全国初中数学竞赛辅导(初2)第11讲_勾股定理与应用 学生卷

全国初中数学竞赛辅导(初2)第11讲_勾股定理与应用  学生卷
全国初中数学竞赛辅导(初2)第11讲_勾股定理与应用  学生卷

第十一讲勾股定理与应用

基础知识

勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.

勾股定理逆定理如果三角形三边长a,b,c有下面关系:a2+b2=c2

探索证明

证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.

证法2如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG ⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.

定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.

特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述:c2=a2+b2.

由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,

(1)若c2=a2+b2,则∠C=90°;(2)若c2<a2+b2,则∠C<90°;(3)若c2>a2+b2,则∠C>90°.例题精讲

例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.

例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).

例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.

例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.

例5 求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍.如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:4(AM2+BN2)=5AB2.

练习十一

1.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.

2.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:AF2+BD2+CE2=FB2+DC2+EA2.

3.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.

4.如图2-31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:BC2=AB·BF+AC·CE.

初二数学勾股定理测试题及答案

勾股定理测试题 体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 一、选择题 | 1.下列各数组中,不能作为直角三角形三边长的是( ) A. 9,12,15 B. 7,24,25 C. 6,8,10 D. 3,5,7 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形 ! 3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( ) 4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( ) A. 12cm B. C. D. ~ 二、填空题 5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ . 6.直角三角形两条直角边的长分别为5、12,则斜边上的高为. < 7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距. 8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为. 9.以直角三角形的三边为边向形外作正方形P、Q、K,若SP=4,SQ=9,则Sk= . 三、解答题 @ 10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米

为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积. / 12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高. 13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,· 如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形 《 的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用 关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方>

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中奥数辅导讲义培优计划(星空课堂)

第一讲走进追问求根公式 第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理 第四讲明快简捷—构造方程的妙用 第五讲一元二次方程的整数整数解 第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想 第八讲由常量数学到变量数学 第九讲坐标平面上的直线 第十讲抛物线 第十一讲双曲线 第十二讲方程与函数 第十三讲怎样求最值 第十四讲图表信息问题 第十五讲统计的思想方法 第十六讲锐角三角函数 第十七讲解直角三角形 第十八讲圆的基本性质 第十九讲转化灵活的圆中角

第二十讲直线与圆 第二十一讲从三角形的内切圆谈起第二十二讲园幂定理 第二十三讲圆与圆 第二十四讲几何的定值与最值 第二十五讲辅助圆 第二十六讲开放性问题评说 第二十七讲动态几何问题透视 第二十八讲避免漏解的奥秘 第二十九讲由正难则反切入 第三十讲从创新构造入手

第一讲 走进追问求根公式 形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了 一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设、是二次方程的两个根,那么的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。 【例3】 解关于的方程。 思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。 【例4】 设方程,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数、、、互不相等,且, 试求的值。 思路点拨:运用连等式,通过迭代把、、用的代数式表示,由解方程求得的值。 注:一元二次方程常见的变形形式有: (1)把方程()直接作零值多项式代换; (2)把方程()变形为,代换后降次; (3)把方程()变形为或,代换后使之转化关系或整体地消去。 02=++c bx ax 0≠a a ac b b x 2422 ,1-±-=1)1(22=--+n n n 1x 2x 032=-+x x 1942231+-x x 1x 2x 1213x x -=2223x x -=x 02)1(2=+--a ax x a 01=-a 01≠-a 04122=---x x a b c d x a d d c c b b a =+=+ =+=+1 111x b c d a x 02=++c bx ax 0≠a 02=++c bx ax 0≠a c bx ax --=202=++c bx ax 0≠a c bx ax -=+2bx c ax -=+2x

八年级数学竞赛讲座从勾股定理谈起附答案

第十三讲从勾股定理谈起 勾股定理揭示了直角三角形三边之间的关系,大约在公元前1100多年前,商高已经证明了普通意义下的勾股定理,在国外把勾股定理称为“毕达哥拉斯定理”. 勾股定理是平面几何中一个重要定理,其广泛的应用体现在:勾股定理是现阶段线段计算、证明线段平方关系的主要方法,运用勾股定理的逆定理,通过计算也是证明两直线垂直位置关系的一种有效手段.直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用. 例题求解 【例1】如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连结DC,以DC为边作等边△DCE,B、E在CD的同侧,若AB=2,则BE= . (重庆市中考题) 思路点拨因BE不是直角三角形的边,故不能用勾股定理直接计算,需找出与BE相等的线段转化问题. 注千百年来,勾股定理的证明吸引着数学爱好者,目前有400多种证法,许多证法的共同特点是通过弦图的割补、借助面积加以证明,美国第20任总统加菲尔德(1831—1881)曾给出一个简单证法.勾股定理的发现是各族人民早期文明的特征,有人建议,将来与“外星人”交往,可以把勾股定理转化为光电讯号,传向异域,他们一定懂得勾股定理. 现已确定的2002年8月在北京举行的国际数学家大会的会标来源于弦图的图案.

【例2】 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b)2的值为( ) A .13 B .19 C .25 D .169 (山东省中考题) 思路点拨 利用勾股定理、面积关系建立a 、b 的方程组. 【例3】 如图,P 为△ABC 边BC 上的一点,且PC =2PB , 已知∠ABC =45°,∠APC =60°,求∠ACB 的度数. (“祖冲之杯”邀请赛试题) 思路点拨 不可能简单地由角的关系推出∠ACB 的度数,解本例的关键是由条件构造出含30°角的直角三角形. 【例4】如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB=c ,CD=h . 求证:(1)2221 1 1 h b a =+; (2) h c b a +<+ ; (3) 以b a +、h 、h c +为边的三角形,是直角三角形. 思路点拨 (1)只需证明1)1 1 (222=+b a h ,从左边推导到右边; (2)证明(22)()(h c b a +<+;(3)证明222)()(h c h h a +=++.在证明过程中,注意面积关系式ch ab =的应用. 【例5】 一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由. (北京市竞赛题) 思路点拨 假设存在符合条件的直角三角形,它的三边长为a 、b 、c ,其中c 为斜边,则?? ???=++=+2222ab c b a c b a ,

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学勾股定理拔高综合训练含答案

初中数学勾股定理拔高综合训练 一.选择题(共15小题) 1.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出() A.2个 B.3个 C.4个 D.6个 2.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有() A.1 B.2 C.3 D.4 3.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是() A.4 B.8 C.16 D.32 4.分别以下列四组数为一个三角形的边长①6,8,10②5,12,13 ③8,15,16④4,5,6,其中能构成直角三角形的有() A.①④B.②③C.①②D.②④

5.如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值() A.13 B.19 C.25 D.169 6.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米 B.大于4米C.小于4米D.无法计算 7.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或D.60cm 8.如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有() A.2个 B.3个 C.4个 D.5个 9.如图所示:数轴上点A所表示的数为a,则a的值是()

初中数学教研组新学期工作计划

初中数学教研组新学期工作计划 初中数学教研组工作计划 一、指导思想: 认真贯彻校教务处工作计划。 初中数学教研组工作计划。以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建“自主学习”课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式,使我校数学教学、教研质量进一步提高。 二、工作目标 1、加强组风建设,狠抓教学常规,更新教学观念,提高教师实践能力。 2、构建“自主学习”课堂教学模式,努力改善教与学的方式。 3、进一步提高教师的信息技术与数学教学整合能力。 XX 4、抓好培优补差工作,努力解决厌学问题。 5、继续抓好培养青年教师工作。 6、进一步加强科研力度,树立科研兴教思想。 三、重点及主要措施 1、加强组风建设,把数学组建设成师徳形象好,教研

风气浓,协作意识和团体凝聚力强,特别是对学生、对学校发展有强烈责任感和使命感的教研组。主要通过组内讨论,与领导交流,师生沟通及自修师德,听专家讲座等形式,增强教师的责任感和使命感,同时教研组长配合教导处承担对数学教学的指导和管理,以抓"课堂常规"为突破口,抓好各项常规管理。严格执行教导处的各项计划。 2、更新教学观念,构建“自主学习”课堂教学模式 ⑴、用新课程改革的理念来转变和更新教学观念,武装自己,指导平常的教学工作,提高课堂教学效率。 XX ⑵、强调智力因素和非智力因素的结合,创造愉快振奋的学习情绪,调动学生智力活动的积极性,积极实行启发式和讨论式教学,培养学生自主学习。激发学生独立思考和创新意识,切实提高教学质量。废除"注入式"、"满堂灌",挣脱阻碍学生主动发展的束缚,构建充满生命活力的“主动发展型”新模式,还学生主体参与的权力,实现学生主体、主动,创新可持续发展。 ⑶、继续树立学生是学习的主人,教师是学生学习的组织者、引导者、合作者和促进者的思想观念,以平等、宽容的态度对待学生,在沟通和“对话”中实现师生的共同发展,努力建立互动的师生关系。。 ⑷、强化基础学科和学科基础知识,在注重基础知识和

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

2020初中数学培优补差工作计划范文

很快又开学了,培优补差工作是一个学校教学工作的重中之重,接下来为你带来2020初中数学培优补差范文,希望对你有帮助。 2020初中数学培优补差工作计划范文篇一 新世纪呼唤新课改,当前,小学数学教学正处在一个大的变革之中,作为教师,我们要努力探讨如何在数学教学中进行素质教育和培养学生的创新精神,如何为学生的终身发展打好基础。为了全面提高本班学生学习的主动性和积极性,实行以点带面,全面提高、通过培优补差使学生转变观念,认真对待学习,发展智力,陶冶情操,真正做到教师动起来,学生活跃起来、并且长期坚持下去,真正让学生树立起学习的信心和勇气、克服自卑的心里、在学生中形成“赶、帮、超”浓厚的学习兴趣,使每个学生学有所长,学有所用、因此,特制订本班2020初中数学培优补差工作计划范文。 一、工作目标 1、加强对培优补差工作的常规管理和检查。 2、通过培优补差,使学生能充分认识到学习的重要性。 3、认真挑选好培优补差的对象。

4、认真做好学生的辅导工作,每周至少2次的辅导,辅导要有针对性和可行性。 二、具体内容 1、培优内容思维能力方面的训练。 2、补差内容义务教育课程标准试验教科书三年级上册。 三、培优补差对象和形式 对象本班优等生和后进生 形式1、利用课堂时间相机辅导2、利用学校午休时间3、老师、家长相配合 四、具体措施 1、利用课堂时间相机辅导 在课堂上多提问他们,对优等生,多提问一些有针对性、启发性的问题;对后进生多提问一些基础知识,促使他们不断进步。当后进生作业出现较多错误时,教师要当面批改,指出错误,耐心指导。当少数后进生因基础差而难以跟班听课

时,我们应采取系统辅导的方法,以新带旧,以旧促新,帮助后进生弥补知识上的缺陷,发展他们的智力,增强他们学好语文的信心。另外,在课堂上对后进生多提问,发现他们的优点和成绩就及时表扬,以此来提高他们的学习成绩。 2、课余时间个别辅导 在限定的课堂教学时间内,是很难满足和适应不同学生的需要的。因此,组织课外辅导,作为课堂教学的补充是很有必要的。对于优等生,我打算制定课外资料让他们阅读,布置要求较高的作业让他们独立思考,指定他们对其他学生进行辅导,使他们的知识扩大到更大的领域,技能、技巧达到更高的水平,使他们永远好学上进,聪明才智得到更好地发挥。同时,在每周的星期二、四午休活动定期对后进生进行辅导,对当天所学的基础知识进行巩固,对掌握特别差的`学生,进行个别辅导。平时,在后进生之间让他们开展一些比赛,比如看谁进步快、看谁作业得满分多、看谁成绩好等。 3、家长和老师相配合 我打算布置适当、适量的学习内容,让家长在家里对后进生进行协助辅导,老师定期到优等生和后进生家里进行家访,摸清他们在家的学习情况和作业情况。定期让优等生介绍他们的学习经验,让后进生总结自己的进步。 五、在培优补差中注意几点

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

初二数学勾股定理教案(模板)

初二数学上册教案模板勾股定理(2课时) 一、教学目标及重点 1、教学目标 (1)经历探索勾股定理及验证勾股定理的过程,通过自主学习体验获取数学知识的感受,培养学生的思维能力和语言表达能力。 (2)运用勾股定理解决实际问题。 (3)了解有关勾股定理的历史,通过有关勾股定理的历史讲解,对学生进行德育教育。 2、教学重点:勾股定理及其应用。 3、教学难点:通过有关勾股定理的历史讲解,了解数学发展史,激发学习兴趣,对学生进行德育教育。 二、探索发现:(在教师的引领下,小组合作,探索学习) 通过此案例引出:勾股定理(商高定理、毕达哥拉斯定理、百牛定理)的渊源。 三、知识透析: 1.勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,

那么: 即:直角三角形两直角边的 等于斜边的平方。 2.注意:(1)勾股定理的条件是:只有在直角三角形中才使用;(2)勾股定理的变形:222a =-b c ;222b =-a c 3.勾股定理验证方法:(教师引导学生通过面积计算,实现勾股定理证明) (1)赵爽证明: (2)伽菲尔德“总统证明法” 四、典例分析: 题型1:勾股定理 1.=90ABC C A B C ?∠∠∠∠V 例在中,,、、所对的边分别是a 、b 、c 。 (1)当a=3,b=4,则c= (2)若a=5,b=12,则c= 例2.一个等腰三角形的腰长为13cm ,底边长为10cm ,则底边上的高为?( )

(随堂练习:教材3页1、2) 题型2:勾股定理验证 例3.请您用下图验证勾股定理 例4.教材5页第三问 (随堂练习:教材6页中间) 题型3:勾股定理应用 例5.有两棵树,一棵高10米,另一棵高4m,两棵相距8米。一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()(2013安顺中考) A.8米 B.10米 C.12米 D.14米 注:将应用题转化构造为直角三角形 例6.教材5页例题

初一数学辅导计划

初一数学辅导计划 一、指导思想: 在新课程改革背景指导下,坚持学习先进的教育教学理念,坚持教为主导,学为主体,坚持学生为中心地位不动摇,使人人学会能用得上的数学,切实提高学生的成绩。 二、主要措施: 1、摸清学生底子,深入学生,深入教学,通过作业、课堂、试卷等切实摸清学生的 功底,并能将学生进行分类,分组,做到有的放矢。 2、改革课堂教学模式,提高学生的参与性,提高学生学习数学的兴趣,构建高效课堂。 3、充分利用小组,采取合作学习的方式,消除学生心中的疑惑和自卑心理。 4、认真批改学生作业,及时纠正学生作业中出现的错误,尽量做到面批。 5、利用自习辅导时间,老师争取集中抽查的方式,发现学生的不足,及时辅导纠正。 6、采用定时间:每天下午自习,集中进行差生辅导。 7、注重学习后的抽查,给差生吃“小灶”,对出现的错误及时纠正辅导。 8、建立错题集,提高学生的警惕性,避免犯同样的错误。 9、定时召开学习经验交流会,让他们谈感想、体会、学习心得,畅所欲言,相互学习,取长补短。 10、教师要立足于实际,多表扬学生,注意发现学生的闪光点,采用多表扬、少批评 或不批评的措施,来提高学生学习的自信心和兴趣。 11、在辅导过程中,要根据成绩、基础、学习态度和其他非智力因素,将学生分为上、中、下三等,予以区别对待,采取相应的措施力促他们得以相应提高。 三、主要时间安排: 1、第一周:结合上学期期末考试成绩,给学生分类,制定本学期辅导计划。 2、第二——八周,日常活动。 3、第九、十周,期中考试专题辅导及试卷分析讲评。 4、第十一——十八周,调整辅导策略。

5、第十九、二十周,总结辅导实施情况,学生学习经验交流。 一、学情分析 七年级是初中学习过程中基础和入门,学好七年级数学能为以后的学习做铺垫。现在班上的学生基础较差,但也有优秀的学生。他们都很热爱学习,只要端正学生们的学习态度,大家共同努力,让学生掌握学习数学的方法和技巧,激发学生学习数学的兴趣,这样才能极大提高学生的学习成绩。 二、教学辅导内容和目标 七年级数学辅导内容和目标 第五章、相交线与平行线 本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。第六章、平面直角坐标系 本章主要内容是平面直角坐标系及其简单的应用。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。 第七章、三角形 本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。 第八章、二元一次方程组 本章主要学习二元一次议程组及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题第九章、不等式与不等式组 本章主要内容是一元一次不等式组的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式组的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式组解决简单的实际问题。 第十章、实数 本章主要内容是学习了平方根、立方根及实数的相关概念。本章重难点:是会运用平方根立方根进行简单化简计算。 三、辅导教学的具体措施

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学特长生、后进生辅导计划

九年级数学辅导计划 付连敏 一、特长生辅导计划: (一)、学生情况分析 每个班中有部分学生对数学科比较感兴趣,学习成绩也较为突出,除了掌握课本的内容外,有着进一步学习其他数学知识的愿望。他们的手中虽然有一些相关的数学材料,但不会灵活加以运用,发挥不出其应有的功效。 (二)、辅导对象 每个班中数学成绩前十名的学生。 (三)、主要辅导内容 1.课本中知识的拓宽、推广和应用。 2.学习方法、技巧、规律归纳。 3.数学竞赛相关内容的辅导与讲解。 4.数学参考资料的选择与使用。 5.探究、操作性问题的解答方法介绍。 (四)、辅导措施 1.认真备课,准备好每次辅导时所需要的相关内容材料。 2.对参加辅导的学生严格要求,发现问题,及时解决。 3.保证做到时间、地点、人员、内容四落实。 4.每次辅导都保证活动的实效,不搞形式主义。 (五)、辅导目标 1.发挥数学特长,培养数学兴趣。 2.增强应用数学意识,提高综合运用数学知识能力。 3.中考尽可能在各科中排在前列。

二、临线生辅导计划 一、学生情况分析 在班级中,有部分学生学习成绩徘徊在及格线和优秀线左右,对数学学习兴趣不高,成绩忽上忽下,又有可能努努力就达到及格线和优秀线,是提高成绩的关键所在。 二、辅导对象 班级中成绩后处在及格线和优秀线左右的学生。 三、主要辅导内容 1.进行学习方法介绍。 2.课本知识的复习与归纳。 3.疑难问题解答、点拨。 4、课上、课下的重点关注。 四、辅导措施 1.辅导内容人人过关,过完关后还要进行及时的再回顾。 2.对学生严格要求,辅导中发现问题要及时解决。 3.每次辅导都认真组织,做到时间、地点、人员、内容四落实,保证活动的实效。 五、辅导目标 1.提高学生的思想觉悟,培养数学兴趣,养成良好的学习习惯。 2.学好数学基础知识,并能够不断取得进步,缩短与优生的差距。 3、争取在中考中取得好成绩。 三、学困生辅导计划 一、学生情况分析 在班级中,有少数学生学习成绩较差,对数学不感兴趣,不求

2018初中数学竞赛勾股定理讲解学习

精品文档 初中数学竞赛专题选讲 勾股定理 一、内容提要 1. 勾股定理及逆定理:△ABC 中 ∠C =Rt ∠?a 2+b 2=c 2 2. 勾股定理及逆定理的应用 ① 作已知线段a 的2,3, 5……倍 ② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。 3. 勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做 一组勾股数. 4. 勾股数的推算公式 ① 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。 ② 如果k 是大于1的奇数,那么k, 212-k ,2 12+k 是一组勾股数。 ③ 如果k 是大于2的偶数,那么k, 122-??? ??K ,122+?? ? ??K 是一组勾股数。 ④ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。 5. 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3,4,5; 5, 12,13; 7,24,25; 8,15,17; 9,40,41。 二、例题 例1.已知线段a a 5a 2a 3a 5 a 求作线段5a a 分析一:5a =25a =224a a + 2a ∴5a 是以2a 和a 为两条直角边的直角三角形的斜边。 分析二:5a =2492 a a - ∴5a 是以3a 为斜边,以2a 为直角边的直角三角形的另一条直角边。 作图(略) 例2.四边形ABCD 中∠DAB =60ο,∠B =∠D =Rt ∠,BC =1,CD =2 求对角线AC 的长 解:延长BC 和AD 相交于E ,则∠E =30ο

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学工作计划

初中数学工作计划集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

数学工作计划 一、班级情况分析 八年级两个班学生的总体情况如下: 1班学生:78人。2班学生79人;通过七年级成绩来看,学生的数学成绩参差不齐,分数高的,有110分以上的,分数低的,还不过30分,总体上看,学生的数学成绩一般,在学生的数学知识上看,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容。 本学期将要学习有关数型的初步知识,对三角形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分学生的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩一般,但仍有少部分学生对数学丧失信心,谈数学而色变,因此要给这部分学生树信心,鼓干劲;对于升入初 二、学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初二生活。 三、教材分析

本学期所授的内容包括三角形的证明,一元一次不等式,图形的平移和旋转,因式分解,分式与分式方程,平行四边形六章。每章都是一个单独学习的主题,章与章之间的联系很大,但本学期所学的知识与小学、七年级和八年级上学期所学知识有一定的联系,而且是以后学习的基础,因此知识联系的跨度比较大,这就需要学生对所学知识要经常温习,以避免遗忘。所以教学时,对每一章的教学目标和重点难点都要明确,以圆满完成每一章节的教学任务。 四、学情分析 八年级学生虽然掌握了一定的基础知识,并且有了一定的能力,但是我校学生的实际基础较差,特别是在能力方面欠缺。另外学生在学习上缺乏主动性,不能积极主动地按老师的要求先预习,课后温习,认真完成作业,这样就造成了课堂检验学生的学习效果比较理想,但是第二天交上来的作业效果不理想。 五、教学措施 1、本学期教学工作重点是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。 2、课前备课。课前认真备课,研究教材、课程标准,把握教材的重点和难点,明确本章本节在整体中所处的地

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

初中数学勾股定理

聚智堂学科教师辅导讲义 年级:课时数:学科教师: 学员姓名:辅导科目:数学辅导时间: 课题勾股定理 教学目的 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是 直角三角形。 3、满足2 2 2c b a= +的三个正整数,称为勾股数。 教学内容 一、日校回顾 二、知识回顾 1. 勾股定理 如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么 2 2 2c b a= + 即直角三角形两直角边的平方和等于斜边的平方。 说明: (1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。

(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。在没有特殊说明的情况下, 直角三角形中,a ,b 是直角边,c 是斜边,但有时也要考虑特殊情况。 (3)除了利用a ,b ,c 表示三边的关系外,还应会利用AB ,BC ,CA 表示三边的关系,在△ABC 中,∠B =90°,利 用勾股定理有2 2 2 AC BC AB =+。 2. 利用勾股定理的变式进行计算 由2 2 2 c b a =+,可推出如下变形公式: (1)2 2 2 b c a -=; (2)2 2 2 a c b -= (3)22b c a -= (4)22a c b -= (5)22b a c += (平方根将在下一章学到) 说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。 三、知识梳理 1、勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2 b a +是否具有相等关系 (3) 若2 c =2 2 b a +,则△ABC 是以∠C 为直角的直角三角形;若2 c ≠2 2 b a + 则△ABC 不是直角三角形。

相关文档
最新文档