线G 的解析式为y =

21x 2

+3 x +2

5. (2)由?????++=-=253213

22x x y x y ,

消去y ,得2

1x 2

+x +211

=0,

∵ ?=12

-4×21×2

11

=-10<0,

∴ 方程无实根,即抛物线G 与直线l 无公共点.

(3)由??

???++=+=2532122x x y m x y ,消去y ,得

21x 2

+x +2

5

-m =0. ①

∵ 抛物线G 与直线y =2 x +m 只有一个公共点P , ∴ ??=12

-4×

21×(25

-m )=0. 解得m =2.

把m =2代入方程①,解得x =-1. 把x =-1代入y =

21x 2

+3 x +2

5

,得y =0. ∴ P (-1,0).

【点评】本题综合运用了二次函数解析式的求法.抛物线与直线的交点等知识,其关键是把函数问题灵活转化为方程知识求解.

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

中考专题二次函数的解析式

二次函数 的解析式 【重点难点提示】 重点:二次函数的解析式 难点:从实际问题中抽象出二次函数 考点:二次函数的解析式的求法是中考命题的重中之重,它可以填空题、选择题出现,更多的是通常以综合题的形式出现在中考试卷的压轴题中,占10~12分左右。 【经典范例引路】 例1 已知函数y=x 2+kx -3图象的顶点为C 并与x 轴相交于两点A 、B 且AB=4 (1)求实数k 的值;(2)若P 为上述抛物线上的一个动点(除点C 外),求使S △ABC =S △ABP 成立的点P 的坐标。 解 (1)设A(x 1,0)B(x 2,0) 则AB 2=|x 2-x 1|2=(x 1+x 2)2-4x 1x 2=k 2+12=16 ∴k=±2 (2)由y=x 2±2x -3= (x ±1)2-4得点C 1(1,-4),C 2(-1,-4) ∴S △ABC =21 ×4×4=8 设点P(x,4)在抛物线上,则有x 2±2x -3=4,即x 2±2x -7=0 得:x=-1±22或x=1±22 ∴P 点坐标为(-1+22,4)(-1-22,4)(1+22,4)(1-22,4) 例2 阅读下面的文字后,解答问题 有这样一道题目: 已知:二次函数y=ax 2+bx+c 的图象经过点A(0,a),B(1,-2)求证这个二次函数图象的对称轴是直线x=2,题目中的横线部分是被墨水污染了无法辨认的文字。 (1)根据现有信息,你能否求出题目中二次函数的解析式,若能,写出求解过程?若不能,说明理由 (2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整。 解 (1)能:根据题意有:?? ?++=-=c b a c a 2 又∵二次函数图象的对称轴为x=2 ∴-a b 2=2

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

二次函数 用待定系数法求解二次函数解析式专题讲义

待定系数法求解析式

代入方程求得解析式 例题一 1.已知二次函数y=ax2+bx+c的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为____________. 2.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1 时,y=0.求这个二次函数的解析式. 3.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是() A.y=2x2+x+2 B.y=x2+3x+2 C.y=x2-2x+3D.y=x2-3x+2 4.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点, 求出抛物线的解析式. 5.已知抛物线C 1 :y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,-3). (1)求抛物线C 1 的解析式; (2)将抛物线C 1向左平移几个单位长度,可使所得的抛物线C 2 经过坐标原点,并写出 C 2 的解析式. 2、知识点二:利用“顶点式”求二次函数的解析式 顶点式y=a(x-h)2+k的求解方法: 若是已知条件是图像上的顶点(h,k)及另外一点(x,y),则设所求二次函数y=a(x-h)2+k,将已知条件(x,y)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式 例题二 1.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=2(x+1)2+8 B.y=18(x+1)2-8 C.y=(x-1)2+8 D.y=2(x-1)2-8 2.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c的值分别是() A.b=2,c=4 B.b=2,c=-4 C.b=-2,c=4D.b=-2,c=-4 3.在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二 次函数的解析式. 4.已知抛物线经过两点A(1,0),B(0,3),且对称轴是直线x=2,求其解析式. 5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过 A(-1,0),B(0,-3)两点,则这条抛物线的解析式为 3、知识点三:利用“交点式”求二次函数的解析式 交点式y=a(x-x 1)(x-x 2 )的求解方法: 若是已知条件是图像上抛物线与x轴的交点(x1,0)、(x2,0)及另外任意一点(x3,y3),则设所求二次函数y=a(x-x1)(x-x2),将已知条件(x3,y3)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式 例题三 1.如图,抛物线的函数表达式是() A.y=x2-x+4 B.y=-x2-x+4 C.y=x2+x+4 D.y=-x2+x+4

二次函数专题讲解

二次函数专题讲解 一、知识综述: 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:() k h x a y +-=2 的形式,其中a b a c k a b h 4422 -=-=,。 3.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+? ?? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直 线h x =. 4.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2 ;③()2 h x a y -=;④()k h x a y +-=2 ; ⑤c bx ax y ++=2 . 它们的图像特征如下: 函数解析式 开口方向 对称轴 顶点坐标 2ax y = 当0>a 时 开口向上 当0

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

二次函数解析式专题训练

二次函数解析式专题训练 一、填空 (1)一般式:_______________ (a≠0) (2)顶点式:_______________ (a≠0) (3)交点式:_______________ (a≠0) (4)当已知抛物线上任意三点时,通常设为一般式 y=_______________ (a≠0)形式。 (5)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式 y=_______________ (a≠0)形式。 (6)当已知抛物线与 x 轴的交点或交点横坐标时,通常设为两根式 y=a_______________ (a≠0)。 二、解答 根据下列条件求二次函数解析式 (1)已知一个二次函数的图象经过了点 A(0,-1),B(1,0),C(-1,2); (2)已知抛物线顶点 P(-1,-8),且过点 A(0,-6);

(3)二次函数图象经过点 A(-1,0),B(3,0),C(4,10); (4)已知二次函数的图象经过点(4,-3),并且当 x=3 时有最大值 4; (5)已知二次函数的图象经过一次函数 y=—x+3 的图象与 x 轴、轴的交点, y 且过(1, 2) (6)已知抛物线顶点(1,16),且抛物线与 x 轴的两交点间的距离为 8; (7)如图所示,、已知抛物线的对称轴是直线 x=3,它与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,点 A、C

的坐标分别是(8,0)(0,4),求这个抛物线的解析式。 三、拓展升华 1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数的解析式是 _______________。 2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________。 3、已知二次函数 y=x2+px+q 的图象的顶点是 (5,-2),那么这个二次函数解析式是_______________。 4、已知二次函数 y=ax2+bx+c 的图象过 A(0,-5),B(5,0)两点,它的对称轴为直线 x =2,那么这个二次函数的解析式是_______________。 5、已知二次函数图象与 x 轴交点(2,0)(-1,0)与 y 轴交点是(0,-1),那么这个二次函数的解析式是_______________。 6、已知抛物线 y= ax2+bx+c 与 x 轴交于 A、B 两点,它们的横坐标为-1 和 3,与 y 轴的交点 C 的纵坐标为 3,那么这个二次函数的解析式是_______________。 7、已知直线 y=x-3 与 x 轴交于点 A,与 y 轴交于点B,二次函数的图象经过 A、B 两点,且对称轴方程为 x=1,那么这个二次函数的解析式是_______________。

二次函数复习专题讲义

第1-3讲 二次函数全章综合提高 【知识清单】 ※一、网络框架 ※二、清单梳理 1、一般的,形如2 (0,,,)y ax bx c a a b c =++≠是常数的函数叫二次函数。例如 22221 2,26,4,5963 y x y x y x x y x x =-=+=--=-+-等都是二次函数。注意:系数a 不能为零,,b c 可以为零。 2、二次函数的三种解析式(表达式) 2(0)0=00=0000000y ax a y a y a y a x y x x y x a x y x x y x ?=≠???? ><>???? <<>??最小值最大值概念:形如的函数简单二次函数图像:是过(0,0)的一条抛物线 对称轴:轴性质最值:当时,;当时,当时,在对称轴左边(即),随的增大而减小。在对称轴右边(即),随的增大而增大。 增减性当时,在对称轴左边(即),随的增大而增大。在对称轴右边(即),随的增大而减小。二次函数2222(0)004242440=0=440y ax bx c a a a b ac b a a b x a ac b ac b a y a y a a a ???????? ??????????=++≠?><>最小值最大值概念:形如的函数,注意还有顶点式、交点式以及它们之间的转换。开口方向:,开口向上;,开口向下。图像:是一条抛物线顶点坐标:(-,)对称轴:-最值:当时,,当时,一般二次函数性质:当时,在对称轴左增减性:22022b b x y x x y x a a b b a x y x x y x a a ????????????? ?? ?????????????????<>??????????<<>????????????????边(即-),随的增大而减小。在对称轴右边(即-),随的增大而增大。当时,在对称轴左边(即-),随的增大而增大。在对称轴右边(即-),随的增大而减小。待定系数法求解析式应用与一元二次方程和不等式的关系建立函数模型解决实际问题???? ???? ??????????????????? ?? ????

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

求二次函数解析式的几种方法

沁乐教育 沁心学习乐在其中 2015年秋季九年级数学辅导资料 第二讲函数图像性质及应用 学校:姓名:

二次函数的图象与基本性质 (一)、知识点回顾 【知识点二:抛物线的图像与a 、b 、c 关系】 (1) a 决定抛物线的开口方向:a>0,开口向 ________ ;a<0,开口向 ________ (2) c 决定抛物线与 ________的位置:c>0,图像与y 轴的交点在___________; c=0,图像与y 轴的交点在___________;c<0,图像与y 轴的交点在___________; (3)a ,b 决定抛物线对称轴的位置,我们总结简称为:___________; (4)△=b 2 -4ac 决定抛物线与________交点情况: △=b 2 -4ac ?? ???<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000 【知识点三:二次函数的平移】

设0,0>>n m ,将二次函数2 ax y =向右平移m 个单位得到___________;向左平移m 个单位得到___________;向上平移n 个单位得到___________;向下平移n 个单位得到___________。简单总结为___________,___________。 (注意:要用以上方法对二次函数图象进行平移,要先化成顶点式再操作) 【知识点四:二次函数与一元二次方程的关系】 二次函数)0(2 ≠++=a c bx ax y ,当0=y 时,即变为一元二次方程 )0(02≠=++a c bx ax ,从图象上来说,二次函数)0(2≠++=a c bx ax y 的图象与x 轴的 交点的横坐标x 的值就是方程)0(02 ≠=++a c bx ax 的根。 【知识点五:二次函数解析式的求法】 (1) 知抛物线三点,可以选用一般式:c bx ax y ++=2 ,把三点代入表 达式列三元一次方程组求解; (2) 知抛物线顶点或对称轴、最大(小)值可选用顶点式: k h x a y +-=2)(;其中抛物线顶点是),(k h ; (3) 知抛物线与x 轴的交点坐标为)0,(),0,(21x x 可选用交点式: ) )((21x x x x a y --=,特别:此时抛物线的对称轴为直线 )(2 1 21x x x += (二)、感悟与实践 例1: (1)求二次函数y =x 2 -4x +1的顶点坐标和对称轴. (2)已知二次函数y =-2x 2 -8x -6,当___________时,y 随x 的增大而增大;当x =________时,y 有_________值是___________. 变式练习1-1:二次函数y =-x 2 +mx 中,当x =3时,函数值最大,求其最大值.

二次函数专题讲座(完整资料).doc

【最新整理,下载后即可编辑】 二次函数专题讲座 一、定义型问题 1、小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a 1x 2+b 1x+c 1(a 1≠0,a 1,b 1,c 1是常数)与y=a 2x 2+b 2x+c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个函数互为“旋转函数”. 求函数y=﹣x 2+3x ﹣2的“旋转函数”. 小明是这样思考的:由函数y=﹣x 2+4x ﹣3可知,a 1=﹣1,b 1=4,c 1=﹣3,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题: (1)直接写出函数y=﹣x 2+4x ﹣3的“旋转函数”; (2)若函数2335y x mx =-+-与23y x nx n =-+互为“旋转函数”,求2015415m n +() 的值; (3)设点A (m,n )在抛物线上L :2y ax bx c =++的图像上,证明:点A 关于原点的对称点在抛物线L 的“旋转函数”上。 (4)已知函数1142 y x x =-+()(﹣)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数1142 y x x =-+()(﹣)互为“旋转函数”。 2、如果二次函数的二次项系数为l ,则此二次函数可表示为y=x2+px+q ,我们称 [p ,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3]. (1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标. (2)探究下列问题: ①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题 (一)用对称比较大小 例1、已知二次函数y=x2-3x-4,若x 2-3/2>3/2-x 1 >0,比较y 1 与y 2 的大小 解:抛物线的对称轴为x=3/2,且3/2-x 1>0,x 2 -3/2>0,所以x 1 在对称轴的左侧,x 2 在对称 轴的右侧, 由已知条件x 2-3/2>3/2-x 1 >0,得:x2到对称轴的距离大于x 1 到对称轴的距离,所以y 2 > y 1 (二)用对称求解析式 例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。 解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为: x 1=-1-3=-4,x 2 =-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题 例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于() A. 2 B. 4 C. 3 D. 5 解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3) B.(3,2) C.(3,3) D.(4,3)

二次函数解析式的求法专题

1 / 1 二次函数解析式的求法专题 一、一般式:(利用图像上的三点) 1、根据下列条件求关于x 的二次函数的解析式:(1)图象经过(0,1)(1,0)(3,0);(2)当x=1时,y=0;x=0时,y= -2,x=2 时,y=3 二、顶点式: 1、 对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 . 2、根据下列条件求关于x 的二次函数的解析式:(1)当x=3时,y 最小值=-1,且图象过(0,7);(2)图象过点(0,-2) (1,2)且对称轴为直线x=23 ;(3)抛物线顶点坐标为(-1,-2)且通过点(1,10) 2.1、已知二次函数的图象顶点是(-1,2),且经过(1,-3),求这个二次函数。 3、一个二次函数的图象顶点坐标为(2,1),形状与抛物线y= - 2x 2 相同,这个函数解析式为____________ 三、交点式: 1、 当二次函数图象与x 轴交点的横坐标分别是x 1= -3,x 2=1时,且与y 轴交点为(0,-2),求这个二次函数的解析式 1.1、已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。 2、抛物线与x 轴的交点横坐标为1和5,并且经过点(0,6),求这个二次函数的关系式。 四、用距离来表示: 1、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = ,c = . 五、平移型: 1、抛物线y=21 x 2向上平移2个单位长度后得到新抛物线的解析式为____________。 2、把抛物线y=3x 2先向左平移3个单位,再向上平移2个单位,所得抛物线的解析式是 3、抛物线23x y =的图象向右移动两个单位,再向下移动一个单位,这时抛物线的解析式为 _______ 4、把抛物线c bx x y ++=2的图像向右平移3个单位,在向下平移2个单位,所得图像的解析式是532+-=x x y , 则有( ) A .b =3,c =7 B .b =-9,c=-15 C .b =3,c =3 D .b=-9,c =21 5、将抛物线y=-2x 2+4x 向上平移3个单位,再向左平移2个单位得到抛物线的解析式为 . 6、把抛物线y= 12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 六、定义型: 1、当_____=m 时,函数21(1)m y m x +=-是二次函数,它的开口_______。 2、当m=_________时,函数y = (m 2 -4))3(42-+--m x m m x + 3是二次函数,其解析式是__________________, 3、若抛物线2432(5)m m y x m --=+-的顶点在x 轴下方,则m 的值为 ( ) (A) m=5 (B)m=-1 (C) m=5或m=-1 (D) m=-5 七、对称型: 1、把函数y=-2x 2的图象沿x 轴对折,得到的图象的解析式为( )。 A 、y=-2x 2 B 、y=2x 2 C 、y=-2(x+1)2 D 、y=-2(x -1)2 2、抛物线2(2)y x =+关于x 轴对称的抛物线的解析式是_________________。

九年级二次函数题型总结

. : .: 增大而减小随在对称轴右侧,增大而增大;随在对称轴左侧,开口向下增大而增大随在对称轴右侧,增大而减小;随在对称轴左侧,开口向上x y x y x y x y 一、二次函数的定义 1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x(x +1) B .xy =1 C .y =2x 2 -2(x +1) 2 D .132 +=x y 2.当m 时,函数y =(m -2)x 2 +4x -5(m 是常数)是二次函数. 3.若1 222 )3(---=m m x m m y 是二次函数,则m = . 4.若函数y =3x 2 的图象与直线y=kx +3的交点为(2,b),则k= ,b = . 5.已知二次函数y =―4x 2-2mx+m 2与反比例函数24 m y x +=的图象在第二象限内的一个交点的横坐标是―2,则m 的值是 . 二、二次函数的图象与性质 ) (44)()(22),() 44,2)(2 2 2 2 y x a b a c y k y h x a b x h x a b x k h a b a c a b a a k h x a y c bx ax y 代入求或将值小最大值小最大时,最值:当时, 最值:当对称轴:对称轴:顶点顶点(开口方向开口方向公式-===-==- =--↓↓+-=→----++= 1.对于抛物线y =ax 2,下列说法中正确的是( ) A .a 越大,抛物线开口越大 B .a 越小,抛物线开口越大 C .|a |越大,抛物线开口越大 D .|a |越小,抛物线开口越大 2.下列说法中错误的是( ) A .在函数y =-x 2中,当x =0时,y 有最大值0 B .在函数y =2x 2 中,当x >0时,y 随x 的增大而增大 C .抛物线y =2x 2,y =-x 2,22 1x y -=中,抛物线y =2x 2的开口最小,抛物线 y =-x 2的开口最大 D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点 3.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(3,5) B .开口向上,对称轴x =3,顶点坐标为(3,5) C .开口向上,对称轴x=-3,顶点坐标为(-3,5) D .开口向下,对称轴x=-3,顶点坐标为(-3,-5) 4.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( ) A .(-2,1) B .(2,1) C .(2,-1) D .(1,2) 5.已知二次函数y =x 2-4x +5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1) 6.抛物线y=x 2+2x-1的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. 7.抛物线c bx x y ++=23的顶点坐标为)0,3 2 (,则b= ,c= . 8.函数y =x 2―2x -l 的最小值是 ;函数y =-x 2+4x 的最大值是 . 9.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a = . 配方

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

浙江省2017—2019年中考数学真题汇编专题5:二次函数(解析卷)

浙江省2017—2019年中考数学真题汇编专题5:二次函数 姓名:__________班级:__________考号:__________ 一、、选择题(本大题共10小题,每小题3分,共30分) 1.(2019年浙江省温州市)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法 正确的是() A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣2 【考点】二次函数的性质,二次函数的最值 【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答. 解:∵y=x2﹣4x+2=(x﹣2)2﹣2, ∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2, 当x=﹣1时,有最大值为y=9﹣2=7. 故选:D. 【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键. 2.(2019年浙江省绍兴市)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3) (x﹣5),则这个变换可以是() A.向左平移2个单位B.向右平移2个单位 C.向左平移8个单位D.向右平移8个单位 【考点】二次函数图象与几何变换 【分析】根据变换前后的两抛物线的顶点坐标找变换规律. 解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16). y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16). 所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5), 故选:B. 【点评】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 3.(2019年浙江省嘉兴市)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论: ①这个函数图象的顶点始终在直线y=﹣x+1上, ②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形, ③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2, ④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.

(完整word)自己总结很经典二次函数各种题型分类总结,推荐文档

二次函数题型分类总结 题型1、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 5、已知函数y=(m -1)x 21 m +5x -3是二次函数,求m 的值。 题型2、二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2 -6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2 +(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口_______. 10.已知二次函数y=x 2 -2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 题型3、函数y=ax 2+bx+c 的图象和性质 1.抛物线y=x 2 +4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2 +8x -2; (3)y=-14 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2 -3x+5,试求b 、c 的值。 6.把抛物线y=-2x 2 +4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。 7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元? 题型4、函数y=a(x -h)2的图象与性质 1.填表:

相关文档
最新文档