浅谈伴随矩阵的性质及其应用【开题报告】

浅谈伴随矩阵的性质及其应用【开题报告】
浅谈伴随矩阵的性质及其应用【开题报告】

开题报告

数学与应用数学

浅谈伴随矩阵的性质及其应用

一、综述本课题国内外研究动态, 说明选题的根据和意义

矩阵是代数学的一个主要研究对象, 是数学中最重要的基本概念之一, 也是数学研究及应用的一个重要工具. 矩阵这一概念自19世纪英国数学家凯利首先提出以后, 就形成了矩阵代数这一系统理论, 而且还广泛应用于实际生活. 把现实世界中的实际问题抽象成数学模型, 求出模型的解, 验证模型的合理性后, 用它的解来解释现实问题, 这其中要用到许多的数学知识, 而矩阵作为一种认识复杂问题的简捷的数学工具, 在数学模型中具有重要的作用, 如在各循环赛中常用的赛况表格、国民经济的数学问题等.

矩阵可以分为很多类, 有初等矩阵、分块矩阵、幂等矩阵、伴随矩阵等, 在不同的矩阵类型中近几年来分别取得了不同的成果与进展. 而伴随矩阵作为矩阵中较特殊的一类, 其理论与应用有自身的特点, 它是矩阵理论及线性代数中的一个基本概念, 是许多数学分支研究的重要工具. 在线性代数的解题方面, 灵活地运用这些伴随矩阵的性质有效地解决了线性代数中的问题, 且它有助于拓宽解决线性代数问题的思路. 比如, 矩阵间一些关系的证明, 求矩阵的逆, 一些复合矩阵的行列式等. 运用伴随矩阵的性质还可以用来解决一些复杂的问题. 比如, 用伴随矩阵的性质: I A A A AA ==**可以解决《美国数学月刊》上的E3227号问题(注: 若A 和B 为n 阶矩阵, 存在非零向量x 和向量y , 使得0=Ax , Bx Ay =. 设i A 为A 中第i 列被B 中的第i 列替换后所得到的矩阵,证明01=∑=n i i A

). 现今不仅专业研究伴随矩阵

的数学工作者愈加众多, 而且量子力学、刚体力学、流体力学、自动控制等各个学科或尖端技术领域内的研究工作者也都以它为必需的工具. 如蔡建乐提出了用特征矩阵的伴随矩阵求惯量主轴的代数方法, 这有利于刚体力学的发展, 体现伴随矩阵的物理意义.

正因为它有如此重要的作用, 古今中外对其研究颇多, 并且得到了许多重要的成果. 如杨闻起探讨了伴随矩阵在对称、反对称、正定、半正定、正交、相似和特征值等方面的性质; 王航平也在伴随矩阵的定义与基本性质的基础上, 探讨了伴随矩阵的运算性质, 特别研究了

乘积矩阵的伴随矩阵的性质, 并提出了自伴随矩阵的定义及其性质, 归纳了伴随矩阵较强的继承性; 郑茂玉也提出了伴随矩阵与原矩阵之间的联系, 探讨了伴随矩阵的性质, 并且将伴随矩阵推广到了m重; 徐淳宁也探究了m重伴随矩阵的定义及其性质, 得到了一些有意义的结果, 使伴随矩阵的内涵更加丰富. 上述结论都是在A为方阵的前提下提出来的, 对于A

m 矩阵的伴随矩阵的定义与一些性不为方阵的情况又有许多种性质. 贾美娥提出了关于n

质的证明. 这一主张的提出, 更加完善了伴随矩阵的性质. 伴随矩阵的性质还有很多, 在此不一一举例.

尽管前人的研究很多, 但是目前对伴随矩阵的性质还没有一套完整的证明. 在《高等代数》和《线性代数》的各种教材中, 伴随矩阵只是作为求解逆矩阵的工具出现的, 并没有进行深入的研究. 但是在后继的课程的学习中经常用伴随矩阵来解决很多问题, 为此我们常常不知所措. 为了解决更多的问题, 有必要探讨它的性质及其一些应用. 本文将对伴随矩阵的性质和应用进行探讨, 这不仅有利于教师的教学, 还有助于学生的学习, 以便我们更得心应手地运用伴随矩阵的各种性质解决线性代数中的相关问题及拓宽它在各领域中的应用.

二、研究的基本内容, 拟解决的主要问题:

研究的基本内容: 本文主要研究伴随矩阵的性质及其各领域上的应用.

拟解决的主要问题: 证明伴随矩阵的性质和探究它的应用, 并作推广.

三、研究步骤、方法及措施:

研究步骤: 1. 明确任务, 查阅相关资料, 做好笔记.

2. 在老师指导下, 撰写开题报告, 翻译英文资料, 撰写文献综述.

4. 上交开题报告、文献综述、英文资料; 确定整个论文的思路, 列出论文提纲.

5. 确定论文提纲, 撰写毕业论文.

6. 上交论文初稿.

7. 反复修改论文.

8. 论文定稿.

方法、措施: 通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同学研究讨论, 用推理论证的方法来解决问题.

四、参考文献:

[1]R. A. Horn, C. R. Johnson. Matrix Analysis[M]. Cambridge University Press, 1986.

[2]蔡建乐. 用特征矩阵的伴随矩阵求解惯量主轴方向[J]. 大学物理, 1995, 14(9): 21~22.

[3]杨闻起. 伴随矩阵的性质[J]. 宝鸡文理学院学报, 2004, (3):20~25.

[4]王航平. 伴随矩阵的若干性质[J]. 中国计量学院学报, 2004, 15(3): 247~249.

[5]郑茂玉. 伴随矩阵的性质[J]. 南方冶金学院学报, 1991, 12(3):55~60.

[6]徐淳宁. 关于伴随矩阵的推广[J]. 长春邮电学院学报, 1997, 15(4): 63~64.

m 矩阵的伴随矩阵[J]. 赤峰学院学报, 2009, 25(9): 16~17.

[7]贾美娥. 关于n

[8]北京大学数学系几何与代数小组编. 高等代数[M]. 北京: 高等教育出版社, 2003, 9.

[9]韩成茂. 伴随矩阵性质研究[D]. 山东: 山东大学, 2008.

[10]刘佑林. 伴随矩阵若干性质[J]. 湘南学院学报, 2009, 30(5): 31~32.

[11]肖翔, 许伯生. 伴随矩阵的性质[J]. 上海工程技术大学教育研究, 2007, (3):48~49.

[12]吕兴汉. 关于伴随矩阵性质的进一步讨论[J]. 2006, 22: 322~323.

[13] C. M. Han. Some operation properities of Adjoint Matrices for Block Matrices[J]. Journal

of Mathematics Reseearch, 2009, 1(2): 119~122.

[14]苗宝军, 赵艳敏. 高等代数中伴随矩阵性质的研究及其应用[J]. 考试周刊, 2009, 31: 61.

伴随矩阵的性质知识讲解

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (4) 摘要 (5) 关键词 (5) 0引言 (5) 1主要结论 (6) 1.1伴随矩阵的基本性质 (6) 1.2伴随矩阵的特征值与特征向量的性质 (9) 1.3矩阵与其伴随矩阵的关联性质 (10) 1.4两伴随矩阵间的关系性质 (11) 2应用举例 (12) 例1 (12) 例2 (12) 结束语 (13) 参考文献 (13) 致谢 (14)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1)i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A *= 112111222212n n n n nn A A A A A A A A A ????? ???????L L M M O M M 称为矩阵A 的伴随矩阵.

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系 摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一 些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的 关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等. 关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵 1伴随矩阵的定义 设() n n ij a A ?=,则它的伴随矩阵()n n ij b A ?=* ,其中ji ij A b = (),,,3,2,1,n j i =ij A 为A 中ij a 的代数余子式. 2伴随矩阵的性质以及矩阵与它伴随矩阵的关系 2.1 I A A A AA ==**. 2.2 若A 非奇异,则* 11A A A =-. 2.3 ()()T T A A ** =. 证 当A 可逆时,1*-=A A A ,且T A 也可逆. 故 ()()1 * -=T T T A A A =() T A A 1- 另一方面, ()()T T A A A 1* -==() T A A 1- 由上两式推出 ()() T T A A ** =. 2.4 ()() 1 ** 1 --=A A . 证 当A 可逆时,1*-=A A A ,且1-A 也可逆. 故 ()()A A A A A 1 1 11* 1= =---- 又由 E A A A A A A =??? ? ??=???? ??* *11 故 *A 也可逆,且()A A A 1 1 *= - 从而 ()() 1 ** 1 --=A A .

2.5 ()*1* A a aA n -= (a 为实数). 证 设()n n ij a A ?=,再设 ()()n n ij b aA ?=* , 那么ij b 为行列式aA 中划去第j 行和第i 列的代数余子式1-n 阶行列式,其中每行提出公因子a 后,可得 ji n ij A a b 1-= ()n j i ,2,1,= 由此即证()*1* A a aA n -=. 2.6 1 *-=n A A ()2≥n . 证当A 可逆时,由于,1*-=A A A 两边取行列式 得 1 1* --==n n A A A A 当A 不可逆时,,0=A 这时秩1*≤A 所以.0*=A 从而也有 1 * -=n A A 所以对任意n 阶方阵,A 都有.1 *-=n A A 2.7 当秩n A =时,则秩n A =*.当秩1-=n A 时则秩1*=A .,当秩2-≤n A 则秩0*=A . 证 当秩,0≠?=A n A 那么由上面的(1)式有0*≠==n A I A AA 所以 ,0*≠A 即秩n A =* 当秩,01=?-=A n A 0*==I A AA 从而秩,1*≤A 又因秩,1-=n A 所以至少有一个代数余子式,0≠ij A 从而秩,1*≥A 于是秩,1*=A 当秩2-=n A ?0*=A 所以秩0*=A 同理秩2-

【VIP专享】矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson 联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

伴随矩阵的性质及应用

一.伴随矩阵的定义及符号 伴随矩阵是在求非奇异矩阵的逆矩阵时提出来的, 1.代数余子式的定义 为了定义伴随矩阵,需要先定义一个矩阵某一元素的代数余子式: 在行列式 11111..................j n i ij in ni nj nn a a a a a a a a a 中划去元素ij a 所在的第i 行与第j 列,剩下的2(1)n -个元素按原来的排法构成一个n-1级的行列式,称为元素ij a 的余子式,记为ij M ,称(1)i j ij ij A M +=-为元素ij a 的代数余子式。 2.伴随矩阵的定义 设ij A 是矩阵 11111..................j n i ij in ni nj nn a a a A a a a a a a ?????? ??=?????????? 中元素ij a 的代数余子式,矩阵 112111222 2*12.........n n n n nn A A A A A A A A A A ???? ??=?????? 称为A 的伴随矩阵。 二.伴随矩阵的性质

1.伴随矩阵的基本公式:**AA A A A E == 由行列式按一行(列)展开的公式立即得出: **000000d d AA A A A E d ??????===?????? 其中d A =。 这是伴随矩阵的一个基本公式,我们可以从该等式出发推导出一些有关方阵的伴随矩阵的性质,使我们对伴随矩阵有一个更加全面的认识和理解。 2.在公式**AA A A A E ==基础上推导出的其他性质 (1)A 可逆当且仅当* A 可逆。 证明:若A 可逆,则A ≠0.由**AA A A A E ==知 * A A E A ?= 故*1A A A -= 两边取行列式得*1A A A -= 即*11n A A A ??= ? ??? 故*A 0≠,从而*A 可逆 (2)1*n A A -=,其中A 是n ?n 矩阵 证明:由**AA A A A E ==,知*n A A A = ①.当时,有及,故

关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨 1引言 矩阵是高等代数的重要组成部分,是许多数学分支研究的重要工具.伴随矩阵作为矩阵中较特 殊的一类,其理论和应用有自身的特点.设n 阶矩阵??? ?? ??=n n n a a a a A 1111,()n j i 2,1,= 是A 中元素ij a 的代数余子式,称矩阵? ???? ??=nn n n A A A A A 1 111* 为A 的伴随矩阵[]1(176)P .在大学本科的学 习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有进行深入的研究.本文分类研究了伴随矩阵的性质,并给出了证明过程,得到一系列有意义的结果.从而使高等代数中的重要概念——伴随矩阵比较完整地呈现在我们面前. 2伴随矩阵的性质 2.1伴随矩阵的基本性质 性质1[] 2(5253) P P - E A AA A A ==* * 性质2 若0=A ,则0* =AA . 性质3 1 * -=n A A . 证明 由性质E A AA =* 得E A AA =*, 从而 n A A A =* ,两边同时左乘1 -A 得 1 *-=n A A ,即为所证. 2.2可逆性质 性质4 若A 可逆,则1 * -=A A A (或*1 1 A A A --=). 证明 由性质1,E A AA =* 两边同时左乘1 -A 得 E A A AA A 1*1--=, 即 *1 1 1 * A A A A A A ---==. 性质5 若A 可逆,则* A 可逆且() A A A 1 1 *--=.

证明 若A 可逆,即0,01 * ≠=≠-n A A A ,从而*A 可逆又有性质4得 () () A A A A A 1 1 1 1 *----==. 性质6[3] (124) P 若A 可逆,则() A A A n 2 * *-=. 证明 由性质1得() E A A A ** ** =,A 可逆,*A 也可逆,两边同时左乘() 1 *-A 得 () () A A A A A A A A n n 2 1 1 1 * ** *----===. 性质7[4] (181183) P P - 若A 可逆,则() () * 11 * --=A A . 证明 由性质5得 () A A A 1 1 *--=, 由性质1得()E A A A 1* 11---=. 两边同时左乘A 得 () () 1 * 1* 1---==A A A A . 2.3运算性质 性质8 若A 可逆,k 为非零常数,则()* 1* A k kA n -=. 证明 由性质1得 ()()E kA kA kA =*, 两边同时左乘()1 -kA 得 ()()()*111111*A k A A k A k A k kA kA kA n n n ------====. 性质9 若,A B 均为n 阶可逆方阵,则()* ** A B AB =. 证明 由已知条件可得 0≠A ,0≠B . 从而可得0≠AB 也就是AB 可逆得 ()()()*1 1 *1 1AB B A AB AB AB ----= = , 又因为 ()*1 *1 111A A B B A B AB -----= =, 由以上可得()* * * .AB B A = 推论 若1321,,,,-t t A A A A A 均为同阶可逆矩阵,则()* 1*2*3*1** 1321A A A A A A A A A A t t t t --=. 2.4特殊矩阵的伴随矩阵的性质

线性方程组的求解与应用开题报告

设计题目线性方程组理论及其应用 学生姓名陈彦语学号1111124123 专 业 数学与应用数 学(师范类) 一、课题的目的意义: 高等代数教材中只给出了运用克拉默法则(Cramer's Rule)和利用增广矩阵进行初等行变换求解线性方程组的方法,本文将更加系统的阐述求解线性方程组的几类方法,并进一步讨论线性方程组在许多领域中的应用。 线性代数是代数学的一个重要组成部分,广泛应用于现代科学的许多分支,其核心问题之一就是线性方程组的求解问题。线性方程组的求解是数值计算领域十分活跃的研究课题之一,大量的科学技术问题,最终往往归结为解线性方程组。因为计算机只能“线性”地求解问题,所以所有问题在计算机处理前都要线性化。可以说,线性方程组的求解在现代科学领域占有重要地位。 二、近几年来研究现状: 目前关于线性方程组的数值解法一般有两大类,一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这种方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有的优点是:需要计算机的存储单位较少、程序设计简单、原始系数矩阵在计算过程中始终不变,但存在收敛性和收敛速度的问题。迭代法是解大型稀疏矩阵方程组的重要方法,当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速还有待进一步研究。 。三、设计方案的可行性分析和预期目标: 可行性分析:本文主要以查找资料,在现有知识水平上,对求解线性方程组的一般方法进行总结归纳,并根据对数学软件的学习,在借鉴前人对计算机编程科学性研究的基础上,给出利用matlab软件求解几类常见线性方程组的方法。通过广泛收集线性方程组应用方向的文献和书籍,并多次向导师请教,最终以具体实例来说明线性方程组在许多领域的应用,并实现线性方程组的求解过程。 预期目标:通过撰写论文,能让我从一个更高的角度来审视高等代数,对其中的线性方程组部分有一个更加深刻的理解和认识,锻炼自己的发散性思维和缜密的思考能力,培养自己利用所学知识解决实际问题的能力,从而达到对所学知识的融会贯通。

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

伴随矩阵的若干性质及应用

伴随矩阵的若干性质及应用 摘要 矩阵是学习高等代数中的一个非常重要的知识点,而在矩阵的运算和应用中伴随矩阵起着十分重要的作用.本篇文章运用矩阵计算中的一些技巧和方法,证明了一般n 阶方阵和某些特殊矩阵的伴随矩阵的一些性质.这些性质的探讨是基于矩阵的伴随矩阵与原矩阵之间的关系,利用研究矩阵的方法来着手.通过这些性质,对矩阵、伴随矩阵有了更深一步地认识.而且,在以后的学习中遇到关于伴随矩阵的问题我们可以直接应用这些性质,使问题变得简单. 关键词 矩阵 伴随矩阵 特征值 引言 因为伴随矩阵是学习矩阵的一个重要知识点,在计算中经常出现,把矩阵的 伴随矩阵看作一般的一个矩阵来研究.给出了伴随矩阵的秩、伴随矩阵的转置、伴随矩阵的特征值、几个特殊矩阵的伴随矩阵的性质,以及伴随矩阵的其他性质.这些性质能帮我们方便解决在计算矩阵时遇到的问题. 本文出现的矩阵A 和B 均为n 阶方阵. 1.一般n 阶方阵其伴随矩阵的一些性质及应用 1.1 E A A A AA ==**,在求解A 与*A 的乘积,*A 和1-A 的有关的问题时可以从这个性质着手.常用的关系式如下: ()1当A 为可逆矩阵时,*A 也为可逆矩阵,由E A A A AA = =**可得()A A A = -1 *; ()2当A 为可逆矩阵时,由E A A A AA = =**可得1*-=A A A ; 例1、已知A 为一三阶矩阵,且??? ? ? ??=100310241A ,求() 1 * -A . 解 经计算可得1=A ,所以() ? ??? ? ??===-1003102411 *A A A A .

例2、已知A 为一三阶可逆矩阵,它的伴随矩阵为*A ,且4 1= A ,求()*1 32A A --. 解 ()1 111* 14 32132132------=-= -A A A A A A A 1611 4141413 131-=? ?? ??-=??? ??-=-=--A A A . 例3、已知A 和 B 均为n 阶矩阵,相应的伴随矩阵分别为*A 和*B ,分块矩阵 ? ?? ? ??=B O O A C ,求C 的伴随矩阵* C . 解 由E C C C CC ==**得, ???? ??=???? ? ?=??? ? ??==------11 11 1 1 * B B A O O A B A B O O A B A B O O A B O O A C C C . 1.2 当A 为可逆矩阵时,有() () * 11 * --=A A 证明 因为 () E A A A E A AA 1 * 11 * ,---==故有,A A A * 1 =-;又因为A A 11=- 从而 () () E A E A A A A A A 1 1* 1 ** 11 = ==----,因0≠A ,故() E A A =-* 1*, 所以 () () * 11 * --=A A . 例4、已知A 为一三阶可逆矩阵,且???? ? ??=-2311123211 A , 求*A 的逆矩阵. ㈠解 因为E A AA A A ==**,且A 为可逆矩阵,可得 () A A A A A 11 * --== , 而2 311123 211=-A =8,() ???? ? ??------==--315513151811 1A A ,所以() ???? ? ??------=-3155131511 *A .

浅谈伴随矩阵的性质及其应用【开题报告】

开题报告 数学与应用数学 浅谈伴随矩阵的性质及其应用 一、综述本课题国内外研究动态, 说明选题的根据和意义 矩阵是代数学的一个主要研究对象, 是数学中最重要的基本概念之一, 也是数学研究及应用的一个重要工具. 矩阵这一概念自19世纪英国数学家凯利首先提出以后, 就形成了矩阵代数这一系统理论, 而且还广泛应用于实际生活. 把现实世界中的实际问题抽象成数学模型, 求出模型的解, 验证模型的合理性后, 用它的解来解释现实问题, 这其中要用到许多的数学知识, 而矩阵作为一种认识复杂问题的简捷的数学工具, 在数学模型中具有重要的作用, 如在各循环赛中常用的赛况表格、国民经济的数学问题等. 矩阵可以分为很多类, 有初等矩阵、分块矩阵、幂等矩阵、伴随矩阵等, 在不同的矩阵类型中近几年来分别取得了不同的成果与进展. 而伴随矩阵作为矩阵中较特殊的一类, 其理论与应用有自身的特点, 它是矩阵理论及线性代数中的一个基本概念, 是许多数学分支研究的重要工具. 在线性代数的解题方面, 灵活地运用这些伴随矩阵的性质有效地解决了线性代数中的问题, 且它有助于拓宽解决线性代数问题的思路. 比如, 矩阵间一些关系的证明, 求矩阵的逆, 一些复合矩阵的行列式等. 运用伴随矩阵的性质还可以用来解决一些复杂的问题. 比如, 用伴随矩阵的性质: I A A A AA ==**可以解决《美国数学月刊》上的E3227号问题(注: 若A 和B 为n 阶矩阵, 存在非零向量x 和向量y , 使得0=Ax , Bx Ay =. 设i A 为A 中第i 列被B 中的第i 列替换后所得到的矩阵,证明01=∑=n i i A ). 现今不仅专业研究伴随矩阵 的数学工作者愈加众多, 而且量子力学、刚体力学、流体力学、自动控制等各个学科或尖端技术领域内的研究工作者也都以它为必需的工具. 如蔡建乐提出了用特征矩阵的伴随矩阵求惯量主轴的代数方法, 这有利于刚体力学的发展, 体现伴随矩阵的物理意义. 正因为它有如此重要的作用, 古今中外对其研究颇多, 并且得到了许多重要的成果. 如杨闻起探讨了伴随矩阵在对称、反对称、正定、半正定、正交、相似和特征值等方面的性质; 王航平也在伴随矩阵的定义与基本性质的基础上, 探讨了伴随矩阵的运算性质, 特别研究了

矩阵特征值、特征向量的研究【开题报告】

毕业论文开题报告 数学与应用数学 矩阵特征值、特征向量的研究 一、选题的背景、意义 (1)选题的背景、意义 “矩阵(Matrix)”术语是由西尔维斯特创用并由凯莱首先明确其概念的。19世纪50年代,西尔维斯特引入“矩阵”一词来表示“一项由几行H列元素组成的矩形阵列”或“各种行列式组”,凯莱作为矩阵理论的创立者,首先为简化记法引进矩阵,然后系统地阐述了矩阵的理论体系。随后,弗罗伯纽斯等人发展完善了矩阵的理论体系形成了矩阵的现代理论。然而,矩阵思想的萌芽由来已久,早在公元前l世纪中国的《九章算术》就已经用到类似于矩阵的名词。但那时矩阵仅是用来作为一种矩形阵列解决实际问题,并没有建立起独立完善的矩阵理论。18世纪末到19世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式等理论的发展提供了矩阵发展的条件,矩阵概念由此产生,矩阵理论得到系统的发展。20世纪初,无限矩阵理论得到进一步发展[]1。 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中[]2。 由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量

空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今[]3[]4。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 (2)国内外研究现状和发展趋势 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)[]5。 ①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用 摘要:在矩阵中占据着比较特殊的位置,通过它我们可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。伴随矩阵不仅仅可以求矩阵的逆,它还有很多重要的性质。本文介绍了伴随矩阵的十四条性质,每一条都给出了详细的证明,同时也给出了应用伴随矩阵性质的例子。伴随矩阵是矩阵学习中的重点和难点,它的性质及其应用更是学习中的重中之重,掌握这些性质、证明及其应用将有利于我们今后的数学学习. 关键词:伴随矩阵可逆矩阵方阵性质 Adjoint matrices properties and applications Abstract Adjoint matrices is matrix and linear algebra, is an important concept of an important branch of mathematics study many tools, through which we can deduce that the inverse matrix calculation formula of inverse square, is the problem can be solved, the status of adjoint matrix in the matrix, it is special the properties and application has unique characteristics. In university mathematics study, adjoint matrices is only used for the inverse matrix solution, not too deep understanding of adjoint matrix, actually there are many important properties, this paper introduces the properties of adjoint matrix 12 is given, every single detail of the proof and the partial nature, and introduces the application of the development process, along with matrix matrix was the key and difficult point matrix learning, it is also learning the properties and applications of priority, master these properties, proof and application will benefit our future mathematics learning. Keywords Adjoint matrix Reversible matrix The phalanx Properties 矩阵是高等数学中非常重要的一个概念,而且应用相当广泛,它是线性代数的核心,矩阵的运算、概念和理论贯穿整个线性代数的学习中。伴随矩阵是一种特殊矩阵,它和矩阵的逆矩阵有着紧密的联系,方阵的伴随矩阵是在求可逆矩阵的逆矩阵时提出

浅谈伴随矩阵的性质及其应用【文献综述】

文献综述 数学与应用数学 浅谈伴随矩阵的性质及其应用 高等代数是最具有生命力的数学分支之一, 从它诞生起即日已成为人类认识并进而改造自然的有力工具, 成为数学科学联系实际的主要途径之一. 在长期不断的发展过程中, 它一方面直接从与生产实践联系的其他科学技术中汲取活力, 另一方面又不断地以全部数学科学的新旧成就来武装自己, 所以它的问题和方法越来越显得丰富多彩[1]. 线性代数是高等代数的重要组成部分, 是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科. 它在数学、力学、物理学和技术学科中有各种重要应用, 因而它在各种代数分支中占居首要地位. 在计算机广泛应用的今天, 计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分. 随着科学的发展,我们不仅要研究单个变量之间的关系, 还要进一步研究多个变量之间的关系, 各种实际问题在大多数情况下可以线性化, 而由于计算机的发展, 线性化了的问题又可以计算出来, 线性代数正是解决这些问题的有力工具[2]. 矩阵, 是代数学的一个主要研究对象, 是数学中最重要的基本概念之一, 也是数学研究及应用的一个重要工具. 矩阵这一具体概念是由19世纪英国数学家凯利首先提出的, 并形成了矩阵代数这一系统理论. 在实际生活中, 很多问题可以借用矩阵抽象出来进行表述并进行运算, 如在各循环赛中常用的赛况表格、国民经济的数学问题等[2-3]. 数学上, 一个矩阵乃一行列的矩形阵列. 矩阵由数组成, 或更一般的有某环n m m n 中元素组成, 矩阵常见于线性代数、线性规划、统计分析、解析几何, 以及组合数学等. 矩阵在微积分、图论、对策、数据拟合等模型中也有着非常广泛的应用. 如数学建模是把现实世界中的实际问题抽象成数学模型,求出模型的解,验证模型的合理性后,用它的解来解释现实问题,这其中要用到许多的数学知识, 而矩阵作为一种认识复杂问题的简捷的数学工具,在数学模型中具有重要的作用, 从数学规划模型和线性代数模型中分析矩阵应用, 通过分析来提高数学建模的技巧, 可以使数学建模更好地服务于各个领域[ 4]. 又如在图论中应用于顶点覆盖问题、最短路径问题、哈密顿回路问题和最大团问题等[2]. 矩阵可以分为很多类, 有初等矩阵、分块矩阵[5]、幂等矩阵[7]、Hankel 矩阵[8]等等, 近

伴随矩阵的性质和应用

伴随矩阵的性质及其应用 摘要: 伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。伴随矩阵作为矩阵中较为特殊的一类,其理论和应用有自身的特点.而在大学的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有深入的研究.本文分类研究伴随矩阵的性质,并讨论其证明过程,得到一系列有意义的结论。 (1)介绍伴随矩阵在其行列式、秩等方面的基本性质; (2)研究数乘矩阵、乘积矩阵、分块矩阵的伴随矩阵的运算性质及伴随矩阵在逆等方面的运算性质; (3)研究矩阵与其伴随矩阵的关联性质,主要介绍由矩阵的对称性、正定性、奇异性、正交性推出伴随矩阵的对称性、正定性、奇异性、正交性; (4)研究伴随矩阵间的关系性质,主要研究由两矩阵的相似、合同等关系推出对应的两伴随矩阵之间的关系; (5)研究伴随矩阵在特征值与特征向量等方面的性质; (6)给出m 重伴随矩阵的定义及其一般形式,研究m 重伴随矩阵的相应的性质。 本文的主要创新点在于研究了一类分块矩阵的伴随矩阵的性质。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 然而伴随矩阵在矩阵中占据着比较特殊的位置,通过它可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。在矩阵计算及讨论中, 常常会遇到伴随矩阵,但对伴随矩阵的一些性质进行系统讨论的却很少, 以下将主要针对伴随矩阵的各种性质及应用讨论。 关键词:伴随矩阵 可逆矩阵 方阵性质 1、 伴随矩阵的定义 定义 1.设ij A 是矩阵A =????? ?? ???? ?????nn n n n n a a a a a a a a a Λ Λ M O M M M O M M ΛΛΛΛ21222 2111211中元素ij a 的代数余子式,则矩阵A *=????? ?? ? ??? ?????nn n n n n A A A A A A A A A Λ Λ M O M M M O M M ΛΛΛΛ 2 122221112 11称为A 的伴随矩阵。 定义2.设A 为n 阶方阵,如果有矩阵B 满足AB=BA=E,则B 就称为A 的逆矩阵,记为B=1-A 。 *注意:只有方阵才有伴随矩阵和逆矩阵。 2、伴随矩阵的性质 性质1.设A 为n 阶方阵,AA * =A *A=A E .

伴随矩阵

伴随矩阵 在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。 A的伴随矩阵可按如下步骤定义: 1.把D的各个元素都换成它相应的代数余子式;(代数余子式定义:在一个n级行列式A中,把元所在的第i行和第j列划去后,留下来的阶行列式叫做元的余子式,记为M ij;称(-1)^i+j *M ij为a ij的代数余子式) 2.将所得到的矩阵转置便得到A的伴随矩阵, 补充:(实际求解伴随矩阵即A*=adj(A):去除A的行列式D中元素对应的第i行和第j列得到的新行列式D1代替a ij,这样就不用转置了) 即:n阶方阵的伴随矩阵A*为 A11 A12 (1) A21 A22 (2) 。。。 。。。 An1 An2 ……Ann 例如:A是一个2x2矩阵, a11,a12 a21,a22 则由A可得Aij (I,j=1,2)为代数余子式 此图片为相应代数余子式的计算过程。

则A的伴随矩阵A* 为 A11 A21 A12 A22 即 a22 , -a12 -a21, a11 (余子式定义:A关于第i 行第j 列的余子式(记作Mij)是去掉A的第i行第j列之后得到的(m -1)×(n - 1)矩阵的行列式。特殊规定:一阶矩阵的伴随矩阵为一阶单位方阵) 注意:在matlab中一阶矩阵的伴随矩阵是空矩阵。 原矩阵中的值与伴随矩阵中的值一一映射,例如 1 2 3 2 2 1 -------> 3 4 3 +2 6 -4

-3 -6 5 2 2 -2 其中1对应5 ;2 2 对应-3;3对应2;等等 基本性质: (1)AA*=A*A=|A|E; (2)|A*|=|A|n-1 具体求法 ①当矩阵是大于等于二阶时: 主对角元素是将原矩阵该元素所在行列去掉再求行列式. 非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的. 主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。 常用的可以记一下: a b —— 1/(ad-bc) (d -c c d -b a) ②当矩阵的阶数等于一阶时,他的伴随矩阵为一阶单位方阵. 3.二阶矩阵的求法口诀:主对角线对换,副对角线符号相反

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (3) 摘要 (4) 关键词 (4) 0引言 (4) 1主要结论 (4) 1.1伴随矩阵的基本性质 (4) 1.2伴随矩阵的特征值与特征向量的性质 (8) 1.3矩阵与其伴随矩阵的关联性质 (9) 1.4两伴随矩阵间的关系性质 (10) 2应用举例 (11) 例1 (11) 例2 (11) 结束语 (12) 参考文献 (12) 致谢 (13)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的 2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1) i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A * = 11 2111222212n n n n nn A A A A A A A A A ????? ??? ?? ?? 称为矩阵A 的伴随矩阵. 1主要结论 1.1伴随矩阵的基本性质 性质1 若A 是n 阶方阵(2)n ≥,那么

矩阵的伴随矩阵的性质

矩阵的伴随矩阵的性质 数学计算机学院数学与应用数学(师范)2011届方娜 摘要:本文首先回顾了伴随矩阵的定义,讨论了伴随矩阵的秩、可逆性、特征值及一些特殊矩阵的伴随矩阵,并加以证明.最后给出了某些性质的简单应用. 关键词:伴随矩阵;矩阵的秩; 矩阵的逆; 性质 中图分类号:O151.21 The properties of Adjoint Matrix Abstract:The concept of the adjoint matrix was firstly reviewed, then the rank, the reversibility, the eigenvalue of the adjoint matrix and adjoint matrices of some special matrices were discussed, with proofs of the properties being given out. Lastly, the simple applications of the properties about adjoint matrix were given out. Key words:adjoint matrix;the rank of the matrix;inverse matrix;property

目录 1 前言 (1) 2 伴随矩阵的定义 0 3 伴随矩阵的性质 0 3.1 伴随矩阵的基本性质 0 3.2 伴随矩阵秩的性质 (3) 3.3 伴随矩阵特征值的性质 (4) 3.4 特殊矩阵的伴随矩阵的性质 (4) 4 伴随矩阵的性质的简单应用 (7) 结束语 (8) 参考文献 (9) 致谢 (9)

线性方程组的求解方法及应用开题报告

开题报告 线性方程组的求解方法及应用开题报告 一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势) 线性方程组求解在中国历史久矣。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。在科学计算中的许多问题,例如,电学中的网络问题,船体放样中的样条函数计算,实验数据的曲线拟合以及微分方程的差分方法或有限元方法求解等问题,最终都归结为求解线性代数方程组。现行高等代数教材只用行初等变换来解线性方程组,存在一定的局限性。本文主要讨论了解线性方程组的直接法中的Gauss消元法,以及行初等变换、克莱姆法则、标准上三角形求解法等。 对于不同类型的问题,线性方程组的求解方法不尽相同。同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。这就需要我们去根据相关问题去探究。 马克思曾经说过“一门科学只有成功地应用数学时,才算达到了完善的地步”。随着科学技术的进步,数学已迅速渗透到各门学科之中,因而能强烈感受到数学的重要性。而应用数学中很多用到了线性代数的相关知识,而本选题涉及的线性方程组知识尤为重要,在实际生活的数学应用中,对所需目标进行确定,接着进一步明确一些决策中的关键因素,即而确立线性方程组,进而对此方程求解。因

而求线性方程组解是线性代数中的精髓部分,恰当地使用方法,可以使计算过程比较简洁,避免了迂回复杂的计算。 二、研究的基本内容与拟解决的主要问题 也许会觉得解线性方程组会很容易,但事实上想要彻彻底底的完整得出方程组的解是非常不容易的。若要正确完整得出方程解,首先要具备一定的线性代数的知识,其次要分析对于什么样类型,采用什么样的方法去解决更便捷、更有效。对于不同类型的问题,线性方程组解法的适用就至关重要。同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。这就需要我们去根据相关问题去探究。 本报告主要涉及到一些方程求解的方法,比如初等行变换、回代法、高斯消元法、标准上三角形法等。同时还介绍了线性方程组在以下几方面的应用,在几何方面求点到平面的方程,空间中向量相关性的判别方法。 2.1线性方程组的一些性质线性方程组即一次方程组。线性方程组有一般形式、矩阵形式、向量形式。 含个方程,个未知量的线性方程组的一般形式为:表示未知量,称系数项,称常数项。将方程组的系数组成矩阵来计算方程的解称为系数矩阵,在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值形成了增广矩阵。线性方程组也可以用矩阵表示。型线性方程组可表示为,称为线性方程组的系数矩阵;为线性方程组的增广矩阵;方程组的解是使矩阵等式成立的维向量。在矩阵形式下,对增广矩阵作初等变换不改变方程组的解。如矩阵和是行初等变换下等价的矩阵,即存在可逆矩阵,使,则线性方程组是等价的线性方程组。线性方程组也可以用向

相关文档
最新文档