竞赛中的解析几何问题解析几何试题集萃

竞赛中的解析几何问题解析几何试题集萃
竞赛中的解析几何问题解析几何试题集萃

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略 陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和 22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=- -y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-=-y y x y ,联立抛物线方程消去x 可得:22 00 22120-+-=y y y y (1), 由题意, 12,y y 是方程(1)的两个实根,且12≠y y ,所 以 22 00044(212)0?=-->?-<

数学竞赛《解析几何》专题训练(答案)

《解析几何》专题训练 一、选择题 1、(04福建)在平面直角坐标系中,方程 1(,22x y x y a b a b +-+ =为相异正数),所表示的曲线 是 A,三角形 B,正方形 C,非正方形的长方形 D,非正方形的菱形 1,D 令y x =,得y x a ==±,令y x =-得x y b =-=±,由此可见,曲线必过四个点:(,)a a , (,)a a --,(,)b b ,(,)b b --,从结构特征看,方程表示的曲线是以这四点为顶点的四边形,易知 它是非正方形的菱形. 2、若椭圆22 13620 x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐标为 A, B,(- C,(3, D,(3,- C 设00(,)P x y ,又椭圆的右准线为9x =,而122PF PF =,且1212PF PF +=, 得24PF =,又 20 2 93 PF e x == -,得03x =, 代入椭圆方程得0y =3、设双曲线22 221x y a b -= 的离心率 e 2?∈??? ,则双曲线的两条渐近线夹角α的取值范围是 ( ) C A. ,63ππ?????? B .,62ππ?????? C .,32ππ?????? D .2,33ππ?? ???? 4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5= AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条 共切线。正确答案为C 。 5、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别 以线段PF 1、A 1A 2为直径的两圆一定(B ) (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

【竞赛】解析几何3——曲线系

高二数学竞赛——曲线系 曲线系是具有某种性质的曲线集合,利用曲线系解题体现了参数变换的数学思想,整体处理的钥匙策略,以及“基本量”和“待定系数”等重要的解题方法. 曲线系:如果两条曲线方程是 f 1(x ,y )=0和 f 2(x ,y )=0, 它们的交点是P (x 0,y 0),则方程 f 1(x ,y )+ f 2(x ,y )=0的曲线也经过点P (x 0,y 0) (是任意常数). 证明:由方程?? ?f 1(x ,y )=0·······①f 2(x ,y )=0·······② 得到 f 1(x ,y )+ f 2(x ,y )=0·······③ 只须 将(x 0, y 0)代入证明. ◆ 设圆C 1∶x 2 +y 2 +D 1x +E 1y +F 1=0和圆C 2∶x 2 +y 2 +D 2x +E 2y +F 2=0.若两圆相交,则过交点的圆系 方程为x 2+y 2+D 1x +E 1y +F 1+ (x 2+y 2 +D 2x +E 2y +F 2)=0 ( 为参数,圆系中不包括圆C 2, =-1为两圆的公共弦所在直线方程). ◆ 设圆C ∶x 2 +y 2+Dx +Ey +F =0与直线l :Ax +By +C =0,若直线与圆相交,则过交点的圆系方程为 x 2+y 2+Dx +Ey +F + (Ax +By +C )=0( 为参数). 曲线系方程③不能包含过两曲线公共点的所有曲线,那么使用时怎么知道所求方程在不在方程③中呢? ——m ·f 1(x ,y )+n ·f 2(x ,y )=0 由直线生成的二次曲线系: 设f i =A i x +B i y +C i (i =1,2,3,···) (1)若三角形三边的方程为:f i =0(i =1,2,3),则经过三角形三个顶点的二次曲线系为: f 1·f 2+ f 2·f 3+ f 3·f 1=0( 、 为参数) (2)若四边形四条边的方程为:f i =0(i =1,2,3,4),则经过四边形四个顶点的二次曲线系为: f 1·f 3+ f 2·f 4=0( 为参数), 其中f 1=0与f 3=0、f 2=0与f 4=0分别为四边形的对边所在直线方程. (3)与两条直线f 1=0、f 2=0分别相切于M 1、M 2的二次曲线系为: f 1·f 2+ f 3·f 3=0( 为参数), 其中f 3=0是过M 1、M 2的直线方程. (3)过直线f 1=0、f 2=0与一个二次曲线F (x ,y )=0的4个交点的二次曲线系为: F (x ,y )+ f 1·f 2=0( 为参数). 【例题选讲】 例1. 求经过两圆x 2+y 2+6x -4=0和x 2+y 2 +6y -28=0的交点,并且圆心在直线x -y -4=0上的圆 的方程. 解: 构造方程 x 2+y 2+6x -4+ (x 2+y 2 +6y -28)=0 即:(1+ )x 2 +(1+ )y 2 +6x +6 y -(4+28 )=0 此方程的曲线是过已知两圆交点的圆,且圆心为(-3 1+ ,-3 1+ ) 当该圆心在直线x -y -4=0上时,即 -3 1+ +3 1+ -4=0,解得: =-7. ∴ 所求圆方程为 x 2 +y 2 -x +7y -32=0 例2. 求与圆x 2 +y 2 -4x -2y -20=0切于A (―1,―3),且过B (2,0)的圆的方程. 解法一:视A (―1,―3)为圆(x +1)2+(y +1)2=r 2,当r →0时,极限圆(x +1)2+(y +3)2 =0 构造圆系:(x 2+y 2-4x -2y -20)+ [(x +1)2+(y +3)2 ]=0

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

空间解析几何数学竞赛辅导

空间解析几何数学竞赛辅导 一. 向量代数 1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量 ),,(12121221z z y y x x M M ---=→ 2、已知向量),,(321a a a a =→、),,(321b b b b =→ ,则 (1)向量→a 的模为232221||a a a a ++=→ (2)),,(332211b a b a b a b a ±±±=±→ → (3)),,(321a a a a λλλλ=→ 3、向量的内积→ →?b a (1)><→ →b a ,为向量→ → b a ,的夹角,且π>≤≤<→ →b a ,0 注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。 4、向量的外积→ → ?b a (遵循右手原则,且→ → → ⊥?a b a 、→ → → ⊥?b b a ) 3 2 1 3 21 b b b a a a k j i b a → → → → →=? (1)3 3 2211//b a b a b a b a b a ==? =?→ → → → λ (2)00332211=++?=??⊥→ →→ → b a b a b a b a b a (3)几何意义: ||a b ?代表以,a b 为邻边的平行四边形的面积S ;

平面上三点11(,,0)A x y ,22(,,0)B x y ,33(,,0)C x y 构成的三角形的面积为 212131 3111 |||0|22 ABC i j k S AB AC x x y y x x y y =?=---- 21 21 31 3112x x y y x x y y --=--的绝对值 也可以写成1 1223 31 1121 ABC x y S x y x y =的绝对值。 5. 混合积:(,,)()a b c a b c =??。 (1)注意:(,,)(,,)(,,)a b c b c a c a b == (2)坐标表示:1 11 2 223 3 3 (,,)()x y z a b c a b c x y z x y z =??=, 其中, ()111,,a x y z =,()222,,b x y z =, ()333,,c x y z =。 (3)几何意义:(,,)a b c 的绝对值表示以,,a b c 为三条邻边的平行六面体 的体积。 ,,a b c 共面的充要条件是(,,.)0a b c =。 空间不共面的四点111(,,)A x y z ,222(,,)B x y z ,333(,,)C x y z , 444(,,)D x y z 构成的四面体的体积为

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略陈硕罡吴国建(浙江 省东阳中学 322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30 分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题函数是描 述客观世界中变量间依赖关系的重要数学模型。抓住问题 中引起变化的主变量,并用一个具体的量(斜率或点的坐 标等)来表示它,同时把问题中的的因变量用主变量表示 出来,从而变成一个函数的问题,这就是解决问题的函 数观点。在解析几何问题中,经常会碰到由于某个量 (很多时候是线或点)的变化,而引起图形中其它量(面 积或长度等)的变化的情况,所以函数观点成为了解决解 析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线y2 6x上的

两个动点和B(X2,y2),其中人x?且人x? 4.线段AB的垂直平分线与x轴交于点C ,求厶ABC面积的最大值. 【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把ABC 的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB的中点M坐标为((2, y o),贝I」则直线AB的斜率:k 7 42 —- X i X2 、亘y y2 y o 6 6 线段AB的中垂线方程:八。鲁(X 2),易知线段 AB的中垂线与x轴的交点为定点C(5,0)直线AB的方程:y y o 2(x 2),联立抛物线方程消 y o 去x可得:y2 2y o y 2y2 12 0 ( 1 ), 由题意,y1,y2是方程(1 )的两个实根,且y1 y2,所以4y; 4(2 y2 12) o 2.3 y 2 3 弦长|AB| ..1 (;)2|% y2| (1 ?)[(% y2)2 4^2〕21(9 S)(12 y;) 点C(5,o)到直线AB的距离:h |CM|十

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何 1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36, 【解析】设()9A a a -, ,则圆心M 到直线AC 的距离sin 45d AM =?,由直线AC 与圆M 相交,得 d 36a ≤≤. 2、(2009一试5)椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ?的最小值为. 【答案】22 222a b a b + 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ??????±± ? ? ?????? ?,. 由P ,Q 在椭圆上,有 222221 cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得222211 11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22 222a b a b +. 3、(2010一试3)双曲线12 2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】9800 4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,?=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(- 即0)(24)(21212212214=?++-+?++-y y t y y t x x t x x t ,

解析几何竞赛题求解的几种常见策略

陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且 124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=--y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-= -y y x y ,联立抛物线方程消去x 可得:22 0022120-+-=y y y y (1), 由题意,12,y y 是方程(1)的两个实根,且12≠y y ,所以22 00044(212)0?=-->?-<

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

高中数学竞赛与自主招生专题全套精品讲义:解析几何(教师版)

高中数学竞赛与自主招生专题全套精品讲义 第十五讲 解析几何一(教师版) 从2015年开始自主招生考试时间推后到高考后,政策刚出时,很多人认为,是不是要在高考出分后再考自主招生,是否高考考完了,自主招生并不是失去其意义。自主招生考察了这么多年,使用的题目的难度其实已经很稳定,这个题目只有出到高考以上,竞赛以下,才能在这么多省份间拉开差距. 所以,笔试难度基本稳定,维持原自主招生难度,原来自主招生的真题竞赛真题等,具有参考价值。 在近年自主招生试题中,解析几何是高中数学内容的一个重要组成部分,也是高考与自主招生常见新颖题的板块,各种解题方法在解析几何这里得到了充分的展示,尤其是平面向量与解析几何的融合,提高了综合性,形成了题目多变、解法灵活的特色。 一、知识精讲 1.点到直线的距离 : d =(点00(,)P x y ,直线l :0Ax By C ++=). 2.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θ θ =+??=+?. (4)圆的直径式方程 1212()()()()0x x x x y y y y --+--= (圆的直径的端点是11(,)A x y 、22(,)B x y ). 3.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若 d = d r >?点P 在圆外;d r =?点P 在圆上;d r

大学生数学竞赛空间解析几何练习题

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。 解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以 '223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=?=为基本向量 建立一个新的坐标系''''O X Y Z ,则坐标变换公式为 '' 2222 ''2222'/B A x x z A B A B A B y D B x z A B A B z y ?=+?++? ?=-- +?++? ?=?? 在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2'''' 22 22 2 2 2 2 6( )(/)1 B A A B y x z D B x z A B A B A B A B ++ -- + =+++ + 所以交线的方程为: '2' '''22 22 22 22 '6()(/)1 B A A B y x z D B x z A B A B A B A B z ?++--+ =?++++? ?=? 化简得: '2' '22 22 '6()(/)1 0B A y x D B x A B A B z ?+--=?++? ?=? 因为交线是圆,所以 226AB A B -=+ 解得 322A B =-.

试题2:求过点)0,1,0(P 并且和两条直线 ? ? ?=+=+++?? ?=+=++020 13:,0201:21y x z y x l y x y x l 均相交的直线的方程。 解:把直线的方程化为点向式方程为: ,1 11 2 :,1 20 1:21-+==-=+=-z y x l z y x l 设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=, 试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程. 解:设所求的直线的方程为:141x lt y mt z nt =+??=-+??=+? ,又因为所求的直线在二次曲 面上,所以对任意的,t 有 2222(1 )(4)(1) 3(1)( 4)(1)(1 )6(1) l t m t n t l t m t l t n t n t ++--+++-+++-+=, 化简得; 2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以 222230 (1)7570l m n ml nl l m n ?+-++=? ++=? 由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得 220 (1)570 m n m n ?-=? +=?

(完整版)解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (1) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (2) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在 抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求 的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次 项,所以直线设为或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂 直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

高一数学竞赛培训《解析几何部分》

高一上期数学竞赛培训资料(16) ——解析几何部分(4)——与圆有关的点的轨迹问题 一、知识要点——求点的轨迹方程的基本步骤: (1)建:建立直角坐标系; (2)设:设立动点坐标P (x ,y ); (3)现:将动点的等量关系呈现出来; (4)代:代入点的坐标; (5)化:化简上述等式。 应注意:所求方程的完备性! 二、题型示例: 1、ABC ?的两顶点A 、B 的坐标分别为(0,0)A 、(6,0)B ,顶点C 在曲线23y x =+上运动,求ABC ?重心的轨迹方程。 2、过原点作曲线2 1y x =+的割线12OPP ,求弦12PP 中点的 P 的轨迹方程。 3、已知两点(2,2)P -、(0,2)Q 以及一直线:l y x =,AB 在直线l 上移动,试求直线PA 和QB 的交点M

4、已知ABC ?的顶点A 是定点,边BC 在定直线上滑动,且||4BC =,BC 边上的高为3,求ABC ?的外心M 的轨迹方程。 5、设定点(6,0)P ,圆229x y +=上一点Q ,M 是PQ 上一点,满足 12 PM MQ =,当点Q 在圆上运动时,试求点M 的轨迹方程。 6、ABC ?中,边||6BC =,且0135B C ∠+∠=,试求顶点A 的轨迹方程。 7、过定点(,)M a b 任作两条互相垂直的直线1l 和2l ,分别与x 轴、y 轴交于A B 、两点,试求线段AB 的中点P 的轨迹方程。

8、已知圆222:O x y r +=,点M 为圆O 上任意一点,又点(,0)A r -、(,0)B r ,过B 作BP ∥OM 交AM 的延长线于点P ,试求点P 的轨迹方程。 9、过圆22:4O x y +=与y 轴的交点A 作圆的切线l ,M 为直线l 上任意一点,过M 作圆O 的另一条切线,切点为Q ,试求MAQ ?垂心的轨迹方程。 10、已知点P 是圆22 :4O x y +=上一动点,定点(4,0)Q 。 (1)试求线段PQ 中点的轨迹方程; (2)设POQ ∠的角平分线交PQ 于点R ,求点R 的轨迹方程。

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

高中数学竞赛专题讲座之解析几何

高中数学竞赛专题讲座之解析几何 一、选择题部分 1、(集训试题)过椭圆C :12 32 2=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足) ,延长PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为( ) A .]3 3 , 0( B .]2 3,33( C .)1,3 3 [ D .)1,2 3( 解:设P(x 1, y 1),Q(x, y),因为右准线方程为x=3,所以H 点的坐标为(3, y)。又∵HQ=λPH ,所以 λ+-=11PQ HP ,所以由定比分点公式,可得:????? =-+= y y x x 11)1(3λ λ,代入椭圆方程,得Q 点轨迹为123)]1(3[222=++-y x λλ,所以离心率e=)1,33 [32132232 2∈-=-λλ λ。故选C 。 2.(2006年南昌市)抛物线顶点在原点,对称轴为x 轴,焦点在直线3x-4y =12上,则抛物线方程为(D) A .212y x =- B .212y x = C .216y x =- D .216y x = 3.(2006年江苏)已知抛物线2 2y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△ POF 是直角三角形,则这样的点P 共有 ( B ) ()A 0个 ()B 2个 ()C 4个 ()D 6个 4.(200 6天津)已知一条直线l 与双曲线122 22=-b y a x (0>>a b )的两支分别相交于P 、Q 两 点,O 为原点,当OQ OP ⊥时,双曲线的中心到直线l 的距离d 等于( A ) (A )22a b ab - (B )22a b ab - (C )ab a b 2 2- (D )ab a b 22- 5. (2005全国)方程 13 cos 2cos 3 sin 2sin 2 2 =-+ -y x 表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线 解:),2 3cos()22cos(,22 322 0,32π ππ π π π->-∴< - <-< ∴>+ 即.3sin 2sin >又 ,03cos 2cos ,03cos ,02cos ,32 ,220>-∴<>∴<<< <ππ π方程表示的曲线是椭圆。 ) ()4 232sin(232sin 22)3cos 2(cos )3sin 2(sin *++-=--- π

相关文档
最新文档