微型电磁离合器

微型电磁离合器
微型电磁离合器

工作原理

微型电磁离合器即小电磁离合器,是非标件产品,采用的是直流DC24V。微型电磁离合器靠线圈的通断电来控制离合器的接合与分离,线圈通电时产生磁力吸合“衔铁”片,离合器处于接合状态;线圈断电时“衔铁”弹回,离合器处于分离状态。在起动和停止均可实现良好的应答性能有稳定的重复动作时间。微型电磁离合器设计为最适合于办公设备等一体化的小型化及轻量化设计。转矩的起动及消失快速,可确保准确无误却运转。构造为安装到套管轴上的线圈静止型一体构造,可以容易、快捷方便地插入D切断形状的轴中被固定,因此在安装简单。

一、用途:

连接、切离、变速、高频运转、分度、转动、缓冲起动、过负荷保护及其他等,广泛应用于打印机、复印机、传真机、等办公设备及通信机械、其他电子设备等。

二、特点:

具有体积小、重量轻、安装简单方便、操作稳定、响应速度快、成本低、节省能源、应用广泛。运转相当平衡安静,因为衔铁是板状弹簧驱动方式,因此在旋转方向上没有齿隙,在旋转过程不产生噪音。散热能力高,并且具有良好的耐久性能。

三、使用事项:

由于微型电磁离合器没有标准的样式,属于一种特殊型的电磁离合器,根据实际设计、工艺参数等来制作。比如在安装、扭矩、尺寸及其它附件等方面,每个客户的要求都不一样。

微型电磁离合器订购需知:

1、确认扭矩参数;

2、孔径及键槽的大小

3、电压及电流参数;

4、外形规格尺寸;

5、是否附齿轮及其它要求等;

五、扭矩:

0.4Nm-10Nm,最高转速在500-3600

六、设计尺寸表:

分解如下:

更多微型电磁离合器参考https://www.360docs.net/doc/452957202.html,或者https://www.360docs.net/doc/452957202.html,。

电磁离合器的工作原理

电磁离合器的工作原理 电磁离合器的特点和工作原理电磁离合器的特点和工作原理关键词:电磁离合器摘要: 一是采用增加电磁离合器摩擦副径向尺寸的单磁路来实现。如SOMET公司的SM92、TM—11E剑杆织机的离合器,就是由SM92中的离合器采用增加径向尺寸满足TM—llE中的离合器扭矩增大需求来实现的。其离合器结构可采用非金属摩擦材料片作为摩擦副,非金属摩擦片与金属摩擦,使用寿命较长。由于离合器的寿命取决于摩擦副的使用寿命,无梭织机的可靠性取决于织机中的基础件寿命,因此采用单磁前言:一是采用增加电磁离合器摩擦副径向尺寸的单磁路来实现。如SOMET公司的SM92、TM—11E剑杆织机的离合器,就是由SM92中的离合器采用增加径向尺寸满足TM—llE中的离合器扭矩增大需求来实现的。其离合器结构可采用非金属摩擦材料片作为摩擦副,非金属摩擦片与金属摩擦,使用寿命较长。由于离合器的寿命取决于摩擦副的使用寿命,无梭织机的可靠性取决于织机中的基础件寿命,因此采用单磁路方式增加离合器摩擦副直径来增大扭矩的措施,其实质是提高了无梭织机使用的可靠性。 二是电磁离合器受无梭织机结构尺寸的限制,在离合器径向尺寸不能增加的情况下,运用多片电磁离合器磁通多次过片理论,采用双磁路离合器结构,其扭矩亦可以大为提高,满足无梭织机扭矩增大的需要。但双磁路中由于磁通两次过片,摩擦副必须选择金属材料,由此造成无梭织机因离合器摩擦副磨损太快,促使双磁路的摩擦副磨损

率极高,而导致无梭织机可靠性下降。如SMIT公司生产的FAST剑杆织机;PICANOL公司生产的GTM—A、GTM—AS剑杆织机;DORNIER公司生产的HTV—1/E、HTV—M/E等,均采用双磁路共衔铁组合离合器。还有PICANOL公司近期生产的新型DELTA喷气织机中的制动器也选用双磁路结构的摩擦副,SMIT公司FAST中的剑杆织机电磁离合器也选用双磁路结构的摩擦副,以适应该类织机在不增加摩擦副径向尺寸下,满足织机增大扭矩的需求。 电磁离合器的工作原理电磁离合器的主动部分和从动部分借接触面间的摩擦作用,或是用液体作为传动介质(液力偶合器),或是用磁力传动(电磁离合器)来传递转矩,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又答应两部分相互转动。振动电机,仓壁振动器-海安县蓝天机电制造有限公司目前在汽车上广泛采用的是用弹簧压紧的摩擦(简称为摩擦离合器)。 发动机发出的转矩,通过飞轮及压盘与从动盘接触面的摩擦作用,传给从动盘。当驾驶员踩下踏板时,通过机件的传递,使膜片弹簧大端带动压盘后移,此时从动部分与主动部分分离。 磁粉离合器摩擦应能满足以下基本要求: (1)保证能传递发动机发出的最大转矩,并且还有一定的传递转矩余力。 (2)能作到分离时,彻底分离,接合时柔和,并具有良好的散热能力。 (3)从动部分的转动惯量尽量小一些。这样,在分离离合器换

电磁离合器控制电路教程文件

电磁离合(制动)器控制电路 电磁离合(制动)器线圈供电均为直流电源,其容量应大于相应规格离合(制动)器线圈消耗的功率(PH),并保证离合(制动)器线圈两端的工作电压为相应规格的额定电压UH。 当无法从电网获取电能时,可用蓄电池组作为离合(制动)器的供电电源。 <一> 基本控制电路 1、离合(制动)器 控制电路(图1)及 离合制动器总成控 制电路(图2) B-变压器 Z-整流器 K、K1、K2-转换开关、 按钮或接触器触点 D L -离合器线圈 D Z -制动器线圈 R O -电阻 D -二极管 电阻Ro与二极管Do是用来保护励磁线圈的,即在断电时感应过电压不致击穿线 圈绝缘而设置的。电阻Ro的取值一般为离合(制动)器线圈电阻值(R=U H 2/P H ) 的(4~10)倍,二极管Do为离合(制动)器线圈励磁电流(I=P H /U H )的(0.5~ 1)倍,反向电压在200V以上。 2、失电制动器基本 控制电路(图3) Rf-分压电阻 C-电容 J.J1~J5-接触器触 点 D1~D5整流二极管 R X -限流电阻 B-变压器 Do-二极管 Ro-电阻 电阻Ro值一般取制动器线圈电阻(R=UH2/PH)的(4~10)倍,二极管Do为制动器线圈励磁电流(I=PH/UH)的(0.5~1)倍,反向电压在300V以上。如果制动器线圈额定电压不等于99V(或170V),可以采用变压器通过整流达到所需的电压值。也可参照图1的控制方式。

<二> 特殊控制电路 1、电磁离合(制动)器在使用时,要求接通时间短,就必须对电磁离合(制动)器励磁线圈采用快速励磁电路(图4),以提高电流的上升速度。 Rf-分压电阻 C-电容 J.J1~J5-接 触器触点 D1~D5整流 二极管 R X -限流电阻 B-变压器 Do-二极管 Ro-电阻 图4(a)、(b)、(c)三种控制方式,在回路中均串入了电阻Rf,减小了回路时间常数τ值。从而缩短了离合(制动)器的接通时间。电源电压U一般取(2~4)倍的离合(制动)器额定电压UH值或更高,视接通时间的要求来决定。电阻Rf=UH/IH,其功率P>IH(U-UH),电容C取值为(200-2000)uF,耐压取10倍以上的UH值。为避免电阻Rf上消耗功率,对功率较大的离合(制动)器,可采用图4(d)控制方式,图中Rx为限流电阻以保护半波整流二极管D5。 2、电磁离合(制动)器在使用时,要求断开时间短和消磁剩磁,就必须采用消磁电路。同时,起到了对励磁线圈和开关触点的保护作用(图5)。 J1~J5-接触 面触点 S J -时间继电 器触点 R d .R C -电阻 C-电容 图5(a)的控制方式,在消磁回路中串入电阻Rd,其值一般为(8-10)倍的离合(制动)器励磁线圈电阻值。利用时间继电SJ常闭触点的闭合得电延时断开,来控制反向消磁时间。图5(b)当离合(制动)器通电的同时,电源通过RC对电容C充电,最终达到稳定值UH,当离合(制动)器断电时,电容储存的电能对离合(制动)器反向放电。阻值RC一般为(8-10)倍的离合(制动)器励磁线圈电阻。 3、当离合(制动)器在使用时,要求接通时间快,又要求断开时间短,可采用图4与图5合理组合的控制电路。一般适用于离合(制动)器动作频率较高或定位准确的场合。

电磁离合器与超越离合器介绍

一、超越离合器原理介绍 1.超越离合器原理介绍: 利用牙的啮合、棘轮-棘爪的啮合或滚柱、楔块的楔紧作用单向传递运动或扭矩的离合器。常用的是滚柱式超越 离合器(见图[滚柱式超越离合器]),它由内圈、滚柱、外圈、弹簧和顶销等组成。一般内圈为主动件,外圈为从动件。当内圈逆时针转动时,滚柱被楔紧而带动外圈转动,离合器接合;当内圈顺时针转动时,滚柱退入宽槽部位,外圈则不动,离合器分离。如外圈由另一系统带动与内圈同向转动,当外圈转速低于内圈时,离合器即自动接合;若外圈转速高于内圈,离合器则自动分离。滚柱式超越离合器的滚柱数目较少,元件接触应力大,故承载能力低。滚柱能在滚道内自由滚转,与内、外圈接触点经常变化,磨损比较均匀,但内圈制造工艺较复杂,安装精度要求较高。楔块式超越离合器和滑块式超越离合器因楔块和滑块较多,承载能力较高,其工作原理与滚柱式离合器相似。 2.超越离合器 双向楔块超越离合器,它一端轴孔接主动轴,另一端轴孔接从动轴,当外环不动,主动轴顺时针或逆时针转动时,从动轴也同步转动,而当从动轴受外力矩的作用时,顺时针和逆时针都不能转动。常与滚珠丝杠副或其它部件配套,作为防止逆转机构,也可以单独使用作为精确定位,传递力矩或切断力矩的传递。 北京机械工业学院朱春梅

北京新兴超越科技开发公司孔庆堂孔炜朱自成 [摘要]本文介绍了楔块超越离合器国内外发展的概况,阐述楔块超越离合器的特点、结构形式及其适用范围。 关键词楔块超越离合器特点 1、楔块超越离合器的发展及其应 超越离合器是机械传动的基础件之一。它是用主、从动部件的速度变化或旋转方向的变换,具有自行离合功能的一种离合器,用途广泛。滚柱式超越离合器历史悠久,据文献报道于1878年以“换向电动机”为题载入德国DRP2804.47h5专利中,用在换向机构上。随后的近百年,滚柱超越离合器不断的发展和完善,结构型式增多,应用也较普遍。 楔块超越离合器是继滚柱超越离合器之后开发的一种新型离合器。自问世以来,以承载能力大,自锁可靠,反向解脱轻便,结构紧凑,操作方便,在机械传动中得到广泛的应用。首先美国在汽车和飞机上得到发展和推广应用。例如美国在波音707飞机和F4-C轰炸机及M102-105轻型榴弹炮上采用。在日本、德国也已广泛应用。 近年来,随着新产品开发和引进产品配套国产化的需要,楔块超越离合器得以迅速的发展,从结构、性能和可靠性等日趋完善,而且离合器的型式、规格更加齐全,产品质量逐渐提高。北京新兴超越科技开发公司生产的CK系列楔块超越离合器不但能满足国内科研和生产的需求。而且替代了引进日本、美国、意大利等国家瓦楞纸生产线和无氧铜生产线上的超越离合器,使用效果良好。目前还有出口,具有很好的发展潜力和开发前景。 楔块超越离合器常与滚珠丝杆副或其他部件配套,作为防止逆转机构,也可以单独使用,作为主动轴和从动轴之间的精确定位,传递转矩或切断转矩,具有自行离合功能的一种离合器。因此,有称谓逆止器或单向轴承。在包装机械、印刷机械、食品机械、轻工机械、农业机械、冶金矿山、石油化工、机床、汽车、兵器、航空、电站等机械设备中广泛的应用。 2、楔块超越离合器的特点 楔块超越离合器是在内环和外环间(滚道)放置楔紧元件(楔块),使其回转时在一个可以传递转矩,而在另一个具有相对空转性能。只有当内、外环转向相同,转速相等时,才能传递转矩,否则均为相对滑动,这种不传递转矩的滑动状态称之超越。 1)滚道的形状 楔块超越离合器的滚道形式有两种形式:内外环滚道均为圆形和将内环加工出若干凹圆槽。 (1)内环为整圆形(见图1a)。离合器的内外环均为光滑柱面,为了保证工作时不打滑,楔块的楔角不得超过楔块与内外环之间的最小摩擦角。设计时,一般可取3o-4o,在实用中楔合角开始时,楔角大约为2o-2.5o,当内、外环受力产生弹变形后,楔角相应增大。 (2)内环带凹圆槽形(见图1b)。楔块具有与内环圆弧槽相同的半径,使两者为面接触,改善了受力状态,提高了楔块的承载能力和使用寿命。但楔块的数量受结构的影响而有所减少。 2)楔块的形状 楔块超越离合器所用的楔块形状大都为特殊的异形,如拳形、鞋形等,设计离合器时,可根据作用要求选用不同形状的楔块。 3)楔块与滚柱式超越离合器由于内外环之间放置的楔紧元件不同,使其都具有各自的特点(如表1)。 3、楔块超越离合器选用计算 为保证离合器工作可靠,通常在设计和选用离合器时,明确离合器在传动系统中的综合功能,从传动系统总体设计考虑选择离合器的品种、型式。而规格的选定主要是根据计算转矩。 1)离合器各转矩间的关系 离合器的主参数是公称转矩,选用离合器时,各转达矩间应符合以下的关系: T

电磁驱动离合器和制动器

电磁驱动离合器和制动器 页码 概述 干式运转/湿式运转 4.03.00 电路 4.03.00 整流器 4.03.00 线圈连接 4.03.00火花淬熄 4.03.00感应电流高温保护 4.03.00反映时间 4.03.00快速啮合/制动 4.05.00慢啮合 4.06.00快速脱开 4.06.00应用示例 4.07.00 产品样本数据 多片式电磁离合器和制动器 工作原理和安装方式 4.09.00滑环多片式离合器0810(0010*)系列 4.11.00滑环多片式离合器0011-05.系列 4.13.00滑环多片式离合器0011-100系列 4.14.00多片式制动器0011-300系列 4.15.00滑环多片式制动器0006-05.系列 4.16.00 单面电磁离合器、制动器及组合式离合制 动器 工作原理 4.19.00 安装方式 4.20.00 单面电磁离合器0808-10.(0008-10.*)系列 4.23.00单面电磁离合器0808-30.(0008-30.*)系列 4.25.00单面电磁制动器0809-10.(0009-10.*)系列 4.27.00单面组合式电磁离合制动器0008-102系列 4.29.00带外壳的单面组合式电磁离合制动器0081系列 4.30.00 牙嵌式电磁离合器 设计 4.33.00安装方式 4.34.00驱动原理 4.34.00应用示例 4.35.00滑环牙嵌式离合器0812(0012*)系列 4.37.00恒定场牙嵌式离合器0813(0013*)系列 4.39.00

目录页码弹簧制动多片式双面电磁制动器 工作原理和安装方式 4.41.00应用及安装方式 4.42.00离合器制动器一起工作的时建议 4.42.00弹簧制动多片式制动器0028/0228系列 4.43.00弹簧制动双面制动器0207系列 4.45.00 SEMO制动器 弹簧制动电磁制动器,0208系列 4.49.00

电磁离合器的安装使用注意事项与方法

电磁离合器(干式单片型)工作原理: (天机传动)TJ-A型电磁离合器:线圈通电时产生磁力吸合“衔铁”片,离合器处于接合状态;线圈断电时“衔铁”弹回,离合器处于分离状态。电磁离合器一般用于环境温度-20—50%,湿度小于85%,无爆炸危险的介质中,其线圈电压波动不超过额定电压的±5%干式电磁离合器的特点 1、高速响应:因为是干式类所以扭力的传达很快,可以达到便捷的动作。 2、耐久性强:散热情况良好,而且使用了高级的材料,即使是高频率,高能量的使用,也十分耐用. 3、组装维护容易:属于滚珠轴承内藏的磁场线圈静止形,所以不需要将中蕊取出也不必利用碳刷,使用简单。 4、动作确实:使用板状弹片,虽有强烈震动亦不会产生松动,耐久性佳。 使用注意事项 1、干式电磁离合器使用时禁止加入油脂,否则将导致扭矩下降。 2、电磁离合器安装前必须清洗干净,去除防锈脂及杂物。 3、电磁离合器可同轴安装,也可以对轴安装,轴向必须固定,主动部分与从动部分均不允许有轴向窜动,对轴安装时,主动部份与从动部份轴之间同轴度应不大于0.lmm。 4、湿式电磁离合器工作时,必须在摩擦片间加润滑油,润滑方式采用(1)分浇油润滑;(2)油浴润滑,其浸入油中的部分约为离合器体积的5倍;(3)轴心供油润滑,在高速和高频动作时应采用轴心供油方法。 5、牙嵌式电磁离合器安装时,必须保证端面齿之间有一定间隙,使空转时无磨齿现象,但不得大于δ值。 6、电磁离合器及制动器为b级绝缘,正常温升40℃。极限热平衡时的工作温度不允许超过100℃,否则线圈与摩擦部分容易发生破坏。 7、电源及控制线路,离合器电源为一般为直流24伏(特殊定货除外)。它由三相或单相交流电压经降压和全波整流得到,无稳压及滤波要求,电源功率要大于电磁离合器额定功率1.5倍以上。使用半波整流电源必须加装续流二极管。 电磁离合器安装注意事项: 1、请在完全没有水分、油分等的状态下使用干式电磁离合器,如果摩擦部位沾有水分或油分等物质,会使摩擦扭力大为降低,离合器的灵敏度也会变差,为了在使用上避免这些情况,请加设罩盖。 2、在尘埃很多的场所使用时,请使用防护罩。 3、用来安装离合器的长轴尺寸请使用h6的规格。 4、考虑到热膨胀等因素,安装轴的推力请选择在0.2mm以下。 5、安装时请在机械上将吸引间隙调整为规定值的正负20%以内。 6、请使托架保持轻盈,不要使用离合器的轴承承受过重的压力。 7、关于组装用的螺钉,请利用弹簧金属片、接著剂等进行防止松弛的处理。 8、利用机械侧的框架维持引线的同时,还要利用端子板等进行确实的连接。 电磁离合器的保养与维护方法: 为了保证电磁离合器不间断的运行,必须要经常对其进行维护和保养: 1、经常在电磁离合器的可动部分添加润滑剂。 2、定期检查衔铁行程的长度。因为在离合器的运行过程中,由于剖动面的磨损,衔铁的行程长度将增大。当衔铁行程长度达不到正常值时,必须进行调整,以恢复制动面与转盘之间

微型电磁离合器

工作原理 微型电磁离合器即小电磁离合器,是非标件产品,采用的是直流DC24V。微型电磁离合器靠线圈的通断电来控制离合器的接合与分离,线圈通电时产生磁力吸合“衔铁”片,离合器处于接合状态;线圈断电时“衔铁”弹回,离合器处于分离状态。在起动和停止均可实现良好的应答性能有稳定的重复动作时间。微型电磁离合器设计为最适合于办公设备等一体化的小型化及轻量化设计。转矩的起动及消失快速,可确保准确无误却运转。构造为安装到套管轴上的线圈静止型一体构造,可以容易、快捷方便地插入D切断形状的轴中被固定,因此在安装简单。 一、用途: 连接、切离、变速、高频运转、分度、转动、缓冲起动、过负荷保护及其他等,广泛应用于打印机、复印机、传真机、等办公设备及通信机械、其他电子设备等。 二、特点: 具有体积小、重量轻、安装简单方便、操作稳定、响应速度快、成本低、节省能源、应用广泛。运转相当平衡安静,因为衔铁是板状弹簧驱动方式,因此在旋转方向上没有齿隙,在旋转过程不产生噪音。散热能力高,并且具有良好的耐久性能。 三、使用事项: 由于微型电磁离合器没有标准的样式,属于一种特殊型的电磁离合器,根据实际设计、工艺参数等来制作。比如在安装、扭矩、尺寸及其它附件等方面,每个客户的要求都不一样。 微型电磁离合器订购需知: 1、确认扭矩参数; 2、孔径及键槽的大小 3、电压及电流参数; 4、外形规格尺寸; 5、是否附齿轮及其它要求等; 。 五、扭矩: 0.4Nm-10Nm,最高转速在500-3600 六、设计尺寸表:

分解如下:

更多微型电磁离合器参考https://www.360docs.net/doc/452957202.html,或者https://www.360docs.net/doc/452957202.html,。

电磁离合器概述

电磁离合器(Electromagnetic Clutch) 电磁离合器定义: 在电磁力作用下具有离合功能的离合器。 电磁离合器分类: 干式单片电磁离合器 干式多片电磁离合器 湿式多片电磁离合器 磁粉电磁离合器 转差式电磁离合器 电磁离合器结构和工作原理 干式单片电磁离合器:线圈通电时产生磁力吸合“衔铁”片,离合器处于接合状态;线圈断电时“衔铁”弹回,离合器处于分离状态。 干式多片/湿式多片电磁离合器:原理同上,另外增加几个摩擦付,同等体积转矩比干式单片电磁离合器大,湿式多片电磁离合器工作时必须有油液冷却和润滑。 磁粉离合器:在主动与从动件之间放置磁粉,不通电时磁粉处于松散状态,通电时磁粉结合,主动件与从动件同时转动。优点:可通过调节电流来调节转矩,允许较大滑差。缺点:较大滑差时温升较大,相对价格高 转差式电磁离合器:离合器工作时,主、从部分必须存在某一转速差才有转矩传递。转矩大小取决于磁场强度和转速差。励磁电流保持不变,转速随转矩增加而剧烈下降;转矩保持不变,励磁电流减少,转速减少得更加严重。 转差式电磁离合器由于主、从动部件间无任何机械连接,无磨损消耗,无磁粉泄漏,无冲击,调整励磁电流可以改变转速,作无级变速器使用,这是它的优点。该离合器的主要缺点是转子中的涡流会产生热量,该热量与转速差成正比。低速运转时的效率很低,效率值为主、从动轴的转速比,即η=n2/n1 适用于高频动作的机械传动系统,可在主动部分运转的情况下,使从动部分与主动部分结合或分离。 主动件与从动件之间处于分离状态时,主动件转动,从动件静止;主动件与从动件之间处于接合状态,主动间带去从动件转动。 广泛适用于机床、包装、印刷、纺织、轻工、及办公设备中。 电磁离合器一般用于环境温度-20—50%,湿度小于85%,无爆炸危险的介质中,其线圈电压波动不超过额定电压的±5% 电磁离合器电磁制动器的9种基本使用方法 1.连接与切离动作:驱动部位与起动部位之间安装离合器,则不须停止驱动处,起动处会依必要反应做连接与切离的动作. 2.保持制动:为了维持惯性负荷、紧急状况、作业途中时的机器中断而使用制动器. 3. 变速:作业途中时有相互转换速度的情形、此时使用离合器、则不须关闭驱动处即可变速. 4. 正反转:负荷点的正反转切换时、配合离合器使用则驱动外只要顺向回转即可. 5. 高频运转:在快速循环中的断续运转、反复利用马达上的ON、OFF所提供的频度有限、因此使用离合器、使之迅速反应、高精度的制动. 6. 位置推算:停留于测定位置或定量的传送都须仰赖高精度定位装置、使用离合器便能达到定位或定量功能. 7. 寸动:机械开始作动与位置接合时、只须以离合器瞬时作动即可. 8. 缓冲起动、制动:减少对负荷的冲击之起动、停止,可调节转速使用,但如发热过大、应把

汽车空调电磁离合器设计

浅析汽车空调压缩机电磁离合器的设计 来源:未知本站编辑:中华论文联盟日期: 2011-08-16 23:34 点击数:257 一、汽车空调压缩机电磁离合器的工作原理 离合器线圈通电后在线圈内产生了电磁力,在电磁力的作用下,驱动盘被吸合到压缩机皮带轮的端面上,由于压缩机皮带轮是由汽车发动机驱动,在电磁吸引力的作用下,皮带轮结合面和驱动盘之间产生了强大的摩擦力,并且带动驱动盘旋转,由驱动盘带动压缩机工作。反之,线圈断电,压缩机停止工作。 一、电磁离合器的磁通回路 为了使电磁离合器的驱动盘和皮带轮具有足够的摩擦力,必须是在电磁离合器的驱动盘和皮带轮之间产生较强的磁场。线圈通电后,由铁磁物质的皮带轮、驱动盘、线圈壳体和气隙所形成的磁通的闭合路径称为磁路。该磁场的磁场强度H沿着磁力线形成闭合回路,其方向为磁力线上各个点上的切线方向。

4极电磁离合器的磁路如图1所示。6极电磁离合器的磁路如图2所示。 从图l图2的结构图中我们可以看出离合器线圈是放在U型线圈壳体里面,并且用耐热树脂密封在壳体里面的,因此泄漏到空气中的漏磁通很小,可以忽略不计。另外离合器线圈的电力是由汽车蓄电池供应,可以认为是恒稳电流,因此由恒稳电流在铁芯中产生的磁场是稳定的。 三、电磁离合器的电磁吸引力的计算 为便于分析可以由图1、图2电磁离合器线圈部分简化成为由线圈+铁芯组成的一个简单的电磁铁。当线圈中通以电流后,大部分磁通线沿铁芯、衔铁和工作气隙构成闭合回路,这部分磁路称为主磁路,还有一小部分磁通线没有经过工作气隙和衔铁,而经过空气自成回路,这部分磁通称为漏磁通。主磁通使衔铁磁化,磁化后衔铁的磁极与铁芯的磁极正好相反,相互吸引,产生吸力。但是漏磁通部通过衔铁,不会使它磁化,因此也不会产生吸力。在一般的情况下,我们总要尽量减少漏磁通。 电磁离合器在非工作状态下,驱动盘和皮带轮端面间是有间隙的,这个间隙一般为0.3-0.55mm之间。 作用在驱动盘端面上的电磁吸引力;F=B S/u牛 式中:B-线圈内部磁感应强度韦伯/平方米 S-气隙处铁芯的截面积平方米 u一空气中的磁导率 线圈内产生的磁感应强度B与导磁物质中产生的磁场强度H之间的关系式: B=HU式中;H-磁场强度 μ——铁芯的磁导率 H=NI/L式中:H-磁场强度A/M N-线圈匝数 I-电流强度A L-铁芯平均长度M 上式的具体计算可由电磁离合器的具体结构尺寸和选用材料来进行。 四、电磁离合器传递扭矩的计算 应用电磁离合器的电磁吸引力的计算可以计算出电磁离合器传递的扭矩。假设驱动盘和皮带轮之间的摩擦系数为6(6的数值,在机械加工工艺达到稳定的量产条件后,可以通过实验室实验获得)。 T=FR 6式中;T-传递扭矩N.M F--电磁吸引力N R--摩擦面的有效平均半径M 电磁吸引力的大小还和驱动盘的弹性体的材料的不同而不同,当材料和工艺条件确定后,具体数值可以通过实验获得。五、在进行零部件结构设计时需要注意的几个问题 1.电磁离合器皮带轮轴承 皮带轮轴承的工作环境是非常恶劣的,既要承受冬季零下-40℃的严寒,又要承受夏季+40℃的酷暑,又要承受4000-6500r/min 的连续运转和6500-8000r/min的短时间运转,一般轴承很难胜任。因此在轴承的选择上一定要慎重。 2.线圈 由H级耐高温高强度的圆漆包线制成,需承受1 50℃连续高温。线圈的温升必须满足下式;T= (R-R)(234.5+T)/R<85℃ 式中;R一室温电阻 R--115℃电阻 3.磁路材料 构成磁路的皮带轮、线圈壳体、驱动盘必须用高导磁材料制成。现在的线圈壳体由08AL或10钢制成,皮带轮和驱动盘由10-20钢制成。计算表明,在磁路的总磁压降中,发生在皮带轮、驱动盘、线圈壳体中的磁压降只占20%,其余80%损耗在气隙中。4.隔磁环和磁极 由于前盖是非磁性材料(铝合金),磁力线不可能穿入,所以磁力线只能如图1、图2所示,穿过最小的空气气隙形成一条封闭回路。 现在使用的电磁离合器有4级和6级两种,4级离合器有4对磁极,6级离合器有6对磁极,级数越多,电磁吸引力越大。但是级数多离合器的结构就复杂,有时还受到尺寸的影响不能把离合器做的很大。因此目前电磁离合器多采用4对磁极。

电磁离合器使用说明书—天机传动

天机传动天机传动 电磁离合器使用说明书—天机传动 电磁离合器是靠线圈的通断电来控制离合器的接合与分离,线圈通电时产生磁力吸合“衔铁”片,离合器、制动器处于接合状态;线圈断电时“衔铁”弹回,离合器制动器处于分离状态,电磁离合器适用于高频动作的机械传动系统,可在主动部分运转的情况下,使从动部分与主动部分结合或分离。电磁离合器适用于高频动作机械传动系统中离合器分离后的制动、保持制动、高频度运转、定位、缓冲起动等。电磁离合器使用说明书。 电磁离合器在安装使用时应注意以下事项: 1.安装电磁离合器时保证磁轭和转子、以及动盘的同轴度和轴的垂直度。

天机传动天机传动 2.电磁离合器使用的材质为软质材料,安装时应注意坠落、碰撞或用力过大,以免使产品发生变形并影响使用。电磁离合器使用说明书。 型號TJ-A10.6KG 1.5 KG 2.5 KG 5 KG10 KG20 KG40 KG 靜摩擦轉矩 5.5 11 22 45 90 175 350 動摩擦轉矩 5 10 20 40 80 160 320 功率(W)11 15 20 25 35 45 60 A 63 80 100 125 160 200 250 B 67.5 85 106 133 169 212.5 264 C1 80 100 125 150 190 230 290 C2 72 90 112 137 175 215 270 C3 35 42 52 62 80 100 125 D1 12|15 15|20 20|25 25|30 30|40 40|50 50|60 D2 12|15 15|20 20|25 25|30 30|40 40|50 50|60 E 27.5 31 41 49 65 83 105 F 23 28 40 45 62 77 100 Y 5 6 7 7 9.5 9.5 11.5 H 24 26.5 30 33.5 37.5 44 51 J 3.5 4.3 5 5.5 6 7 8 K 2 2.5 3 3.5 4 5 6 L1 43.05 51.3 60.9 70.8 85 101.2 118.5 L2 31.55 35.3 40.9 46.8 54 65.2 75.47 M1 22 24 27 30 34 40.15 47.15

电磁离合器

电磁离合器 电磁离合器是指由电磁力产生压紧力的摩擦式离合器。由于能实现远距离操纵,控制能量小,便于实现机床自动化,同时动作快,结构简单,也获得了广泛的应用。 简介 电磁离合器又称电磁联轴节。它是应用电磁感应原理和内外摩擦片之间的摩擦力,使机械传动系统中两个旋转运动的部件,在主动部件不停止旋转的情况下,从动部件可以与其结合或分离的电磁机械连接器,是一种自动执行的电器。电磁离合器可以用来控制机械的起动、反向、调速和制动等。它具有结构简单、动作较快、控制能量小、便于远距离控制;体积虽小,能传递较大的转矩;用作制动控制时,具有制动迅速且平稳的优点,所以电磁离合器广泛地应用于各种加工机床和机械传动系统中。 电磁离合器的作用是将执行机构的力矩(或功率)从主动轴一侧传到从动轴一侧。它广泛用于各种机构(如机床中的传动机构和各种电动机构等),以实现快速启动、制动、正反转或惆速等功能。由于电磁离合器易于实现远距离控制,和其他机械式、液压式或气动式离合器相比操作要简便得多,所以它是自动控制系统中一种重要的元件。 特点 1、高速响应:因为是干式类所以扭力的传达很快,可以达到便捷的动作。 2、耐久性强:散热情况良好,而且使用了高级的材料,即使是高频率,高能量的使用,也十分耐用. 3、组装维护容易:属于滚珠轴承内藏的磁场线圈静止形,所以不需要将中蕊取出也不必利用碳刷,使用简单。 4、动作确实:使用板状弹片,虽有强烈震动亦不会产生松动,耐久性佳。 类型 电磁离合器有固定线圈式和旋转线圈式两种,前者电磁线圈固定在压缩机壳体上不转动,后者电磁线圈与带盘连在一起是转动的。 (1)固定线圈式离合器 电磁线圈安装在压缩机端盖上不转动,,转子靠轴承和卡簧保持在电磁线圈上面,转子的外部即为带盘。衔铁(离合器板)装在压缩机曲轴的端头。固定线圈式电磁离合器主要由带轮、电磁线圈、压力盘、轴毂总成组成,电磁线圈的一端搭铁,另一端经空调继电器与电源相连。当接通空调开关时,空凋继电器接通,压缩机的电磁线圈通电,产生较强的磁场,使压缩机的电磁离合器从动盘和自由转动的带轮吸合,从而驱动压缩机主轴旋转,制冷系统

电磁式离合器

电磁式离合器 一、定义:在电磁力作用下具有离合功能的离合器。 二、电磁离合器简介 电磁离合器可分为:干式单片电磁离合器,干式多片电磁离合器,湿式多片电磁离合器,磁粉离合器,转差式电磁离合器等。 1干式单片电磁离合器:线圈通电时产生磁力吸合“衔铁”片,离合器处于接合状态;线圈断电时“衔铁”弹回,离合器处于分离状态。线圈通电时产生磁力吸合“来令片(摩擦片)”,离合器处于接合状态,与被传动结构结合;线圈断电时“来令片(摩擦片)”弹回,离合器处于分离状态,与被传动结构分离。 干式单片电磁离合器亦可俗称之为干式电磁离合器或者单片电磁离合器等,至于如何地正确使用,这得根据机器的要求,并适当地选型离合器的型式与型号工,所以得先对电磁离合器的特性有所有了解方可对后续的电磁离合器选型。 干式单片电磁离合器(摩擦式类型),工作方式有通电工作与断电工作两种,其摩擦力矩分为静摩擦力矩和动摩擦力矩两类。而摩擦式电磁离合器的力矩与材料的摩擦系数、摩擦片有效半径、摩擦片面数以及摩擦面上的压力有关。因摩擦系数会随摩擦材料的材质而异,即便是同一种材料,由于摩擦片工作面的光洁度、热处理、表面温度、滑移的速度不同,电磁离合器的摩擦系数也不一样。 2、3干式多片和湿式多片电磁离合器:原理同上,另外增加几个摩擦付,同等体积转矩比干式单片电磁离合器大,湿式多片电磁离合器工作时必须有油液冷却和润滑。 4磁粉离合器:在主动与从动件之间放置磁粉,不通电时磁粉处于松散状态,通电时磁粉结合,主动件与从动件同时转动。优点:可通过调节电流来调节转矩,允许较大滑差。缺点:较大滑差时温升较大,相对价格高 5转差式电磁离合器:离合器工作时,主、从部分必须存在某一转速差才有转矩传递。转矩大小取决于磁场强度和转速差。励磁电流保持不变,转速随转矩增加而剧烈下降;转矩保持不变,励磁电流减少,转速减少得更加严重。 转差式电磁离合器由于主、从动部件间无任何机械连接,无磨损消耗,无磁粉泄漏,无冲击,调整励磁电流可以改变转速,作无级变速器使用,这是它的优点。该离合器的主要缺点是转子中的涡流会产生热量,该热量

电磁离合器的工作原理

电磁离合器的工作原理 令狐采学 电磁离合器的特点和工作原理电磁离合器的特点和工作原理关键词:电磁离合器摘要: 一是采用增加电磁离合器摩擦副径向尺寸的单磁路来实现。如SOMET公司的SM92、TM—11E剑杆织机的离合器,就是由SM92中的离合器采用增加径向尺寸满足TM—llE中的离合器扭矩增大需求来实现的。其离合器结构可采用非金属摩擦材料片作为摩擦副,非金属摩擦片与金属摩擦,使用寿命较长。由于离合器的寿命取决于摩擦副的使用寿命,无梭织机的可靠性取决于织机中的基础件寿命,因此采用单磁前言:一是采用增加电磁离合器摩擦副径向尺寸的单磁路来实现。如SOMET公司的SM92、TM—11E剑杆织机的离合器,就是由SM92中的离合器采用增加径向尺寸满足TM—llE中的离合器

扭矩增大需求来实现的。其离合器结构可采用非金属摩擦材料片作为摩擦副,非金属摩擦片与金属摩擦,使用寿命较长。由于离合器的寿命取决于摩擦副的使用寿命,无梭织机的可靠性取决于织机中的基础件寿命,因此采用单磁路方式增加离合器摩擦副直径来增大扭矩的措施,其实质是提高了无梭织机使用的可靠性。 二是电磁离合器受无梭织机结构尺寸的限制,在离合器径向尺寸不能增加的情况下,运用多片电磁离合器磁通多次过片理论,采用双磁路离合器结构,其扭矩亦可以大为提高,满足无梭织机扭矩增大的需要。但双磁路中由于磁通两次过片,摩擦副必须选择金属材料,由此造成无梭织机因离合器摩擦副磨损太快,促使双磁路的摩擦副磨损率极高,而导致无梭织机可靠性下降。如SMIT公司生产的FAST剑杆织机;PICANOL 公司生产的GTM—A、GTM—AS剑杆织机;DORNIER公司生产的HTV—1/E、HTV—M/E等,均采用双磁路共衔铁组合离合器。还有PICANOL公司近期生产的新型DELTA喷

DLM10系列电磁离合器

图1 一、 用途 DLM10系列(EKE 系列)电磁离合器是一种用于机械传动系统中,借助电磁力操作使旋转运动的驱动侧部分与从动侧部分相结合或分离,从而实现动力和运动传递的执行元件。 离合器的标准工作电压为直流24伏。在一般情况下,只需采用开关、按钮、接触器、行程开关等普通电器元件组成的简单电路,就能方便地对其实现自动、远动控制,从而满足机械传动系统的变速、换向及定位等各种要求。 离合器分为干式和湿式工作两个系列。DLM10-□为湿式工作系列,DLM10-□.G 为干式工作系列。湿式工作的离合器必须用在有油润滑冷却的场合;干式工作的离合器用于无润滑的场合,且应防止油脂类物质对摩擦片表面的沾污。 该系列离合器属磁通不经过摩擦片组的结构形式,断电后的残余力矩小,动作时间快,特别适用于对动作时间有要求的场合使用,在使用中,摩擦片磨损到一定程度,出现力矩下降时,需将工作气隙调制表2的规定值,调整方法在本说明书中邮详细说明。 二、结构和动作原理 1.铜套 2.联结 3.可调衔铁。4摩擦片组 5.复位弹簧6.线圈7.滑环8磁轭 当离合器线圈断电后,电磁力消失,复位弹簧将衔铁弹回到通电前的位置,摩擦片组呈现自然松散状态,从而终止力矩的传递。 离合器的结构如图1所示,主要由装有线圈的磁轭,可调整的衔铁、联结、 摩擦片组、铜套、复位弹簧及滑环等部分组成。摩擦片组由若干外摩擦片和内 摩擦片组成,内外摩擦片交替排列与磁轭外齿上。外片外圆周上的六个开口槽可在联结的六个爪上自由移动;内片内圆周上的内齿可在磁轭外齿上自由移动 当离合器线圈通电后,产生电磁力将衔铁吸向磁轭,并将其间的片组压紧,力矩便借助与内片和外片之间的摩擦力从磁轭传递到联结或从联结传递到磁轭从而实现动力的传递。

电磁离合器使用方法

一、电磁离合器的基本使用方法 所有单片电磁离合器与制动器及其组合离合器,失电制动器的摩擦片均在没有油脂类物质干扰干式的条件下使用,一旦油脂类物质进入摩擦副之间扭矩将急骤下降,甚至吸合的离合器和制动器,将有可能产生打滑的危险。 按电磁离合器与制动器在机械传动系统的作用,往往很难将各种使用情况分成各个单一的使用目的。为使用分类方便起见归纳起来按其主要使用目的来区分,可将电磁离合器使用分类如下: 连接、分离、起动、停止、制动、保持、分度、微动、定位、变速、分配、正反转、缓冲起动、缓冲制动、对位停止、紧急停止、过载保护、张力控制、高频度运转、回转一圈停止、超程、分支传动、单向旋转、防止反转等到。 1 连接、分离 离合器安装在驱动和从动部分之间,驱动源转动,从动部分根椐需要连接或分离。 2 正反转 在离合器驱动侧回转方向不改变的条件下,由离合器离合作用而使负载侧驱动轴正反转。 3 变速 在离合器驱动侧不停止运动的条件下,可实现几乎没有冲击地快速完成大范围速度的变换。

4 微动 在较大起动负荷下起动和对位置时,用离合器与制动器可有效实现微小的缓慢作用。 5 定位、分度 定位是利用离合器、制动器实现将目标准确地停止在给定的位置上,有直级移动的定位和旋转角的定位停止。分度是指通过有规律结出的信号,控制离合器与制动器的离与合,重复一定量的旋转或进给、有定角度的驱动、定尺寸切断、等间矩印刷和定量填充等。 6 缓冲启动、停止 缓冲启动与停止分别是控制电磁离合器在按合过程中动扭矩而使被驱动件缓慢加速慢慢地达到全速和慢慢制动作用使旋转停止。其目的是为了减小惯性负载冲击,若制动器发热量太大,则需要缩短打滑时间。

电磁离合器的结构与工作原理

电磁离合器的结构与工作原理 电磁离合器是利用电磁铁吸力操纵的离合器,属于一种自动电器。它能按照工作的需要,随时将一个转动轴的动力传递给另一个转动轴。电磁离合器按其工作原理分为摩擦片式、铁粉式、感应转差式牙嵌式等几种。这里只介绍国产DLNI 0型摩擦片式电磁离合器,这种离合器常用来控制机床某些部件工作时的起动、反向、变速及制动等。DLM 0型摩擦片式电磁离合器的结构。它由摩擦片、直流电磁铁、传动轴、内、外摩擦片组来传递转动力矩。拨盘等部分组成,通过内摩擦片10的外圆直径较小,内孔有花键槽,套在花键轴13上,随花键轴一起转动。外摩擦片9的内孔较大,装有弹簧垫圈8,外圆有花键槽,套在拨盘11上,拨盘用来固定机床设备上的齿轮15,摩擦片的片数决定于传递力矩的大小。 磁扼7、线圈3和衔铁17, 18组成电磁铁。磁扼7和衔铁17, 18可以沿花键轴的轴向在一定范围内移动。衔铁吸合时行程的大小用固定板4来调节,固定板靠止动螺丝6固定在花键上。调节好衔铁吸合行程并固定后,磁辘7就只能随花键轴旋转,不能再沿着轴向移动。衔铁的退后行程,由止推环12的位置决定。衔铁与花键轴间的非磁性套16是用来减少磁通沿轴泄漏的。线圈装在磁扼的环形槽内,一端通过径向孔焊在接触环上,通过电刷与电源正极联结,另一端焊在磁扼上,磁扼和机床接电源负极。线圈的额定电压为24伏. 当线圈通电时,磁扼吸合衔铁,将摩擦片组压紧,依靠内、外摩擦片间的摩擦力,将拨盘(由齿轮带动)的转动力矩通过外摩擦片传给内摩擦片,再由内摩擦片带动花键轴转动,从而实现了转矩的传递。在线圈断电后,由于外摩擦片间的弹簧垫圈8的作用,使内、外摩擦片分离而停止传递转矩衔铁内环与衔铁外环之间是滑动连接,这样可以调节摩擦片组沿外环和内环的轴向间距。

相关文档
最新文档