三维地形建模技术标准

三维地形建模技术标准
三维地形建模技术标准

上海勘测设计研究院企业标准

Q/SIDRI1XX.XX-2014

三维地形建模技术标准

XXXX-XX-XX发布XXXX-XX-XX实施

发布

目录

前言 ......................................................................................................... I

1 总则 (1)

2 术语 (1)

3 工作环境 (1)

4 数学基础 (2)

5 原始地形图规定 (2)

6 建模规定 (3)

7 成果要求 (4)

8 交付与使用 (5)

前言

本标准是参照SL1—2002《水利技术标准编写规定》进行制订,是我院企业技术标准编写的依据。

本标准由上海勘测设计研究信息与数字工程中心提出。

本标准主编部门:信息与数字工程中心

本标准参与部门:勘测院

本标准主要起草人:方毅

本标准于2014年7月首次制定。

1 总则

1.0.1 目的

为了落实公司的发展规划,推动三维协同设计的应用,提升公司信息化水平,为了保障三维地形建模工作的顺利进行,规范其建模流程,方便后续专业进行三维设计工作,以提高整个团队的工作效率,特制定本标准。

1.0.2 适用范围

本标准适用于所有项目中三维地形模型的建立、应用和管理。

2 术语

2.0.1 DTM

Digital Terrain Model,数字地面模型,本公司的三维地形建模就是指建立数字地面模型。

2.0.2 高程

从某一基准面起算的地面点的高度,我国采用的是水准高程,即基准面为似大地水准面。

2.0.3 等高线

指的是地形图上高程相等的各点所连成的闭合曲线。

3 工作环境

3.0.1 使用软件

三维地形建模使用的软件主要是Mircrostation、GeoPak以及AutoCAD。

3.0.2 专业环境

使用GeoPak建立DTM模型时,工作环境执行如下规定:

1 User为untitled

2 Project为untitled

3 Interface为default

3.0.3 种子文件

DTM是以米为单位的,种子文件选择seed3d。

3.0.4 单位设置

DGN文件工作主单位为米,保留小数点后3位。

4 数学基础

4.0.1 平面坐标系统

与原始地形图平面坐标系统一致。

4.0.2 高程系统

与原始地形图高程系统一致。

4.0.3 基本单位

以米为基本单位。

5 原始地形图规定

5.0.1 高程点

需要满足下列条件之一:

1高程点要有正确的三维信息(X、Y、Z);

2 高程点有正确的平面信息(X、Y),同时其高程标注有正确的高程信息。

5.0.2 等高线

所有等高线需有标高信息,即使是同一等高线被打断成多段,每段也需要有标高信息。

5.0.3 坡坎线

需要满足下列条件之一:

1 坡坎线需是三维的,即每个节点有三维坐标。

2 坡坎线是平面的,同时节点处有高程点。

5.0.4 dwg单位

dwg文件单位设置为“米”或“无单位”。

6 建模规定

6.0.1 流程

三维地形建模流程如图6.0.1-1所示:

图6.0.1-1 DTM建模工作流程

6.0.2 工作分解

对于大面积地形数据,将地形数据划分成若干部分进行数据的前期准备,然后将准备好的数据合并到一起进行DTM建模。

6.0.3 建模方式

GEOPAK Site是Bentley水电解决方案中对硬件要求最高的软件,而三

维地形建模并不影响其它专业的建模,根据实际情况,本公司采取在本机DTM建模,然后将成果再上传到服务器。

6.0.4 建模深度

测绘专业提供的地形范围均大于工程的实际区域,对于工程区域内的地形,DTM模型要将地物和地貌详尽准确的表示出来,注意:此处的地物主要是指跟开挖工程量计算相关的地物,包括坡、坎、河流、水沟和池塘等。对于工程区域外的地形,DTM模型可只表示主要的地物地貌。对于DTM模型边界上的三角网,如果能够表示实际的地形趋势,可不作处理,否则,需要处理,使其能够反应实际的地形趋势。

6.0.5 轻量化

当地形数据比较大时,在保证模型精度的前提下,需要对地形数据进行轻量化处理,以减少数据的冗余,提高建模速度。

7 成果要求

7.0.1 成果内容

1 tin格式的DTM文件。

2 dgn格式的DTM文件。

3 dwg格式的原始地形文件。

7.0.2 命名规则

1 ×××三维地形.tin。

2 ×××三维地形.dgn。

3 ×××测量地形图.dwg。

其中:×××为工程项目名称。

7.0.3 图层规定

dgn格式的DTM文件中,图层要求执行表7.0.3-1规定:

表7.0.3-1 图层名称规定

dgn格式的DTM文件中,线型颜色要求执行表7.0.4-1规定:

表7.0.4-1 线型颜色规定

8 交付与使用

8.0.1 数据检查

模型数据交付前,应进行数据的检查,并应满足下列要求:

1 模型数据已经过审核。

2 模型数据是最新版本。

3 模型数据内容和格式符合项目数据互用规定。

8.0.2 交付方式

将所有成果上传到PW服务器对应的目录下。

8.0.3 使用方式

根据工作内容的不同,DTM数据使用的方式也不同,执行表8.0.3-1规定:

表8.0.3-1 DTM使用方式

三维建模方案分析

三维建模方案分析

1矢量数据生成建模 建筑物可以看作屋顶面和各个铅直外墙面的组成。在已知区域边界坐标和房屋高的参数下,可直接构造房屋的铅直外墙面,并按照一定的顺序剖分为三角网,保证其法向量向外;屋顶平面则通过边界多边形的三角剖分来构造,保证其法向量向上。房屋的基准高通过查询DEM地形数据得到。 要求模型(含建筑、道路和高架桥等)结构相似,可从地形图上直接提取相关属性建模,勾勒轮廓线,基本忽略细节,贴仿真纹理,即该类型建筑的通用纹理,不追求与真实情况完全一致。 2软件建模 软件建模就是人工外业采集拍照,内业通过一些模型制作软件(如:3dsmax、maya等),以多方面数据为依据(如:照片、图纸等),手工建立模型数据。这种数据的特点是模型结构准确,外观美观;可以根据应用精度来自用控制模型的数据量;可维护性比较高。但制作的周期比较长。比较适合高精度、高美观度、密集度较低的场合使用。 1)获取准确的建筑位置及外观数据 首先,将地形图中的建筑外轮廓线提取出来,并进行整理。以确定建筑的真实地理位置和大致外形轮廓。 2)将数据转换为模型制作软件的可用数据。 将数据转换为模型制作软件可以识别的格式,如:AutoCAD的dwg和dxf 格式;并导入到模型制作软件中。

3)在模型制作软件中建立模型结构。 三维模型的搭建主要是指手工建模的部分,建模之前根据现有采集的,经过整理和编号的照片,以及甲方提供的资料(如cad,航拍影像等),对建筑的级别进行划分,针对每个级别进行不同精度的模型搭建。 依据模型的外轮廓线建立模型的大体结构。然后参考照片和建筑的结构图,分别建立建筑的各个结构。基本上分为三个等级: 一级模型:0.5米以上的凹凸特征要建模表现,这类建筑主要是指重点区域,城市主干道两侧建筑、一些经济、文化、体育,大型公建和知名历史意义的重点建筑或建筑群,(例:大型体育场馆、大剧院、会展中心、规划馆博物馆、展览馆、机场、五星级以上宾馆酒店、具有城市代表性建筑、重要古建)。 二级模型:1米以上的凹凸特征要建模表现,这类建筑主要是城市次干道两侧建筑、地块内部建筑(例如一些新建高档小区,学校,宾馆、酒店等)。 三级模型:1.5米以上凹凸特征要建模表现,这类建筑主要指城市边缘地区建筑,农村住房、城中村、棚户区、低层老旧住宅、待拆迁住宅、平房、禁区建筑等。 每个级别有相应的精度和规范,总体概括为:模型结构特征准确,能够通过该特征明显辨认,模型制作要求和注意事项有专门的制作规范。 4)制作贴图 为模型制作纹理,必须依据模型的结构调整贴图的尺寸。不同的模型精度要求,所对应的贴图尺寸也有所不同。

基于openGL的三维地形场景的生成

基于openGL的三维地形场景的生成

1、背景介绍 (3) 2、openGL中地形动态显示 (3) 3、程序的主要功能 (4) 3.1 三维地形的生成 (4) 3.2 天空盒的生成 (8) 3.3 树的生成 (9) 3.4 3DS模型的读入 (11) 3.5 键盘交互实现漫游 (11) 3.6汉字的显示 (12) 4、总结 (13) 4.1 项目总结 (13) 4.2 小组成员分工 (14) 参考文献 (15)

1、背景介绍 地形是自然界最复杂的景物之一,对其三维显示和漫游一直是计算机图形学、地理信息系统、数字摄影测量和遥感研究的热点之一。但由于受地形结构复杂,数据量大等条件的制约,要实时模拟具有真实感的大范围三维地形,最大的难点是,如何精简并有效地组织地形数据,以达到高速度、高精确度的可视化目的。 openGL是开放式图形工业标准,是绘制高度真实感三维图形,实现交互式视景仿真和虚拟现实的高性能开发软件包。 利用openGL进行地形动态显示的基本框架如图1所示: 图1 openGL地形现实基本框架 2、openGL中地形动态显示 利用openGL进行地形的三维可视化,包含以下几个步骤: (1)openG L模型映射:利用openGL 制作三维立体地形图,就要将数字地面模型格网用openGL提供的点,线,多边形等建模原语描述为openGL图形函数所识别。 (2)遥感图像与地形融合:openGL提供两类纹理:一类纹理图像的大小必须是几何级数;另一类Mipmaps 纹理可为任意大小。在Mipmaps纹理映射的基础上,可将遥感图像与地形融合。在遥感影像与数字地形相套合时,地形与遥感影像的配准是关键。为了获取更好的视觉效果,配准方案可采取数字地形向遥感图像配准,通过控制点,建立匹配方程,将数字地形由大地坐标系转到影像坐标系中。 (3)观察路线设置与视点计算:为了达到三维交互控制的目的,可在正射的遥感数字影像上任意选择观察路线,对路线上的采样点记录其平面坐标,根据采样点的平面位置从DEM 中采用一定的插值方法,确定观察路线上采样点的高程和平面坐标,当采用Fly-through方式观察时,观察路线上每个视点的高度可由观察点地面高程加上飞行高 度确定当采用walk-through方式观察时观察 路线上每个视点的高度可由观察点地面高程加上

4 项目建设技术路线与三维建模方案

4 项目建设技术路线与三维建模方案

朝阳区数字化三维仿真模拟城市管理系统 建设方案

版本控制 修改记录说明

1.概述 1.1.项目建设背景 “数字城市”是城市信息化发展的方向,是数字地球的一部分,三维地理信息是“数字城市”的重要基础空间信息。三维城市的建立能够全方位地、直观地给人们提供有关城市的各种具有真实感的场景信息,并可以以第一人称的身份进入城市,感受到与实地观察相似的体验感。 随着二十一世纪的互联网技术、计算机技术、3S(GIS/RS/GPS)技术、虚拟现实、航空与航天技术等的飞速发展,给地理信息技术手段带来前所未有的变革,利用高分辨率卫星影像以及航空像片,通过对影像的平面、高程、结构、色彩等的数字化处理,按照统一坐标无缝拼接而成可以迅速建立基于真实影象的“三维数字城市”,人们可以直观的从三维城市上判读处山川、河流、楼宇、道路。借助传统平面地图的概念,叠加空间矢量数据,地物兴趣点数据、以及三维模型数据形成可视化“三维数字”城市展示系统。 与传统二维地图相比,“三维数字城市”展示系统突破平面地图对空间描述二维化、三维空间尺度感差、没有要素结构与纹理信息等诸多限制,通过对真实地形、地物、建筑的数字化三维模拟和三维表达,提供给使用者一个与真实生活环境一样的三维城市环境。通过数字化三维仿真模拟城市的实现对城市的管理,把传统的限于二维的城市管理范围扩展到了三维甚至多维的管理范畴,为城市建设、政务管理、企业信息发布与公众查询提供多维的、可持续发展的信息化服务,将大大提高城市整体信息化管理和经营管理水平,并有利于提高公众参与城市管理的积极性和参与性。 1.2.项目建设目标 以先进的技术手段,在三维仿真模拟城市场景中实现朝阳辖区单位、人口、部件、事件、社区绿化等相关信息的管理,进一步提高朝阳区政府城市管理水平,提高居民参与城市管理的积极性。另一方面,能够很好的展现数字朝阳的建设成果。最终为建设和谐朝阳提供技术保障,为数字奥运做出贡献。

三维地形建模技术标准

上海勘测设计研究院企业标准 Q/SIDRI1XX.XX-2014 三维地形建模技术标准 XXXX-XX-XX发布XXXX-XX-XX实施 发布

目录 前言 ......................................................................................................... I 1 总则 (1) 2 术语 (1) 3 工作环境 (1) 4 数学基础 (2) 5 原始地形图规定 (2) 6 建模规定 (3) 7 成果要求 (4) 8 交付与使用 (5)

前言 本标准是参照SL1—2002《水利技术标准编写规定》进行制订,是我院企业技术标准编写的依据。 本标准由上海勘测设计研究信息与数字工程中心提出。 本标准主编部门:信息与数字工程中心 本标准参与部门:勘测院 本标准主要起草人:方毅 本标准于2014年7月首次制定。

1 总则 1.0.1 目的 为了落实公司的发展规划,推动三维协同设计的应用,提升公司信息化水平,为了保障三维地形建模工作的顺利进行,规范其建模流程,方便后续专业进行三维设计工作,以提高整个团队的工作效率,特制定本标准。 1.0.2 适用范围 本标准适用于所有项目中三维地形模型的建立、应用和管理。 2 术语 2.0.1 DTM Digital Terrain Model,数字地面模型,本公司的三维地形建模就是指建立数字地面模型。 2.0.2 高程 从某一基准面起算的地面点的高度,我国采用的是水准高程,即基准面为似大地水准面。 2.0.3 等高线 指的是地形图上高程相等的各点所连成的闭合曲线。 3 工作环境 3.0.1 使用软件 三维地形建模使用的软件主要是Mircrostation、GeoPak以及AutoCAD。 3.0.2 专业环境 使用GeoPak建立DTM模型时,工作环境执行如下规定:

场景建模

2005—2006年第2学期教案 课程名称:三维角色动画 适用专业:高职高专影视动画专业 教学时间:第2005—2006学年第2学期 教学形式:案例教学 第1 —3教学周 场景路径动画: 教学目的:通过这个练习,深入了解模型制作,了解贴图,灯光,以及路径动画。 我们按照下面的图片来建造小木屋。 在这个练习中需要使用的命令: Edit polygons>Extrude Face挤出表面: 这是Polygon建模的常用命令,它可以在一个表面上挤出一个面,而且与原表面相连,使用这项命令时有两种挤出方式选择: a)勾选Polygons>Tools Options>Keep Faces Together,保证挤出的多个面

b)关闭该项挤出的多个面会朝法线方向散开。 Edit Polygons>Split Polygon Tool分割表面工具: Deform >Create lattice 创建晶格变形:

参数S Divisions T Divisions U Divisions 为XYZ方向的片段数,为了方便的进行调节,可以在晶格的属性栏中进得片段数的修改. 一场景建模: 1.点击Create>Polygon Primitives>Plane先建一个屋子的地面(也可以用Create>NURBS Primitives>Plane都可以) 2.创建Create>Polygon Primitives>Cube的方盒子来做房樑(做一根梁就可以了,可以用复制的方法来做另外3根)。 3.把做好的4根房梁按照它们应放的位置摆好。(现在开起来有点象一张倒放的桌子) 4.我们继续给房子建造顶部的横梁:

地形三维建模

实验三地形三维建模 实验内容: 1、以实测高程点为基础数据,在Cass中制作地形三维模型。 2、以实测等高线为基础数据,在ArcGIS中制作地形三维模型。 主要操作步骤: 1、获取实测高程点的坐标文件数据。(*.dat) 1)使用全站仪、棱镜等测量设备,在指定区域内实测若干高程点,并记录每个高程点的平面坐标及高程。注意:测量高程点时,每个点的间距在5米左右,均匀覆盖所测区域,测站时量测仪器高、棱镜高,输入测站点高程值。高程点数不少于60个。在测高程点的同时,兼顾地物的测量。线性地物数(道路、陡坎、沟渠)不少于5个。 2)实测结束后,将数据转换成Cass坐标文件(*.dat) 在这里以CQSJ.dat数据文件为例 2、在Cass软件将高程点进行展绘,绘制成等高线。将绘制完成的数据保存为DGX.dwg。(本讲义以CQSJ.dat数据为例) 1)打开Cass,导入CQSJ.dat中的高程点 选择“绘图处理—》展高程点”菜单,依次输入绘图比例尺“1:500”,高程点的间距“1”米,即可展绘文件中的高程点。

选择“等高线—》建立DTM”菜单,构建三角网。

再选择“等高线—》绘制等高线”菜单,生成等高线

再选择“等高线—》删三角网”,删去三角网。

3)修饰等高线 在图上标注相应等高线的高程值 4)绘制其他地物(道路、陡坎、沟渠等) 注意:线性地物穿过等高线时,等高线要断开。 5)完成后,保存为DGX.dwg文件。 3、在Cass中进行地形三维建模 使用“等高线—》三维模型—》绘制三维模型”菜单,选择高程点数据文件CQSJ.DAT。 依次输入高程乘系数(默认是1.0,此值是高程值的缩放比例,如果高程值的变化不大,可适当输入较大的系数,三维地形的起伏将比较明显,本例中输入5),输入网格间距(默认是8.0,绘制网格的大小,可根据需要进行调整),选择进行拟合。即可看到地形的三维模型,由于此处的高程乘系数为5,地形起伏得到放大,显得比较明显。

基于OpenGL的三维场景建模

ISSN 1009-3044 Computer Knowledge and Technology V ol.5 No.9, March 2009 电脑知识与技术基于OpenGL的三维场景建模 陈贵彬 (四川航天职业技术学院 计算机科学系,四川 广汉 618300) 摘要:近年来,随着计算机图形学和计算机技术的发展,计算机可视化技术的不断普及,创建“虚拟世界”也不断掀起热潮,而建立具有真实感的三维场景是建设“虚拟世界”的重要一步。本文主要介绍了使用OpenGL实现三维场景的程序框架,以及在开发过程中的关键问题和解决方案。 关键词:可视化;OpenGL;三维建模 中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2009)09-2279-02 3D Scenery Modelling Based on OpenGL CHEN Gui-bin (Department of Computer Science, Sichuan Aerospace Vocational & Technical College, Guanghan 618300, China) Abstract: With the development of computer graphics and computer technology as well as the populization of compute visualization in recent years, there have been continuously calls for creating a "virtual world", while the first important step to construct a "virtual world" is to set up a 3DM Scene of reality. This thesis mainly introduces a program framework of realizing the 3DM Scene using OpenGL, key problems come across in development and their solutions. Key words: Visualization; OpenGL; M-3DM 1 该设计所要解决的问题 OpenGL是公认的高性能图形和交互式视景处理标准。更值得一提的是,Microsoft公司在Windows NT中提供了OpenGL图形标准,以及OpenGL三维图形加速卡和微机图形工作站的推出,使得OpenGL在微机中得以广泛应用,因此,很有必要学习OpenGL,以便在微机上更方便地建立三维图形世界。 该设计围绕OpenGL建立了一个雪花飘落的场景,并通过设置风向、风力、能见度增加真实感。通过实现该场景,掌握了OpenGL基本程序框架的一般搭建,对其中用到的各种OpenGL技术有了一个更深刻的认识,了解了三维仿真建模场景的构造和管理。 2 程序的基本结构 2.1 在VC中设置OpenGL程序的编译环境 该设计基于Windows NT操作系统平台,选用VC++ 6.0开发工具,工 程类型是Win32 Console Application。 编写程序前需要链接OpenGL库。OpenGL库函数主要分布在glu32. lib、glut32.lib和opengl32.lib中。Windows NT操作系统中带有 opengl32.dll和glu32.dll,VC++ 6.0中也包含了opengl32.lib和glu32. lib。此外,还需要添加glut库。本设计使用glut-3.7.6-bin版本。压缩 包中有5个文件(如图1所示)。 将glut32.lib放在VC98安装目录下的静态函数库文件夹lib中, glut.h放在该目录下的Include\GL文件夹中,glut32.dll放在操作系统 的system32文件夹中。然后在VC中新建一个基于Win32 Console Application的工程,在 Project→Settings→LINK标签→“Object/Library Modules”选项中添加opengl32.lib、glu32.lib和glut32.lib。此外,还要在代码中添加使用的每个库文件的头文件。如下所示: #include //Windows的头文件 #include //glut32库的头文件 由于glut.h文件中已经包含了gl.h(opengl32库头文件)和glu.h(glu32库头文件),因此可以仅声明glut.h头文件。 2.2 OpenGL程序的基本结构 本程序的基本结构可分为四个部分: 第一部分是初始化,包括创建窗口,设置OpenGL的一些状态变量。 第二部分是设置观察坐标系下的取景模式和取景框位置及大小。 第三部分是建立物体模型,即使用OpenGL库函数构造几何物体对象的数学描述。 第四部分是对物体和场景的效果变换。 3 关键技术及解决方案 3.1 动画效果 为实现雪花飘落的动画效果,程序中应当使用双缓冲绘图模式: glutInitDisplayMode(GL_DOUBLE) 此外,还要在场景绘制函数中调用glutSwapBuffers()函数。 图1 glut-3.7.6-bin库文件收稿日期:2009-02-18 作者简介:陈贵彬(1981-),男,硕士,研究方向:计算机应用。

利用Smart3D建模软件生成三维地形过程精编版

利用Smart3D建模软件生成三维地形过程本篇经验将和大家介绍以一组无人机倾斜摄影照片为原始数据,通过Smart3D 建模软件,重建生成三维地形的过程,希望对大家的工作和学习有所帮助! 工具/原料 ?包括Smart3D建模软件 ?一组垂直拍摄而且多角度、重叠度满足重建要求的航片 ?航片对应的pos数据文件 概况 关于通过无人机航拍的照片,照片进行三维重建生产模型,一些情况下照片中是自带有GPS数据信息的,而另一些情况则是会导出一组无定位信息的照片和对应的pos数据文本。 前者我们直接新建区块,把照片直接导入给软件跑出结果就ok了。 那么,这次我们主要来谈论研究第二种情况,即照片和pos分开的情况。 END 区块导入表格的编辑 区别于第一种情况我们需要编辑下导入区块的表格,我们将照片的文件路径、参考坐标系、传感器的基本信息等信息嵌入到这个表格里,通过它来实现对照片和pos信息数据的导入。后面的操作处理是跟直接导入照片的方法是没有差别的。 首先,我们看到原始数据的文件夹如下图所示,包括一组照片和相应的pos 文件,如下图所示:

1. 2 可以看到,这个pos数据是以文本文档的形式存在,如下图所示: 3 而在导入区块的过程当中,我们需要导入Excel表格,那么,这时需要运用一定的办公软件的技巧将其转换为Excel表格,这个表格需要包含如下图的4个工作表,如下图所示: 4 结果如下图所示: 5 Photogroups工作表中,名称列需要与照片工作表的PhotogroupName一致,如下图所示:

6 Photos工作表的编辑结果,如下图所示: 2.7 控制点工作表中,由于无人机航拍的区域不是很大,且对于建模成果的精度没有设定范围,追求建成模型的速度,我们本次先不设控制点,很多朋友都是误把照片放到了这个工作表中,致使处理出现问题,需要注意一下。编辑结果,如下图所示: 8 Options工作表中,是坐标系和照片路径的信息,设置如下,如下图所示:

倾斜摄影三维建模技术流程及案例分析

龙源期刊网 https://www.360docs.net/doc/4617960375.html, 倾斜摄影三维建模技术流程及案例分析 作者:刘森 来源:《科技资讯》2017年第30期 DOI:10.16661/https://www.360docs.net/doc/4617960375.html,ki.1672-3791.2017.30.001 摘要:本文介绍了倾斜摄影测量原理、实景三维建模技术流程及其技术优势,并探讨了 利用倾斜摄影自动三维建模的方法对输电线路走廊资源进行快速调查,尤其是在建筑物拥挤地区、林木密集覆盖区、恶劣地质区和交叉跨越设施复杂地区,可有效提高输电线路的设计质量,优化工程投资造价,具有创新性和先进性。 关键词:倾斜摄影真三维模型输电线路走廊资源快速调查 中图分类号:P231 文献标识码:A 文章编号:1672-3791(2017)10(c)-0001-02 随着城市建设的飞速发展,建设环境日益恶化,地质灾害频繁发生,输电线路走廊规划设计难度日益加大。采用传统的测量方式对输电线路走廊资源进行调查,工作量大、效率低,成本高,难以满足电网建设需求。针对上述问题,本文提出了利用倾斜摄影技术进行实景三维建模的方法对输电线路走廊资源进行快速调查,可有效提高输电线路的设计质量,优化工程建设投资造价,保护生态环境。 1 倾斜摄影工作原理及技术优势 1.1 倾斜摄影测量原理 倾斜摄影技术是国际测绘遥感领域新兴发展起来的一项高新技术,融合了传统的航空摄影和近景测量技术,颠覆了以往正射影像只能从垂直角度拍摄的局限,通过在同一飞行平台上搭载多台传感器,同时从垂直、前视、左视、右视与后视共5个不同的角度采集影像。其中,垂直摄影影像,可经过传统航空摄影测量技术处理,制作4D(DEM、DOM、DLG与DRG)产品;前视、左视、右视与后视4个倾斜摄影影像,倾斜角度在15°~45°之间,可用于获取地物侧面丰富的纹理信息。 通过高效自动化的三维建模技术,快速构建具有准确地物地理位置信息的真三维空间场景,直观地掌握目标区域内地形地貌与所有建筑物的细节特征,可为电力和水利工程建设、地质灾害应急指挥等提供现势、详尽、精确、逼真的空间基础地理信息数据支持和公共服务。 1.2 实景三维建模技术流程 目前,采用倾斜摄影技术进行三维建模的后处理软件以法国ASTRIUM公司的StreetFactory和Acute3D公司的Smart3DCapture软件为典型代表[2]。利用地物的垂直与倾斜影

CAD三维实体地形建模在建设工程中的运用

CAD三维实体地形建模在建设工程中的运用摘要:针对三维建模中的不精确、反坡部分不好建模及施工隧道无法建模的情况,采用CASS软件和ZDM软件在CAD平台上建立原始地貌的三维实体模型,使得建立的模型达到既“可视”又“可算”的目的。将其应用于双沟水电工程的大坝工程量计算中,证明了该法具有准确、快捷和合理等优点。 关键词:ZDM;CASS;三维实体建模 1、引言 在传统的工程量计算中做法是:对于带状的开挖,采用剖面法,对于封闭区域的开挖采用网格法,进行计算。一般采用断面法计算,断面计算法在实际的断面布设过程中可能由于地形的变化布置断面的间距也不同,数量也不同,而且好要考虑设计断面的变化才能合理的布置断面,这一过程工作量较大,容易出现布置断面不合理。在国外软件中,很多均采用构造三维地形面模型,开挖体面模型,求解地形面模与开挖体面模的交集进行开挖计算。在国内水利水电行业采用三维实体计算工程的专门软件很少,但是计算工程量的软件确实很多,各自有着自己的优势,也有各自的不足,如果把各个软件的优势相结合起来,那么对我们计算工程量有着很大帮助。特别是利用原始地貌的三维实体建模的方法来计算工程量不仅准确而且直观。 本文就以CASS和ZDM相结合在CAD平台上吉林省抚松县双沟水电站大坝进行三维实体建模证明了该法具有准确、快捷和合理等优点。 2、三维实体的建模过程 本文介绍三维实体地形制作的步骤:首先利用CASS建立地形图;其次利用ZDM 软件生成三维实体地形,然后在用布儿运算来计算开挖或者填筑等工程量,具体步骤如下:2.1地形图的构建 目前国内比较好的做地形图的软件是南方CASS软件,CASS软件做地形图比较灵活,特别是它利用地形线能很好的调整三角网与实际地形相符。在CASS中展点并处理所展的高程点,然后利用所展的高程点生成三角网,利用CASS的加入地形线的功能处理好三角网后生成地形图。如下图1: 图1

GIS三维场景教程

上机练习6 目标::利用ArcGIS的三维空间分析和ArcScene组件,在ArcGIS中建立场景的三维模型。 目标 数据: 高程点(点状,heightP.shp),用于生成三维地形环境。 建筑(面状,Building.shp),用于建立三维建筑模型。 水域(面状,Water.shp),用于建立三维环境中的场景要素——河湖水面。 道路(线状,Roadline.shp),用于建立三维环境中的场景要素——道路。 树(点状,Trees.shp),用于建立三维环境中的场景要素——树。 路灯(点状,StreetLamp.shp),用于建立三维环境中的场景要素——路灯。 建筑模型(B_EW.3D、B_SN.3DS、B_Pub.3DS),作为典型建筑模型的三维符号。一、创建三维地形环境 1.运行ArcMap,创建空地图,加载3D Analyst工具条。使用标准工具条中的按钮添加存放在文件夹F:\Spatial Analysis\Exercises\ex06中的heightP、Building和Water三个数据层。 2.为地图设置距离单位和显示单位。在“Data Frame Properties”对话框中,把地图的距离单位和显示单位设置为Meters。保存当前的地图文档为ex06_1。 3.点击3D Analyst工具条的下拉箭头,打开Options对话框,在General选项卡中设置默认工作路径为:“F:\Spatial Analysis\Exercises\ex06\”。 4.从高程点建立场地初始的不规则三角网(TIN)。点击3D Analyst工具条最左侧的有下拉箭头的按钮,选择Create/Modify TIN—> Create TIN From Features…,打开Create TIN From Features对话框。勾选“heightP”数据层,设置高程源字段(Height Source)为HGT,保持Triangulate as的缺省选择mass points,最后指定输出TIN文件的路径和文件名,如F:\Spatial Analysis\Exercises\ex06\tin(如图1)。输出的TIN格式的文件自动加载到当前的数据组中。5.把二维的建筑和水域层转换为三维地物层。选择3D Analyst工具条的Convert—>Features to 3D…(二维要素转换为三维)命令。在Convert Features to 3D对话框中,将输入要素选择为“Building”,高程源使用第一种:栅格或TIN表明模型(Raster or TIN surface),并选择上一步生成的tin。指定输出三维要素文件的路径和名称,如F:\Spatial Analysis\Exercises\ex06\ Building_3D。点击OK,执行转换。同样地,将输入要素选择为“Water”,产生三维要素文件Water_3D。输出的两个文件也都自动加载到图层目录中。 6.利用三维地物层“整平”初始的三维场地模型tin。选择3D Analyst工具条的Create/Modify TIN—> Add Features to TIN…。在打开的对话框中,选择tin作为输入TIN。勾选“Building_3D”数据层,保持高程源字段为缺省值,选择Triangulate as的方式为hard replace。再勾选“Water_3D”数据层,Triangulate as也选为hard replace。最后选择Save changes into the input TIN specified above之前的单选钮,这样将保持模型的文件名称不变,但模型中将被更新。(如果需要,替代地,可以选择Save changes into a new output TIN之前的单选钮,指定输出TIN文件的路径和文件名,从而产生一个新的TIN,输入TIN将保持不变。)点击OK,执行命令。参数设置如图2所示。

虚拟场景的三维建模与可视化V1

山西省基础研究计划 项目申报书 项目类别: □自然科学基金□青年科技研究基金项目名称: 三维数字化综采仿真平台 项目申报单位:(盖章) 项目组织单位:(盖章) 申请人: 填报日期: 山西省科学技术厅制

基本信息 项目基本信息项目名称 研究属性 A基础研究 B使用基础研究 指南领域 所属国家或省级重点学科名称 所属国家或省级重点实验室名称 报审学科 学科1 代码1 学科2 代码2 起止年限年月- 年月申请经费 申请者信息姓名性别民族出生年月年月学历学位身份证号码 毕业校名专业 毕业年份学术职务行政职务 通讯地址曾在何国留学或进修 技术职称现主要研究领域 联系电话手机E-mail 申请者所在博士点或硕士点名称 申报单位信息名称单位属性 通讯地址邮编法人代表电话法人代码 联系人电话传真E-mail 开户银行帐号 合作单位1.2.

摘要项目研究内容和意义简介(限400字内) 是针对现代化煤矿开采建立起来的数字化仿真平台,适用于综采的生产作业仿真。为煤矿管理人员提供了可靠的决策支持。实现了矿区布局展示、矿区内部地质构造展示、模拟矿井开采、开采过程实时仿真、机械设备作业实时仿真、安全预警、危险源分析等功能。 在山西整合煤矿大规模开工建设的推动下,煤炭行业固定资产投资增速将从2010年低点20%回升至2011年25%以上,拉动煤机设备行业超预期增长。 机械化率提升空间很大。2015年我国煤炭行业机械化率的目标为75%,相比2010年将提升20%,且不排除机械化率超预期的可能。十二五期间,煤炭机械化开采量CAGR达到12.8%,远超原煤产量CAGR的5.8%,对煤机设备需求形成重要支撑。 而在整个综合采煤过程中每个设备无法实时和准确的表达采煤现实场景,在以往的设计过程中,绝大部分煤机设备都采用二维平面设计,这样容易使产品结构等信息表达有误,不能及时反映采煤面实际采煤状态,同时,由于没有相关联的产品三维装配模型可供分析,给干涉分析及空间设计带来困难。而后续所有的分析,动态仿真等方面都是以三维实体模型为基础,另外还实现了动态交互的设计的设计功能,实现煤机设备的三维可视化和虚拟现实进而提高对采煤设备和实际工况分析,具有很大的实用性于必要性。 关键词(用分号分开,最多4个)山西整合煤矿虚拟现实三维可视化

基于Unity3D的三维海底地形建模

基于Unity3D的 三维海底地形建模 马龚丽1,杨敏2,支雄飞1,3, 周鹏1,马修水1 1浙江大学宁波理工学院3安徽大学 2国家海洋局北海海洋技术保障中心 【摘要】本文运用虚拟现实技术,以Unity3D为建模工具,介绍了三维海底地形地貌建模的建模步骤以及最终的建模效果,实现了三维海底地形地貌建模,为三维可视化海底管道集成系统的建立创造条件。 【关键词】海底地形;输油管;风险评估;三维模型;Un ity3D 0引言 海底管道是海洋油气开发的重要设施,近年来全球海底管道泄漏事件时有发生,造成了巨大的经济损失与生态环保破坏,世界各国对于海底管道的检测和风险评估日益重视。海底管道三维动态信息系统集成,旨在建立适合集成数据支持体系和基于该体系的网络三维可视化集成系统。 郝燕铃和路辉提出了基于OpenGL的具有真实感的三维海底地形显示的方法⑴。申浩、田峰敏和赵玉新提出了一种利用电子海图已有的水深数据生成三维数字高程模型的方法⑵。邱秋香提出了将IFS分形插值曲面算法应用于海底离散的水深高程数据插值过程,在Creator建模工具中使用Delaunay转换算法生成三维海底地形模型[3]。作为一个三维虚拟现实的开发平台,Unity3D具有兼容操作系统可跨平台发布并部署、开发效率高、人机交互功能强大、三维效果逼真、内置网络功能的特点,被广泛地运用于游戏开发和虚拟现实。Unity3D支持所有主要文件格式的资源,并能和大部分相关应用程序协同工作,其内置的地形引擎可以实现广阔复杂的地形场景在低端硬件上流畅运行。 本文以Unity3D为建模工具,结合Photoshop图像处理技术,构建一个基于Unity3D的三维海底地形地貌模型。模型具有真实的三维立体感,以虚拟海底环境为目标,用于作为三维可视化海底管道集成系统建立的基础。 1总体地形建模方案

三维建模规范

三维建模规范 1.1.建筑物三维建模标准 1.1.1.模型 1、建筑物模型平面精度在30cm以内,高程精度在17cm以内。 2、统一采用MAX,CREATOR建模,在MAX软件中单位设置为Meter,在CREATOR 中单位 为Inch。 3、模型不存在共面和相距太近的面。当两个目标共面时,将小面模型的共面面片删除。两个平行面之间的垂直距离应大于1m,如果小于1m则删除模型内部冗余的面。 4、删除冗余的点、线、面,以及重合线、重叠面,并焊接相近或重合的点,保证模型无裂缝。 5、凸出建筑物墙面1米以内的目标不必实际建模,贴图即可,但欧式建筑、风貌保护区、文物保护建筑,以及临街的重要建筑物需要精细建模,凸出建筑物墙面0.6m的目标实际建模。建筑物临街部分基本按实际建模,尤其台阶全部表示,非临街部分简略表示,采用贴图表现即可。但标志性建物、重要公建(政府、学校、医院等)、高层建筑物(大于15层)无论临街与非临街部分均精细建模。 6、不要制作近于白色的纹理进行贴图,否则看上去似乎该面未贴图。 7、在MAX中分离每个房屋并进行附加操作,保证在CREATOR中每个房屋为一个单独的OBJECT。在CREATOR中建立合理的层级结构,GROUP下面是OBJECT,不要再建GROUP,层级结构命名合理。 8、模型不缺面,所有面必须贴图,可以统一检查是否存在未贴图的面。 9、不存在闪烁重叠的面,不允许存在变形的凹面。 10、为降低数据量,烘培后需在CREATOR中合并面。 11、平面屋顶通常有女儿墙(参考DOM影像),有女儿墙的必须实际建模,女儿墙尺寸通常为宽0.4米,高0.6米,但一些特殊的女儿墙按实际的宽度和高度建模。 12、为减少数据量,在基本达到相同视觉效果的情况下,能够采用透明纹理的则尽量采用透明纹理,而不必实际建模。 13、围墙、栅栏根据地形图和外业数据按实际位置、尺寸建模,栅

(完整版)三维建模标准

三维建模规范 1.1. 建筑物三维建模标准 1.1.1.模型 1、建筑物模型平面精度在30cm以内,高程精度在17cm以内。 2、统一采用MAX,CREATOR建模,在MAX软件中单位设置为Meter,在CREATOR 中单位 为Inch。 3、模型不存在共面和相距太近的面。当两个目标共面时,将小面模型的共面面片删除。两个平行面之间的垂直距离应大于1m,如果小于1m则删除模型内部冗余的面。 4、删除冗余的点、线、面,以及重合线、重叠面,并焊接相近或重合的点,保证模型无裂缝。 5、凸出建筑物墙面1米以内的目标不必实际建模,贴图即可,但欧式建筑、风貌保护区、文物保护建筑,以及临街的重要建筑物需要精细建模,凸出建筑物墙面0.6m的目标实际建模。建筑物临街部分基本按实际建模,尤其台阶全部表示,非临街部分简略表示,采用贴图表现即可。但标志性建物、重要公建(政府、学校、医院等)、高层建筑物(大于15层)无论临街与非临街部分均精细建模。 6、不要制作近于白色的纹理进行贴图,否则看上去似乎该面未贴图。 7、在MAX中分离每个房屋并进行附加操作,保证在CREATOR中每个房屋为一个单独的OBJECT。在CREATOR中建立合理的层级结构,GROUP下面是OBJECT,不要再建GROUP,层级结构命名合理。 8、模型不缺面,所有面必须贴图,可以统一检查是否存在未贴图的面。 9、不存在闪烁重叠的面,不允许存在变形的凹面。 10、为降低数据量,烘培后需在CREATOR中合并面。 11、平面屋顶通常有女儿墙(参考DOM影像),有女儿墙的必须实际建模,女儿墙尺寸通常为宽0.4米,高0.6米,但一些特殊的女儿墙按实际的宽度和高度建模。 12、为减少数据量,在基本达到相同视觉效果的情况下,能够采用透明纹理的则尽量采用透明纹理,而不必实际建模。 13、围墙、栅栏根据地形图和外业数据按实际位置、尺寸建模,栅

三维地形模型.

三维地形模型 Autodesk Civil 3D为测绘和土地开发行业提供了强大的三维地形模型。可以使用多种源数据(测量点、等高线、特征线等)生成地形模型,并且从模型完成多种常见的分析任务,包括分析场地的坡度、高程分布、流域划分等等。如果您的原始数据改变,整个模型可以自动更新来反映最新的状况——例如修改了测量点的高程,模型的等高线图形就会自动更新。(1_surface.avi) 道路设计 Autodesk Civil 3D具有强大的三维道路设计功能。使用参数化的布局工具生成平面路线,从地形模型生成地形剖面,并完成纵曲线设计。从丰富的预定义路面部件库中选择合适的部件,组装出标准的路面结构,然后构建整个道路的三维模型。从道路模型可产生各种输出结果,包括截面图形和土方计算报告。 (2_Corridor.avi) 土方工程 在土木工程项目中,经常需要进行土方工程,例如开挖水池、砌筑大坝,或者是场地平整。土方计算是通常是一项困难的任务,而计算的准确性对工程造价有着相当大的影响。Civil 3D 提供了强大的三维参数化放坡功能,能帮助您进行土方工程的设计。您可以从放坡对象中计算土方量,或者根据目标土方量自动调整放坡高程,进行土方平衡。 (3_Grading.avi) 地块规划 在Civil 3D中的地块是智能的拓扑对象,例如当您在地块中间添加一条路线,该地块会自动分成两个新的地块,而移动界线位置会同时修改相邻的两个地块。Civil 3D会自动计算地块的面积与周长等几何属性,您也可以为地块增加自定义属性。可以根据自定义样式生成地块的标签、表格和报表。当地块布局发生改变时,相关的表格和标签都将自动更新。 (4_Parcel.avi)

基于等高线的MulitigenCreator三维地形建模与实现

2009年第3期 福建电脑 基于等高线的Mulitigen Creator三维地形建模与实现 黄华国1,2 (1.福建水利电力职业技术学院福建永安366000 2.福州大学福建福州350002) 【摘要】:该文以福建水利电力职业技术学院新校址的3维地形建模与可视化为例,介绍由等高线地形图数据,使用Mulitigen Creator的地物建模功能,生成3维地形图的一种实现方法,模拟了新校址的整个生态地貌,为学院新校址规划和建设决策以提供了有力的技术支持。 【关键词】:Mulitigen Creator3维地形建模地形建模算法 0、引言 虚拟现实技术是利用计算机模拟的3维环境对现场真实环境进行仿真,而地形仿真建模是虚拟现实工作中最基本的、最重要的环节之一。本文以福建水利电力职业技术学院新校址地形的CAD图为基础,使用Mulitigen Creator实时软件,对整个地形地貌进行了3维建模,然后对3维模型进行校正处理和纹理贴图,最后模拟了整个新校址的生态地貌,为学院新校区的规划和建设提供了有利的参考依据,并为虚拟数字校园的建设奠定了良好基础。 1、地形建模软件的选择 1.1Mulitigen Creator简介 Mulitigen Creator是美国MultiGen-Paradigm公司开发的著名实时3维仿真建模工具软件,用于产生高优化,高精度的实时3D内容,在视景仿真、交互式游戏、城市仿真等领域中得到广泛地应用。它是一个功能强大、交互的3维建模工具,可以在它所提供的"所见即所得"建模环境中建立我们所期望的、优化的3维模型。强大的建模功能可为众多不同类型的图像生成器提供建模系统及工具,独创了3维虚拟场景的层次化数据结构-Open Flight格式在实时3维领域中成为最流行的图像生成格式,并成为视景仿真领域事实上的行业标准。利用Creator交互式、直观的用户界面进行多边形建模和纹理贴图,能够很快生成一个高逼真的模型,并且所创建的3维模型能够在实时过程中随意进行优化。 1.2Creator与3DS MAX的比较[1] 3DS Max具有丰富的多边形工具组件和UV坐标贴图的调节能力,此软件具有可操作性强、直观、方便易学、制作模型逼真、质感强等特点,然而其致命弱点是模型复杂造成了文件过大,不能满足虚拟现实系统实时性的要求,若导入到Creator中还必须进行模型位置的定位、模型的优化与调整等操作,否则极大的数据量会影响整个系统的运行效率,造成实时漫游困难。实时仿真建模软件Creator的最大优势在于大场景的地理环境的生成和浏览,此外,它还具有强大的兼容性和操作性,可以与Mulitigen Vega兼容,满足虚拟校园系统实时性的要求。利用Creator建模,模型数据量不大,细节比较少,并可以采用子面的方法降低模型的复杂度,缺点是建模过程比较复杂,工具组件没有3DS Max丰富,在Creator中对对象的创建、移动、控制等操作没有3DS Max灵活,构造复杂模型没有3DS Max方便。 根据以上的比较,考虑虚拟数字校园系统对实时性有较高要求,所以决定采取利用Mulitigen Creator软件进行3维地形建模。 2、地形建模的思路和方法 2.1地形建模数据及软件准备 建模前要准备好DWG格式的CAD等高线文件和地形的航空影像图片;同时在计算机上安装好以下软件:(1)Auto CAD 2004软件;(2)CAD2SHAPE软件;(3)ArcGIS9.0软件;(4)Global Mapper软件;(5)Mulitigen Creator3.0软件。 2.2地形建模的思路 构建过程是把高程数据、地质图等要素数据、地表纹理数据等经过矢量化或转换,变成Multigen Creator建模软件认可的格式,并在Creator中进行建模,形成Openflight格式的地表地质环境数据库。由于Creator能处理的地形数据为DED格式,针对地形建模的应用需求,基于Mulitigen Creator进行地形建模的思路的具体流程如图1所示。 图1基于Mulitigen Creator的地形建模流程图 具体来讲,该方法的主要步骤包括:(1)用Auto CAD对等高线进行预处理;(2)使用CAD2SHAPE软件将CAD等高线文件转化为Shape文件;(3)用ArcGIS软件将Shape格式文件生成为ArcGIS TIN格式及ArcGIS Binary GRID文件;(4)利用Global Mapper软件将ArcGIS GRID文件转换为USGS DEM格式文件;(5)利用Creator的DED Builder工具将DEM格式文件转换为DED格式文件;(6)在Creator中进行地形建模;(7)进行地物匹配处理;(8)地形纹理贴图。 3、数据预处理 由于CAD数据格式地形图要素表现形式有多种,其面状地物如建筑物、水系不完全闭合;线状地物如道路等高线等碰到软地物如高程点、汉字注记有断开;因此必须进行查错和相应的处理。经过对地面高程点提取和修改、删除多余图层等操作后,使用CAD2SHAPE软件将原始数据转换为Shape格式文件给Ar鄄cGIS调用,ArcGIS可以直接调用DXF和DWG这两种格式文件,但是打开后只能分成"注释"、点、"线"、"面"4层,这样不能很好的区分地形时面的有用信息[2];所以要将原始DWG数据格式文件转换为Shape格式文件。应用ArcGIS的3DAnalyst功能生成不规则三角网TIN格式文件及ArcGIS Binary GRID文件。因为ArcInfo转出的DEM格式Creator不能识别,可以通过Glob鄄alMapper软件BinaryGRID格式转换成Creator识别的USGS DEM格式[3]。基于CAD所生成的DEM格式文件如图2所示。 图2基于CAD的DEM格式文件图3建模地形窗口 4Multigen建模处理 4.1高程数据的转换 打开Multigen Creator,新建一个文档;借助Creator平台的Terrain模块的DED Builder工具,可以将DEM格式文件生成Creator自身的高程数据格式文件(DED )。 86

相关文档
最新文档