高中物理第5章热力学定律第3、4节热力学第二定律熵—无序程度的量度教学案鲁科版选修3-3

高中物理第5章热力学定律第3、4节热力学第二定律熵—无序程度的量度教学案鲁科版选修3-3
高中物理第5章热力学定律第3、4节热力学第二定律熵—无序程度的量度教学案鲁科版选修3-3

第3、4节热力学第二定律__熵—无序程度的量度

1.凡是与热现象有关的宏观过程都具有方向性。

2.热力学第二定律有两种表述,克劳修斯表述:

“不可能使热量从低温物体传向高温物体而不引

起其他变化”,开尔文表述:“不可能从单一热

源吸收热量,使之完全变为有用功而不引起其他

变化”;第二类永动机违背热力学第二定律,不

可能制成。

3.用来量度系统无序程度的物理量叫熵,在孤立

系统中,一切不可逆过程必然朝着熵增加的方向

进行。

自然过程的方向性

[自读教材·抓基础]

1.可逆过程和不可逆过程

(1)可逆过程:

一个系统由某一状态出发,经过某一过程到达另一状态,如果存在另一过程,它能使

系统和外界

完全复原,即系统回到原来的状态,同时消除原来过程对外界的一切影响,则

原来的

过程称为可逆过程。

(2)不可逆过程:

系统

如果用任何方法都不能使

完全复原,则原来的过程称为不可逆过程。

外界

2.热传导的方向性

物体传给

低温

(1)

热量可以自发地由

高温

高温

物体,或者由物体的

低温

部分。

部分传给

热量不能自发地由

(2)

低温

高温

物体传给

物体。

不可逆

(3)

热传递是

过程,具有

方向性

3.功和热相互转变的方向性

不可逆

(1)

功转变为热这一热现象是

的,具有

方向性

热转变为功这一热现象也是

(2)

不可逆

方向性

的,具有

4.结论

。方向性有关的宏观过程都具有热现象凡是与 [跟随名师·解疑难]

1.热传导的方向性

(1)“自发地”是指没有任何外界的影响或帮助。如重物下落、植物的开花结果等都是

自然界客观存在的一些过程。

(2)热量从高温物体传给低温物体,是因为两者之间存在着温度差,而不是热量从内能多的物体传给内能少的物体。由内能的定义可知,温度低的物体有可能比温度高的物体内

能大。

2.热机的原理及效率

(1)定义:热机就是消耗内能对外做功的一种装置。

2Q ,然后向冷凝器释放能量W ,推动活塞做功1Q 原理:热机从热源吸收热量(2) 1Q 和它从热源吸收的热量W ,我们把热机做功2Q +W =1Q 效率:由能量守恒定律知(3)。×100%W Q1

=η表示,即η的比值叫做热机效率,用

[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

关于热传递的方向性,下列说法正确的是( )

A .热量能自发地由高温物体传给低温物体

B .热量能自发地由低温物体传给高温物体

C .任何条件下,热量都可以从低温物体传给高温物体

D .热量一定不可能从低温物体传给高温物体

解析:选 A 在有外力做功的情况下,热量可以从低温物体传递给高温物体,而热量

只能自发地从高温物体传给低温物体。

热力学第二定律的表述

[自读教材·抓基础]

1.克劳修斯表述

)

说明热传导的方向性(而不引起其他变化。高温物体传向低温物体不可能使热量从 2.开尔文表述

说明机械能与

(而不引起其他变化。有用功吸收热量,使之完全变为单一热源不可能从内能转化的方向性)

3.第二类永动机不可能制成

(1)

使之完全转化为功而不产生其第二类永动机是指人们设想的从单一热源吸取

热量

他影响的机器。

(2)

热力学第二定律也可以表述为:第二类永动机是

不可能

制成的。

[跟随名师·解疑难]

1.对两种表述的理解(1)热力学第二定律的两种表述看上去似乎没有什么联系,然而实际上它们是等价的,

即由其中一个,可以推导出另一个。

(2)“不引起其他变化”是指使热量从低温物体传递到高温物体时外界不消耗任何功或

从单一热源吸收热量全部用来做功而外界及系统都不发生任何变化。

(3)克劳修斯表述是说热量不能自动地从低温物体转移到高温物体。如果外界消耗一定

量的功,把热量从低温物体转移到高温物体是完全可能的,如电冰箱和空调机的制冷过

程。

(4)开尔文表述表明了在引起其他变化或产生其他影响的条件下,热量能够完全转化为功,如理想气体的等温自由膨胀,内能不变,吸收的热量全部转化为功,但却引起了体积

的膨胀。

2.热力学第二定律的普遍性

热力学第二定律的每一种表述都揭示了大量分子参与的宏观过程的方向性,进而使人们认识到自然界中一切与热现象有关的宏观过程都具有方向性,都是不可逆的。

3.热力学第二定律的推广

对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述。例如,在图5-3-1中,盒子中间有一个挡板,左室为真空,右室有气体。撤去挡板后,右室的气体自发向左室扩散,而相反的过程不可能自发地进行。因此,热力学第二定律也可以

表述为:气体向真空的自由膨胀是不可逆的。

图5-3-1

[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

下列说法中,正确的是( )

A.一切形式的能量间的相互转化都具有方向性

B.热量不可能由低温物体传给高温物体

C.气体的扩散过程具有方向性

D. 一切形式的能量间的相互转化都不具有方向性

解析:选C 与热现象有关的宏观过程具有方向性,A、D错;热量可以由低温物体传

给高温物体,但必须有外界影响,B错;气体的扩散过程是单一方向的,即不可逆过程,C

正确。

熵和熵增加原理

[自读教材·抓基础]

1.热力学第二定律的微观本质一切不可逆过程总是沿着大量分子热运动无序程度

的方向进行。

增大

2.熵

的物理量叫做熵。

用来量度系统

无序程度

3.熵增加原理

在孤立系统中,一切不可逆过程必然朝着

的方向进行。

熵增加

4.孤立系统

与外界既没有

物质

交换的系统。

交换也没有

能量

[跟随名师·解疑难]

1.对熵的理解(1)熵是反映系统无序程度的物理量,系统越混乱,无序程度越大,这个系统的熵就越

大。

(2)在任何自然过程中,一个孤立系统的总熵不会减小,如果过程可逆,则熵不变;如

果过程不可逆,则熵增加。

2.对熵增加原理的理解(1)对于孤立的热力学系统而言,所发生的是由非平衡态向着平衡态的变化过程,因此,总是朝着熵增加的方向进行。或者说,一个孤立系统的熵永远不会减小。这就是熵增

加原理。

(2)从微观的角度看,热力学第二定律是一个统计规律,一个孤立系统总是从熵小的状

态向熵大的状态发展,熵值越大代表着越无序,所以自发的宏观过程总是向无序程度更大

的方向发展。

[特别提醒] 熵增加原理是判断不同状态的物体不可逆过程进行方向的共同标准。

[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

下列关于熵的说法错误的是( )

A.熵是系统内分子运动无序性的量度

B.在自然过程中熵总是增加的

C.热力学第二定律也叫做熵减小原理

D.熵值越大表示系统越无序

解析:选C 根据熵的定义知A正确;从熵的意义上说,系统自发变化时总是向着熵

增加的方向发展,B正确;热力学第二定律也叫熵增加原理,C错;熵越大,系统越混乱,

无序程度越大,D正确。故选C。

对应学生用书

P51

对热力学第二定律的考查

[典题例析]

1.下列说法中正确的是( )

A.机械能全部转化为内能是不可能的B.第二类永动机不可能制造成功的原因是因为能量既不会消失,也不会创生,只能从

一个物体转移到另一个物体,或从一种形式转化为另一种形式C.根据热力学第二定律可知,热量不可能从低温物体传到高温物体

D.从单一热源吸收的热量全部变为功是可能的

[思路点拨] 解此题的关键有两点:

(1)热力学第二定律的两种描述。

(2)第二类永动机制不成的原因。

解析:机械能可以全部转化为内能,故A错误;第二类永动机不可能制造成功是因为

它违背了热力学第二定律,故B错误;热量不能自发地从低温物体传到高温物体,但如果不是自发地,是可以进行的,故C错误;从单一热源吸收的热量全部用来做功而不引起其他变化,是不可能的,但如果是从单一热源吸收的热量全部变为功的同时也引起了其他的

变化,是可能的,故D正确。

答案:D

[探规寻律]

(1)在引起其他影响的情况下,热量可以从低温物体传到高温物体,如空调、冰箱等。

(2)分析热力学第二定律的应用问题时都不能忽视“自发性”和“不引起其他变化”的

物理意义。

[跟踪演练]

根据热力学第二定律,下列说法中错误的是( )

A.电流的电能不可能全部变成内能

B.在火力发电中,燃气的内能不可能全部变为电能

C.在热机中,燃气的内能不可能全部变为机械能

D.在热传导中,热量不可能自发地从低温物体传递给高温物体

解析:选 A 电能可以全部转化为内能,如纯电阻电路,而燃气的内能不可能全部转

化为电能和机械能,故A错误,B、C正确。根据热力学第二定律关于热传导的描述,D正

确。

对熵和熵增加原理的考查

[典题例析]

2.(多选)足球运动员在比赛中摔倒造成粉碎性骨折,关于这一过程下列说法正确的是

( ) A.此过程是一个可逆过程

B.此过程是一个不可逆过程

C.此过程中熵增加

D.此过程中熵减少

[思路点拨] 熵是反映系统的无序程度的物理量,根据熵增加原理,一个孤立系统熵永远不会减小。熵越大,无序程度越大。

解析:由于完好的骨头形状确定,故完好的骨头所处的宏观态对应的微观态较少,熵小,较为有序。发生粉碎性骨折后,其所处的宏观态对应的微观态较多,熵大,较为无序,故在这一过程中熵增加,且此过程不可逆。

答案:BC

[探规寻律]

(1)必须知道一切不可逆过程都朝熵增加的方向进行。

(2)每一个不可逆过程都会导致熵的增加。例如:平时常见的热传递、扩散、功转变成

热、煤的燃烧、铁在空气中氧化等一切自发的过程,都会使熵增加。

[跟踪演练]

对于孤立体系中发生的实际过程,下列说法中正确的是( )

A.系统的总熵只能减小,不可能增加

B.系统的总熵可能增大,可能不变,还可能减小

C.系统逐渐从比较有序的状态向更无序的状态发展

D.系统逐渐从比较无序的状态向更加有序的状态发展

解析:选 C 根据熵增加原理,一个孤立系统发生的实际过程,总熵只能增大,A、B

错误;再根据熵的物理意义,它量度系统的无序程度,熵越大,无序程度越大,故C正

确,D错误。

对应学生用书

P52

[课堂双基落实]

1.第二类永动机不可以制成,是因为( )

A.违背了热力学第一定律

B.热量总是从高温物体传递到低温物体

C.机械能不可能全部转变为内能

D.内能不能全部转化为机械能,同时不引起其他变化

解析:选 D 第二类永动机设想虽然符合热力学第一定律,但是违背了能量转化中有

些过程是不可逆的规律,所以不可能制成,故选D。

2.(多选)下列关于热力学第二定律微观意义的说法正确的是( )

A.从微观的角度看,热力学第二定律是一个统计规律

B.一切自然过程总是沿着分子热运动无序性减小的方向进行C.有的自然过程沿着分子热运动无序性增大的方向进行,有的自然过程沿着分子热运

动无序性减小的方向进行

D.在任何自然过程中,一个孤立系统的总熵不会减小

解析:选AD 从热力学第二定律的微观本质看,一切不可逆过程总是沿着大量分子热

运动无序程度增大的方向进行,我们知道热力学第二定律是一个统计规律,A对。任何自然过程总是朝着无序程度增大的方向进行,也就是熵增加的方向进行,则D对。

3.下列说法中正确的有( )

A.第二类永动机和第一类永动机一样,都违背了能量守恒定律,因此不可能制成B.根据能量守恒定律,经过不断地技术改造,热机的效率可以达到100%

C.因为能量守恒,所以“能源危机”是不可能真正出现的D.自然界中的能量是守恒的,但有的能量便于利用,有的不便于利用,因此要节约能

源解析:选 D 第一类永动机违背了热力学第一定律,第二类永动机违背了热力学第二

定律,A错;热机的效率永远小于100%,因为要向低温热源散热,B错;虽然能量守恒,

但可利用的能量越来越少,因此要节约能源,C错D正确。

4.(1)在物理学中,反映自然过程方向性的定律是________________________。(2)热力学第二定律的开尔文表述阐述了机械能与内能转变的方向性,机械能可以转变

为内能,而内能____________________________________________________________

转变为机械能而不引起其他变化。(3)引入熵的概念后,人们也把热力学第二定律叫做熵增加原理,具体表述为:

________________________________________________________________________

解析:(1)反映自然过程方向性的定律是热力学第二定律。

(2)内能不能100%地转变成机械能而不引起其他变化。

(3)在孤立系统中,一切不可逆过程必然朝着熵增加的方向进行。

答案:(1)热力学第二定律

(2)不可能完全(3)见解析

[课下综合检测]

一、选择题

1.(多选)下列说法中正确的是( )

A.一切涉及热现象的宏观过程都具有方向性

B.一切不违背能量守恒定律的物理过程都是可以实现的

C.由热力学第二定律可以判断物理过程能否自发进行

D.一切物理过程都不可能自发地进行

解析:选AC 由热力学第二定律的物理意义知,A、C正确,D错误。不违背能量守恒定律的物理过程,如果违背热力学第二定律,也是无法实现的,故B错误。

2.下列叙述中正确的是( )

A.对一定质量的气体加热,其内能可能减小

B.在任何系统中,一切过程都朝着熵增加的方向进行

C.物体的温度升高,分子热运动变得剧烈,每个分子动能都增大D.根据热力学第二定律可知,热量能够从高温物体传到低温物体,但不可能从低温物

体传到高温物体

解析:选A 根据热力学第一定律可知,A对;在孤立系统中,一切不可逆过程必然朝

着熵增加的方向进行,故B错;物体的温度升高时,并不是每个分子动能都增大,故C

错;热量可以从低温物体传到高温物体(引起其他变化),D错。3.我们绝不会看到一个放在水平地面上的物体,靠降低温度可以把内能自发地转化为

动能而运动起来。其原因是( )

A.这违反了能量守恒定律B.在任何条件下内能都不可能转化成机械能,只有机械能才会转化成内能

C.机械能和内能的转化过程具有方向性,内能转化成机械能是有条件的

D.以上说法均不正确

解析:选 C 此现象说明了机械能和内能之间转化的方向性,并不违反能量守恒定

律,因此,C正确,A、B、D错误。

4.在下列四个过程中,可能发生的是( ) A.某物体从高温热源吸收20 kJ的热量,全部转化为机械能,而没有产生任何其他影

响B.打开一高压密闭容器,容器内的气体自发流出后又自发流回该容器里去,恢复原状C.以引起其他变化为代价,使低温物体的温度更低,高温物体的温度更高

D.两瓶不同液体自发地互溶过程是朝着熵减小的方向进行的

解析:选C A错,违反了热力学第二定律;由于自发过程的方向性,可知B是错误的,C正确。液体自发的互溶过程是不可逆过程,必然是朝着熵增加的方向进行的,故D

错。5.如图1所示,两个相通的容器P、Q间装有阀门K,P中充满气体,Q内为真空,整

个系统与外界没有热交换,打开阀门后,P中的气体进入Q中,最终达到平衡,则( )

图1

A.气体的体积膨胀,内能增加

B.气体分子势能减少,内能增加

C.气体分子势能增加,压强可能不变

D.Q中气体不可能自发地全部退回到P中

解析:选D 当阀门K被打开,P中气体进入Q中,由于Q中为真空,且系统与外界没

有热交换,所以气体内能不变,选项A、B错误。气体体积增大,温度不变,压强减小,选项C错误。由热力学第二定律可知,Q中气体不可能自发地全部退回到P中,所以选项D

正确。6.(多选)如图2为电冰箱的工作原理示意图。压缩机工作时,强迫制冷剂在冰箱内外

的管道中不断循环。在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液

化,放出热量到箱体外。下列说法正确的是( )

图2

A .热量可以自发地从冰箱内传到冰箱外

B .电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能

C .电冰箱的工作原理不违反热力学第一定律

D .电冰箱的工作原理违反热力学第一定律

解析:选BC 热力学第一定律适用于所有的热学过程,C 正确,D 错误;由热力学第

二定律可知,A 错误,B 正确。

二、非选择题

7.如图3甲、乙、丙所示,质量、温度相同的水,分别处于固态、液态和气态三种状

态下,它们的熵的大小有什么关系?为什么?

图3

。根据大量分子热运动对系统无序程度的影响,热力学第二定律又

固S >液S >气S 解析:有一种表述:由大量分子组成的系统自发变化时,总是向着无序程度增加的方向 发展,至少无序程度不会减少。也就是说,任何一个系统自发变化时,系统的熵要么增加,要么不变,但不会减少。质量、温度相同的水,可以由固态自发地向液态、气态转

化,由液态向气态转化,所以,气态时的熵最大,其次是液态,固态时的熵最小。

原因见解析

固S >液S >气S 答案: 8.热力学第二定律常见的表述有两种。第一种表述:不可能使热量由低温物体传递到高温物体,而不引起其他变化;第二种表述:不可能从单一热源吸收热量并把它全部用来

做功,而不引起其他变化。

图4

如图4甲所示是根据热力学第二定律的第一种表述画出的示意图:外界对制冷机做

功,使热量从低温物体传递到高温物体。

(1)请你根据第二种表述完成示意图乙。

(2)根据你的理解,热力学第二定律的实质是__________________________。

解析:热机是能够从热源吸收热量,把内能转化为机械能的装置。由热力学第二定律

知热机的效率不可能达到100%,即热机工作时必定存在向低温物体的散热。热力学第二定

律的实质是一切与热现象有关的宏观过程都具有方向性。

答案:(1)示意图如图所示。

(2)一切与热现象有关的宏观过程都具有方向性

第三章 热力学第二定律

第三章热力学第二定律 一、选择题 1、如图,可表示理想气体卡诺循环的示意图是:() (A) 图⑴(B)图⑵(C)图⑶(D) 图⑷ 2、工作在393K和293K的两个大热源间的卡诺热机,其效率约为() (A) 83%(B) 25%(C) 100%(D) 20% 3、不可逆循环过程中,体系的熵变值() (A) 大于零(B) 小于零(C)等于零(D)不能确定 4、将1 mol 甲苯在101.325 kPa,110 ℃(正常沸点)下与110 ℃的热源接触,使它向真空容器中汽化,完全变成101.325 kPa 下的蒸气。该过程的:() (A) Δvap S m= 0 (B) Δvap G m= 0 (C) Δvap H m= 0 (D) Δvap U m= 0 5、1mol理想气体从300K,1×106Pa绝热向真空膨胀至1×105Pa,则该过程() (A)ΔS>0、ΔG>ΔA (B)ΔS<0、ΔG<ΔA (C)ΔS=0、ΔG=ΔA (D)ΔA<0、ΔG=ΔA 6、对理想气体自由膨胀的绝热过程,下列关系中正确的是( ) (A)ΔT>0、ΔU>0、ΔS>0 (B)ΔT<0、ΔU<0、ΔS<0 (C)ΔT=0、ΔU=0、ΔS=0 (D)ΔT=0、ΔU=0、ΔS>0 7、理想气体在等温可逆膨胀过程中( ) (A)内能增加(B)熵不变(C)熵增加(D)内能减少 8、根据熵的统计意义可以判断下列过程中何者的熵值增大?() (A) 水蒸气冷却成水(B) 石灰石分解生成石灰 (C) 乙烯聚合成聚乙烯(D) 理想气体绝热可逆膨胀 9、热力学第三定律可以表示为:() (A) 在0 K时,任何晶体的熵等于零(B) 在0 K时,任何完整晶体的熵等于零

热力学第二定律与熵

Chapter X:热力学第二定律(The Second Law of Thermodynamics) ·一切热力学过程都应该满足能量守恒。 问题满足能量守恒的过程都能进行吗?·热力学第二定律告诉我们,过程的进行还有个方向性的问题, 满足能量守恒的过程不一定都能进行。§1 自然过程的方向性 一、自然过程的实例 1.功热转换的方向性 功→热可自动进行 焦耳实验 (如摩擦生热、 焦耳实验) 热→功不可自动进行(焦耳实验中,不可

能水温自动降低推动叶片而使重物升高)“热自动地转换为功的过程不可能发生”“通过摩擦而使功变热的过程是不可逆的”, “其惟一效果(指不引起其它变化)是 一定量的内能(热) 全部转变为 机械能(功)的过程是不可能发生的”。·热机:把热转变成了功, 但有其它变化(热量从高温热源传 给了低温热源)。·理气等温膨胀:把热全部变成了功, 但伴随了其它变化(体积 膨胀)。

2.热传导的方向性 热量可以自动地从高温物体传向低温物 体,但相反的过程却不能发生。 “热量不可能自动地 从低温物体传向高温物体”。 “其惟一效果是热量 从低温物体传向高温物体的过程 是不可能发生的”。 3. ·在绝热容器中的隔板 被抽去的瞬间,分子 都聚在左半部 (这是 一种非平衡态,因为 容器内各处压强或密度不尽相同),此后 分子将自动膨胀充满整个容器,最后达到 平衡态。 气体绝热自由膨胀的方向性 初态

(注意:这是一种非准静态过程) “气体向真空中绝热自由膨胀的过 程是不可逆的” 实例:生命过程是不可逆的: 出生→童年→少年→青年→ 中年→老年→八宝山不可逆!流行歌曲: “今天的你我怎能重复 昨天的故事!” 二、各种实际宏观过程的方向性都是相互沟通的(不可逆性相互依存) ·相互沟通(相互依存):

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

工程热力学4熵与热力学第二定律

第四章熵与热力学第二定律 热力学第一定律普遍适用于自然界中的任何过程。其所给出的知识虽然是严格、正确的,但远非完全的。有一些问题很普通,它却不能回答。例如,它虽然告诉我们在每一过程中能量是守恒的,但却不能向我们指出任何特定的过程实际上能否发生。事实上,许多并不违反热力学第一定律的过程,如热的物体和冷的物体接触时,热自发地从低温物体传向高温物体,从而使热的更热,冷的更冷;将一定数量的热完全转变成功而不发生其它变化;等等,从未发生过。涉及自然界中符合热力学第一定律的过程,哪些会发生?哪些不会发生?如何才能发生?进行到何种程度为止?即过程进行的方向、条件和限度的问题,需要另有一个完全不同的普遍法则去解决,这就是热力学第二定律。 如果说,热力学第一定律论述的是能量的“量”,那么,热力学第二定律则要涉及能量的“质”。

4.1 自然发生过程的方向性 通过观察周围实际发生的过程,人们发现大量的自然过程具有方向性。 (1)功热转化 经验表明:一定数量的功可无条件地完全转变成热。最简单的方法是摩擦生热。如通过重物下降带动搅拌器旋转,由于粘性阻力,与叶轮表面的摩擦使得容器中的流体温度上升等;除摩擦外,诸如电流通过具有电阻的器件或线路,以及磁滞和固体非弹性碰撞等,都发生了称为耗散的仅将功变为等量热的效应。而它们的反向过程,如将叶轮与流体摩擦生成的热量,重新转化为功,使下降的重物回到原位等,却不能自动进行,即热不能无条件地完全转变成功。 (2)温差传热 温度不同的两个物体接触,热一定自发地从高温物体传向低温物体;而反向过程,如热从低温物体传回高温物体,系统恢复原状,却不会自动进行。

第五章热力学第二定律与熵

第五章热力学第二定律与熵 教学目的与要求: 理解热力学第二定律的两种表述及其实质,知道如何判断可逆与不可逆过程;理解热力学第二定律的实质及其与第一定律、第零定律的区别;理解卡诺定理与热力学温标;理解熵的概念与熵增加原理;了解热力学第二定律的数学表达式;了解熵的微观意义及玻耳兹曼关系。 教学方法: 课堂讲授。引导学生深刻理解热力学第二定律的实质。通过介绍宏观状态与微观状态的关系来阐述熵的微观意义与玻耳兹曼关系,加深对熵概念的认识。 教学重点: 热力学第二定律的两种表述及其实质,热力学第二定律的实质,与第一定律、第零定律的区别,熵的概念与熵增加原理 教学时数:12学时 主要教学内容: §5.1 热力学第二定律的表述及其实质 一、热力学第二定律的表述 在制造第一类永动机的一切尝试失败之后,一些人又梦想着制造另一种永动机,希望它不违反热力学第一定律,而且既经济又方便。 比如,这种热机可直接从海洋或大气中吸取热量使之完全变为机械功(无需向低温热源放热)。由于海洋和大气的能量是取之不尽的,因而这种热机可永不停息地运转做功,也是一种永动机。 1、开尔文(Kelvin) 表述:不可能从单一热源吸收热量,使之完全变为有用功而不产生其它影响。 说明: 单一热源:指温度均匀的恒温热源。 其它影响:指除了“由单一热源吸收热量全部转化为功” 以外的任何其它变化。 功转化为热的过程是不可逆的。 思考1:判断正误: 功可以转换为热,而热不能转换为功。 ---错,如:热机:把热转变成了功,但有其它变化:热量从高温热源传给了低温热源。 思考2: 理想气体等温膨胀过程中,从单一热源吸热且全部转化为功。这与热二律有矛盾吗? ---不矛盾。理气等温膨胀:把热全部变成了功,但系统伴随了其它变化:气体的体积膨胀。 2、克劳修斯(Clausius)表述:不可能把热量从低温物体传到高温物体而不引起其它影响。 “热量由高温物体传向低温物体的过程是不可逆的”

物理化学热力学第三定律练习题及答案知识讲解

第二章 热力学第二定律练习题 一、单选题: 1.T H S ?=? 适合于下列过程中的哪一个? (A) 恒压过程 ; (B) 绝热过程 ; (C) 恒温过程 ; (D) 可逆相变过程 。 2.可逆热机的效率最高,因此由可逆热机带动的火车: (A) 跑的最快 ; (B) 跑的最慢 ; (C) 夏天跑的快 ; (D) 冬天跑的快 。 3.在一定速度下发生变化的孤立体系,其总熵的变化是什么? (A) 不变 ; (B) 可能增大或减小 ; (C) 总是增大 ; (D) 总是减小 。 4.对于克劳修斯不等式 环T Q dS δ≥,判断不正确的是: (A) 环T Q dS δ=必为可逆过程或处于平衡状态 ; ; ; 。 5.1mol 双原子理想气体的C p,m 是: (A) 1.5R ; (B) 2.5R ; (C) 3.5R ; (D) 2R 。 6.2mol 理想气体B ,在300K 时等温膨胀,W = 0时体积增加一倍,则其 ?S (J·K -1)为: (A) -5.76 ; (B) 331 ; (C) 5.76 ; (D) 11.52 。 7.下列过程中?S 为负值的是哪一个: (A) 液态溴蒸发成气态溴 ; (B) SnO 2(s) + 2H 2(g) = Sn(s) + 2H 2O(l) ; (C) 电解水生成H 2和O 2 ; (D) 公路上撤盐使冰融化 。 8.熵是混乱度(热力学微观状态数或热力学几率)的量度,下列结论中不正确的是: (A) 同一种物质的S (g) > S (l) > S (s); (B) 同种物质温度越高熵值越大 ; (C) 分子内含原子数越多熵值越大 ; (D) 0K 时任何纯物质的熵值都等于零 。 9.25℃时,将11.2升O 2与11.2升N 2混合成11.2升的混合气体,该过程: (A) ?S > 0,?G < 0 ; (B) ?S < 0,?G < 0 ; (C) ?S = 0,?G = 0 ; (D) ?S = 0,?G < 0 。 10.有一个化学反应,在低温下可自发进行,随温度的升高,自发倾向降低,这反应是: (A) ?S > 0,?H > 0 ; (B) ?S > 0,?H < 0 ; (C) ?S < 0,?H > 0 ; (D) ?S < 0,?H < 0 。 11.等温等压下进行的化学反应,其方向由?r H m 和?r S m 共同决定,自发进行的反应应满 足下列哪个关系式: (A) ?r S m = ?r H m /T ; (B) ?r S m > ?r H m /T ; (C) ?r S m ≥ ?r H m /T ; (D) ?r S m ≤ ?r H m /T 。 12.吉布斯自由能的含义应该是: (A) 是体系能对外做非体积功的能量 ;

《热力学第二定律》作业任务

《热力学第二定律》作业 1.有5mol He(g),可看作理想气体,已知其R C m V 2 3 ,=,从始态273K ,100kPa ,变到终态298K ,1000kPa ,计算该过程的熵变。 解: 1 111 112,2121 67.86273298ln )314.825)(5(10ln )314.8)(5(ln )(ln ln 21---ΘΘ--?-=???+???=++=+=??K J K K mol K J mol p p mol K J mol T T R C n p p nR dT T C p p nR S m V T T p 2.有2mol 理想气体,从始态300K ,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的U ?,H ? ,S ?,W 和Q 的值。 (1) 可逆膨胀; (2) 真空膨胀; (3) 对抗恒外压100kPa 。 解:(1)可逆膨胀0=?U ,0=?H kJ dm dm K mol K J mol V V nRT W Q 57.42050ln )300)(314.8)(2(ln 3 31 112=??===-- 124.1530057.4-?=== ?K J K kJ T Q S (2) 真空膨胀 0=W ,0=?U ,0=?H ,0=Q S ?同(1),124.15-?=?K J S

(3) 对抗恒外压100kPa 。由于始态终态同(1)一致,所以U ?,H ? ,S ?同(1)。 0=?U ,0=?H 124.15-?=?K J S kJ dm dm kPa mol V p W Q 6)2050)(100)(2(33=-=?== 3.1mol N 2(g)可看作理想气体,从始态298K ,100kPa ,经如下两个等温过程,分别到达终态压力为600kPa ,分别求过程的U ?,H ? ,A ?,G ?,S ?,iso S ?, W 和Q 的值。 (1) 等温可逆压缩; (2) 等外压为600kPa 时的压缩。 解:(1) 等温可逆压缩0=?U ,0=?H J kPa kPa K mol K J mol p p nRT W Q 4443600100ln )298)(314.8)(1(ln 1121-=??===-- J W A 4443=-=? J A G 4443=?=? 190.142984443-?-=-== ?K J K J T Q S 190.142984443-?=== ?K J K J T Q S 环环 0=?+?=?环S S S iso (2) 等外压为600kPa 时的压缩,由于始态终态同(1)一致,所以U ?, H ? ,A ?,G ?,S ?同(1)。

第3节热力学第一定律

第3节热力学第一定律 目标导航 1?知道热力学第一定律的内容及其表达式 2?理解能量守恒定律的内容 3?了解第一类永动机不可能制成的原因 诱思导学 1.热力学第一定律 (1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做热力学第一定律。 其数学表达式为:A U=W+Q (2).与热力学第一定律相匹配的符号法则 (3)热力学第一定律说明了做功和热传递是系统内能改变的量度,没有做功和热传递就不可能实现能量的转化或转移,同时 也进一步揭示了能量守恒定律。 (4)应用热力学第一定律解题的一般步骤: ①根据符号法则写出各已知量( W、Q、A U)的正、负; ②根据方程A U=W+Q求出未知量; ③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。 2.能量守恒定律 ⑴自然界存在着多种不同形式的运动,每种运动对应着一种形式的能量。如机械运动对应机械能 ;分子热运动对应内 能;电磁运动对应电磁能。 ⑵.不同形式的能量之间可以相互转化。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。 ⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。 (4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。 (5).能量守恒定律适用于任何物理现象和物理过程。 (6).能量守恒定律的重要意义 第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一般理解其内容,更 重要的是,从能量形式的多样化及其相互联系,互相转化的事实岀发去认识物质世界的多样性及其普遍联系,并切实树立能 量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣 告了第一类永动机的失败。 3.第一类永动机不可能制成 任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能 制造出来的。 典例探究 例1一定量的气体在某一过程中,外界对气体做了8X104尚功,气体的内能减少了1.2杓勺,则下列

热力学第二定律练习题

第二章热力学第二定律练习题 一、判断题(说法正确否): 1.自然界发生的过程一定是不可逆过程。 2.不可逆过程一定是自发过程。 3.熵增加的过程一定是自发过程。 4.绝热可逆过程的?S = 0,绝热不可逆膨胀过程的?S > 0, 绝热不可逆压缩过程的?S < 0。 5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。 6.由于系统经循环过程后回到始态,?S= 0,所以一定是一个可逆循环过程。7.平衡态熵最大。 8.在任意一可逆过程中?S = 0,不可逆过程中?S > 0。 9.理想气体经等温膨胀后,由于?U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗? 10.自发过程的熵变?S > 0。 11.相变过程的熵变可由?S = ?H/T 计算。 12.当系统向环境传热时(Q < 0),系统的熵一定减少。 13.一切物质蒸发时,摩尔熵都增大。 14.冰在0℃,p?S = ?H/T >0,所以该过程为自发过程。 15.自发过程的方向就是系统混乱度增加的方向。 16.吉布斯函数减小的过程一定是自发过程。 17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。18.系统由V1膨胀到V2,其中经过可逆途径时做的功最多。 19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得G = 0。

20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,?U= 0,代入热力学基本方程d U= T d S - p d V,因而可得d S= 0,为恒熵过程。 二、单选题: 1.?S = ?H/T适合于下列过程中的哪一个? (A) 恒压过程; (B) 绝热过程; (C) 恒温过程; (D) 可逆相变过程。 2.可逆热机的效率最高,因此由可逆热机带动的火车: (A) 跑的最快; (B) 跑的最慢; (C) 夏天跑的快; (D) 冬天跑的快。 ,判断不正确的是: 3.对于克劳修斯不等式 dS ≥δQ/T 环 (A) dS =δQ/T 必为可逆过程或处于平衡状态; 环 必为不可逆过程; (B) dS >δQ/T 环 必为自发过程; (C) dS >δQ/T 环 (D) dS <δQ/T 违反卡诺定理和第二定律,过程不可能自发发生。 环 4.下列计算熵变公式中,哪个是错误的: (A) 水在25℃、p?S = (?H - ?G)/T; (B) 任意可逆过程: dS = (δQ/dT)r ; /T; (C) 环境的熵变:?S = - Q 体 (D) 在等温等压下,可逆电池反应:?S = ?H/T。 5.当理想气体在等温(500K)下进行膨胀时,求得体系的熵变?S = l0 J·K-1,若该变化中所做的功仅为相同终态最大功的1/10,该变化中从热源吸热 多少? (A) 5000 J ;(B) 500 J ; (C) 50 J ; (D) 100 J 。 6.1mol双原子理想气体的(?H/?T)v是: (A) 1.5R;(B) 2.5R;(C) 3.5R; (D) 2R。 7.理想气体在绝热条件下,在恒外压下被压缩到终态,则体系与环境的熵变:

对热力学第三定律的理解及应用

对热力学第三定律的理解及应用 在学习了物理书中的“热学”篇后,对于书中提到的热力学四大定律很感兴趣。其中热力学第一定律与热力学第二定律在书中都有了较为详尽的介绍,并且我们也认真地做了相关的习题,可以说对于这两个定律较为熟悉,而对于热力学第零定律与第三定律却了解不多。因此,在课下,我查阅了相关资料。对于这两个定律有了一定了解。 热力学第零定律表述为:“如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。” 热力学第三定律表述为:“热力学系统的熵在温度趋近于绝对零度时趋于定值,特别地,对于完整晶体,这个定值为零。”可以用这一公式表达,0)(lim 0=?=s t 而另一种表述为:“不可能通过有限的步骤,将一个物体冷却到绝对温度的零度。” 对于第三定律中提到的,“不能通过有限步骤,达到绝对零度”我感到了困惑与好奇。 对于这一定律有这么一种解释:理论上,若粒子动能低到量子力学的最低点时,物质即达到绝对零度,不能再低。然而,绝对零度永远无法达到,只可无限逼近。因为任何空间必然存有能量和热量,也不断进行相互转换而不消失。所以绝对零度是不存在的,除非该空间自始即无任何能量热量。 另一种解释是:当原子达到绝对零度后,就会处于静止状态,而这违反了海森堡不确定原理指出的“不可能同时以较高的精确度得知一个粒子的位置和动量”。

尽管,绝对零度在实际生活中似乎无法达到,但科学家还是不遗余力的尝试着接近绝对零度。据报道,由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。 而通过研究物体在接近绝对零度度过程中材料属性的变化,可以为工程应用提供材料,而在微观领域也可研究低温环境对于原子产生的影响,比如原子在接近绝对零度时是如何运动的,物体呈现一种什么样的状态,这对于原子物理的发展有巨大促进作用。 热力学第三定律在生活中也得到了应用。比如在研究过程中,发现了一些物体存在着超导现象,这一发现对于降低能耗,减少能源浪费都有着不可估量的意义。将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相等,即可实现电磁悬浮。即磁悬浮。对于磁悬浮技术的应用,主要是磁悬浮列车,其优点在于耗能不仅低于普通火车,更大大低于汽车和飞机。在驱动功率相同时,其耗能仅为汽车的1/3,飞机的1/4,而降低能耗是环境保护的最主要问题。 通过科学家对于绝度零度都不断的追求,我们可以看出科学永无止境,作为科学工作者要有一种锲而不舍的精神。

热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

第六章热力学第二定律 6-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为 25m+80m+0.5×18m=114m 有热平衡方程得 4.18×114m=3600×2922 ∴ m=2.2×104克=22千克 由图试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。 (提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。试分析每一微小卡诺循环效率与的关系) 证:(1)d当任意循环可逆时。用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。 考虑人一微小可逆卡诺循(187完) 环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率 任意可逆循环R的效率为 A为循环R中对外作的总功 (1) 又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度 ∴对任一微小可逆卡诺循,必有: T i≤T m,T i≥T n 或

或 令表示热源T m和T n之间的可逆卡诺循环的效率,上式 为 将(2)式代入(1)式: 或 或(188完) 即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n之间的可逆卡诺循环的效率。 (2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡 诺循环的效率必小于可逆时的效率,即(3) 对任一微小的不可逆卡诺循环,也有 (4) 将(3)式代入(4)式可得: 即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。 综之,必 即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。 *6-8 若准静态卡循环中的工作物质不是理想气体而是服从状态方程p(v-b)=RT。式证明这可逆卡诺循环的 效率公式任为

热力学第二定律的演变历程及其在生活中的应用

热力学第二定律的演变历程及其在生活中的应用 张俊地信一班1009010125 摘要:热力学第二定律是热力学的基本定律之一,是指热永远都只是由热处转到冷处(自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理化学过程具有不可逆性的经验总结。 关键词:热力学第二定律,演变历程,生活应用 引言:热力学第二定律是人们在生活实践,生产实践和科学实验的经验总结,他们既不涉及物质的微观结构,也不能用数学家易推倒和证明,但它的正确性已被无数次的实验结果所证实。而且,从热力学严格的推导出的结论都是非常精确和可靠的。有关该定律额发现和演变历程是本文讨论的重点。热力学第二定律是有关热和功等能量形式相互转化的方向和限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。 1.热力学第二定律的建立 19 世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824 年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。但卡诺在当时是采用“热质说”的错误观点来研究问题的。从1840 年到1847 年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。“热动说”的正确观点也普遍为人们所接受。1848 年,开尔文爵士(威廉·汤姆生) 根据卡诺定理,建立了热力学温标(绝对温标)。它完全不依赖于任何特殊物质的物理特性,从理论上解决了各种经验温标不相一致的缺点。这些为热力学第二定律的建立准备了条件。 1850 年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述” 。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从

【精品】工程热力学熵与热力学第二定律

工程热力学熵与热力学第二定律

第四章熵与热力学第二定律 热力学第一定律普遍适用于自然界中的任何过程。其所给出的知识虽然是严格、正确的,但远非完全的。有一些问题很普通,它却不能回答。例如,它虽然告诉我们在每一过程中能量是守恒的,但却不能向我们指出任何特定的过程实际上能否发生。事实上,许多并不违反热力学第一定律的过程,如热的物体和冷的物体接触时,热自发地从低温物体传向高温物体,从而使热的更热,冷的更冷;将一定数量的热完全转变成功而不发生其它变化;等等,从未发生过。涉及自然界中符合热力学第一定律的过程,哪些会发生?哪些不会发生?如何才能发生?进行到何种程度为止?即过程进行的方向、条件和限度的

问题,需要另有一个完全不同的普遍法则去解决,这就是热力学第二定律。 如果说,热力学第一定律论述的是能量的“量”,那么,热力学第二定律则要涉及能量的“质”。 4.1自然发生过程的方向性 通过观察周围实际发生的过程,人们发现大量的自然过程具有方向性。 (1)功热转化 经验表明:一定数量的功可无条件地完全转变成热。最简单的方法是摩擦生热。如通过重物下降带动搅拌器旋转,由于粘性 阻力,与叶轮表面的摩擦使得容器中的流体温度上升等;除摩擦外, 诸如电流通过具有电阻的器件或线路,以及磁滞和固体非弹性碰撞 等,都发生了称为耗散的仅将功变为等量热的效应。而它们的反向过 程,如将叶轮与流体摩擦生成的热量,重新转化为功,使下降的重物回到原位等,却不能自动进行,即热不能无条件地完全转变成功。 (2)温差传热 温度不同的两个物体接触,热一定自发地从高温物体传向

低温物体;而反向过程,如热从低温物体传回高温物体,系统恢复原状,却不会自动进行。 (3)自由膨胀 一隔板将某一刚性绝热容器分为两部分,一侧充有气体,另一侧为真空。若抽去隔板,气体必定自动向真空一侧膨胀,直至占据整个容器。过程中气体由于未遇阻力,不对外做功,故又称无阻膨胀。因其也不与外界换热,所以由式(3-18),其内能不变,但体积增大、压力下降。而反向变化的情形,即气体自动从整个容器回到原先一侧,体积缩小,压力升高,却不会发生。 (4)流体混合 容器内两侧分别装有不同种类的流体,隔板抽开后两种流体必定自动相互扩散混合;另外,几股不同种流体合流时同样也会自动混合。但其反向过程,即混合物中各组分自动分离的现象却不会出现。 类似于上述的“单向”过程还有许多。如太阳向外辐射出能量就不能将其从太空中收回去;汽车关闭油门滑行一段停止后,不会自动将其与路面摩擦生成的热量收集起来又恢复行驶;钟摆运行一段时间停摆后,也不会自动恢复摆动;还有物质因在半透膜两边液体中的非均匀溶解而发生从高浓度向低浓度的渗透也不会自动反向进行,等等。 上述这些过程的共同特征是什么?

物理化学热力学第三定律练习题及答案

第二章 热力学第二定律练习题 一、单选题: 1.T H S ?=? 适合于下列过程中的哪一个? (A) 恒压过程 ; (B) 绝热过程 ; (C) 恒温过程 ; (D) 可逆相变过程 。 2.可逆热机的效率最高,因此由可逆热机带动的火车: (A) 跑的最快 ; (B) 跑的最慢 ; (C) 夏天跑的快 ; (D) 冬天跑的快 。 3.在一定速度下发生变化的孤立体系,其总熵的变化就是什么? (A) 不变 ; (B) 可能增大或减小 ; (C) 总就是增大 ; (D) 总就是减小 。 4.对于克劳修斯不等式 环T Q dS δ≥,判断不正确的就是: (A) 环T Q dS δ=必为可逆过程或处于平衡状态 ; ; ; (D) 环T Q 违反卡诺定理与第二定律,过程不可能自发发生 。 5.1mol 双原子理想气体的C p,m 就是: (A) 1、5R ; (B) 2、5R ; (C) 3、5R ; (D) 2R 。 6.2mol 理想气体B,在300K 时等温膨胀,W = 0时体积增加一倍,则其 ?S (J·K -1)为: (A) -5、76 ; (B) 331 ; (C) 5、76 ; (D) 11、52 。 7.下列过程中?S 为负值的就是哪一个: (A) 液态溴蒸发成气态溴 ; (B) SnO 2(s) + 2H 2(g) = Sn(s) + 2H 2O(l) ; (C) 电解水生成H 2与O 2 ; (D) 公路上撤盐使冰融化 。 8.熵就是混乱度(热力学微观状态数或热力学几率)的量度,下列结论中不正确的就是: (A) 同一种物质的S (g) > S (l) > S (s); (B) 同种物质温度越高熵值越大 ; (C) 分子内含原子数越多熵值越大 ; (D) 0K 时任何纯物质的熵值都等于零 。 9.25℃时,将11、2升O 2与11、2升N 2混合成11、2升的混合气体,该过程: (A) ?S > 0,?G < 0 ; (B) ?S < 0,?G < 0 ; (C) ?S = 0,?G = 0 ; (D) ?S = 0,?G < 0 。 10.有一个化学反应,在低温下可自发进行,随温度的升高,自发倾向降低,这反应就是: (A) ?S > 0,?H > 0 ; (B) ?S > 0,?H < 0 ; (C) ?S < 0,?H > 0 ; (D) ?S < 0,?H < 0 。 11.等温等压下进行的化学反应,其方向由?r H m 与?r S m 共同决定,自发进行的反应应满 足下列哪个关系式: (A) ?r S m = ?r H m /T ; (B) ?r S m > ?r H m /T ; (C) ?r S m ≥ ?r H m /T ; (D) ?r S m ≤ ?r H m /T 。 12.吉布斯自由能的含义应该就是: (A) 就是体系能对外做非体积功的能量 ; (B) 就是在可逆条件下体系能对外做非体积功的能量 ; (C) 就是恒温恒压可逆条件下体系能对外做非体积功的能量 ; (D) 按定义理解 G = H - TS 。 13.对于封闭体系的热力学,下列各组状态函数之间的关系中正确的就是: (A) A > U ; (B) A < U ; (C) G < U ; (D) H < A 。 14、 对于封闭的双原子均相体系且非体积功为零时,T p G ???? ????的值应就是: a. > 0 b 、 < 0 c 、 = 0 d 、 无法确定 15、 一定量双原子理想气体,其过程?(PV)= 40 KJ,则此过程的?U = ; a. 100KJ b 、 200KJ c 、 400KJ d 、 无法确定 二、多选题:

热力学三大定律

热力学三大定律 热力学第一定律 热力学第一定律是能量守恒定律。热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。或者绝对零度(T=0K)不可达到。 热力学第一定律也就是能量守恒定律。 内容 一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。) 表达式:△U=W+Q 符号规律 :热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定: ①外界对系统做功,W>0,即W为正值。 ②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值 ③系统从外界吸收热量,Q>0,即Q为正值 ④系统从外界放出热量,Q<0,即Q为负值 ⑤系统内能增加,△U>0,即△U为正值 ⑥系统内能减少,△U<0,即△U为负值 从三方面理解 1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W 2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q 3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。即△U=W+Q 能量守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。 能量的多样性 物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。 不同形式的能量的转化 “摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。。。这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。 能量守恒的意义

热力学第三定律两种描述的等效性

关于热力学两种描述是否等效 1.热力学第三定律的两种描述 热力学第二定律只定义了过程的熵变,而没有定义熵本身. 因而熵的确定,有赖于热力学第三定律的建立,1902年美国科学家雷查德(T.W.Richard)在研究低温电池反应时发现电池反应的?G 和?H 随着温度的降低而逐渐趋于相等,而且两者对温度的斜率随温度同趋于一个定值:零 ? 由热力学函数的定义式, ?G 和?H 当温度趋于绝对零度时,两者必会趋于相等: ? ?G= ?H -T ?S ? l im T →0?G= ?H -lim T →0T ?S ? = ?H (T →0K) ? 虽然两者的数值趋于相同,但趋于相同的方式可以有所不同. ? 雷查德的实验证明对于所有的低温电池反应, ?G 均只会以一种方式趋近于?H. 上图中给出三种不同的趋近方式, 实验的结果支持最后一种方式, 即曲线的斜率均趋于零. 0000)/(lim )/(lim ====??=??P K T P T T H P G ? 0)(lim )/(lim 00=?-=??==S T G T P T ? 上式的物理含义是: ? 温度趋于绝对零度时, 反应的熵变趋于零, 即反应物的熵等于产物的熵. ? 推广到所有的化学反应, 即是: ? 一切.所有反应的熵变在0K 时为 零,0K 时所有物质的熵相等. ? 1906年能斯特在研究各种化学反应在低温下的性质时引出一个结论,称为能氏定 理,它的内容如下: ? 物质在绝对零度时的熵变等于零 ? ,0)(lim 0=?=s t (1) ? (1)式为热力学第三定律数学表达式 1912年能斯特根据根据他的定理推出了一个原理名为绝对零度不能达到原理如下: 不可能通过有限的步骤一个物体冷却到绝对温度的零度。 通常认为能氏定理和绝对零度不能达到原理是热力学第三定律的两种描述。 2热力学第三定律两种表述的等价性

热力学第二定律的应用

热力学第二定律的文字表述及相关应用 化工制药类一班,电话: ,邮箱: 摘要:热力学第二定律是用来判断过程的方向和限度的,在教学中主要介绍Clausius不等式的应用.对第二定律文字表述的应用涉及很少。文章主要介绍了热力学第二定律文字表述的应用和引出墒函数概念的必要性。 关键字:热力学第二定律;文字表述;应用;讨论 引言:热力学第二定律是用来判断过程的方向和限度的。在现行的物理化学教材中,热力学第二定律的应用主要局限于墒判据的应用,很少有介绍热力学第二定律文字表述的应用方面的问题,本文力图从热力学第二定律文字表述的应用加以讨论,进而说明引人嫡函数的必要性。 1热力学第二定律的文字表述 1. 1 Clausius表述:不可能把热从低温物体传到高温物体而不引起其它任何变化; 1. 2 Kdvin表述:不可能从单一热源取出热使之完全变为功而不发生任何其它变化; Kelvin表述也可表述为:第二类永动机是不可能造成的. 1.3热力学第二定律的其它表述 (l)功可自发地全部变为热,但热不可能全部转变为功而不引起任何其它变化; (2)一切自发过程都是热力学不可逆的; (3)一切实际过程都是热力学不可逆的; (4)孤立体系发生的实际过程一定是自发的; (5)孤立体系所发生的任意过程总是向着体系嫡值增加的方向进行一嫡增加原理。 2 热力学第二定律文字表述的应用 2.1 热力学第二定律的各种表述都是等效的 热力学第二定律的各种表述都是等效的,一旦违背了其中一种表述,也必然同时违背另外几种表述。 假设违背了Clausius表述:热可以从低温物体传到高温物体而不引起任何其它变化.即Q,的热能从低热源自动地传到高温热源几(图1).

对热力学第三定律的理解

对热力学第三定律的理解 摘要:热物理学是整个物理学四大理论之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。热力学中有四大定律,其中热力学第三定律更是重要。本文主要介绍对热力学第三定律的认识和对其应用价值的理解。 关键词:热力学第三定律;绝对零度;应用价值 1.引言 热力学第三定律的建立已近一百年,是热力学统计物理学的基本理论基础之一.l906年德国物理化学家能斯特从化学平衡常数的确定出发,建立了热力学第三定律.接着,许多其他科学家在此基础上进一步对该定律作了大量的研究,并提出了他们相应的说法.本文简要地介绍该定律的创立与发展过程,并说明它的重要意义以及在科学上的应用。 2.正文 2.1热力学第三定律的发现 我们可以想象如果不停降温,那么,蒸汽就会凝结成水,然后冻成冰。那么,是否存在降低温度的极限呢?为此早在开尔文提出热力学温标时,就提出温度是存在下限的。也就是说,存在一个绝对的唯一的温度值,并且在达到这一临界值后温度就无法继续下降了。其实,早在1702年,法国物理学家阿蒙顿也曾提到过“绝对零度”的概念。他根据空气受热时体积和压强都随温度的增加而增加这一现象出发,计算出在某个温度下,空气的压力将等于零。这个温度用后来提出的摄氏温标表示,约为-239℃,后来,兰伯特更精确地重复了阿蒙顿实验,计算出这个温度为-270.3℃。他说,在这个“绝对的冷”的情况下,空气将紧密地挤在一起。然而他们的这个看法没有得到人们的重视。直到盖吕萨克定律提出之后,

存在绝对零度的思想才得到物理学家的普遍承认。现在我们知道,绝对零度更准确的值是-273.15℃。由于绝对零度不能达到原理的表述简洁且物理意义明确,所以被现代人们公认为热力学第三定律的标准表述,热力学第三定律作为热力学基本定律,从此,热力学的基础基本得以完备。 在统计物理学上,热力学第三定律反映了微观运动的量子化。在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的意图。而是鼓励人们想方设法尽可能接近绝对零度。目前使用绝热去磁的方法已达到K 10105-?,但永远达不到0K 。 2.2热力学第三定律的两种描述 热力学第二定律只定义了过程的熵变,而没有定义熵本身. 因而熵的确定,有赖于热力学第三定律的建立,1902年美国科学家雷查德(T.W.Richard)在研究低温电池反应时发现电池反应的?G 和?H 随着温度的降低而逐渐趋于相等,而且两者对温度的斜率随温度同趋于一个定值:零 ? 由热力学函数的定义式, ?G 和?H 当温度趋于绝对零度时,两者必会趋于相等: ? ?G= ?H -T ?S ? limT →0?G= ?H -limT →0T ?S ? = ?H (T →0K) ? 虽然两者的数值趋于相同,但趋于相同的方式可以有所不同. ? 雷查德的实验证明对于所有的低温电池反应, ?G 均只会以一种方式趋近于?H. 上图中给出三种不同的趋近方式, 实验的结果支持最后一种方式, 即曲线的斜率均趋于零. 0000)/(lim )/(lim ====??=??P K T P T T H P G 0)(lim )/(lim 00=?-=??==S T G T P T 上式的物理含义是: 温度趋于绝对零度时, 反应的熵变趋于零, 即反应物的熵等于产物的熵. 推广到所有的化学反应, 即是:一切化学反应的熵变当温度趋于绝对零

相关文档
最新文档