分式的恒等变形习题

分式的恒等变形习题
分式的恒等变形习题

一、化分式为部分分式的和

【例1】 若

213111a M N a a a -=+--+,求M 、N 的值.

【巩固】已知正整数,a b 满足

1114a b +=,则a b +的最小值是 .

【例2】 已知

2a x +与2b x -的和等于244x x -,求a ,b .

【例3】 若关于x 的恒等式

222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N .

【例4】 将

269

x -化为部分分式.

【例5】 化

21(1)(2)x x x ---为部分分式.

【例6】 将下列分式写成部分分式的和的形式:2342

x x x +--. 例题精讲

分式恒等变形(竞赛部分)

【巩固】将下列分式写成部分分式的和的形式:32222361(1)(3)

x x x x x -++++.

【例7】 将下列分式写成部分分式的和的形式:4322231(1)(1)

x x x x x ++-+-.

二、分式的恒等证明

【例8】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ????++--+-=++-+ ???-+?

???

【例9】 已知:a c b d =,求证:2222

2222a b c d a b c d abcd

----++++++=.

【例10】 若a b x a b -=+,b c y b c -=+,c a z c a

-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---

【例11】 若1abc =,求证:1111a b c a ab b bc c ca

++=++++++.

【巩固】已知1111a b c a ab b bc c ca

++=++++++,求证:1abc =.

【例12】 已知0a b c b c c a a b

++=---,求证:2220()()()a b c b c c a a b ++=---.

【例13】 已知3142a b ab c d cd +==+==,

,,, 且a b c d B b c d c d a d a b a b c

+++=++++++++。求证: (1)2222

77a b c d B b c d c d a d a b a b c

+++=-++++++++ (2)3333

4968a b c d B b c d c d a d a b a b c

+++=-++++++++

【巩固】已知2220a b c bc a ac b ab c ++=---,求证:()()()

2222220a b c bc a ac b ab c ++=---

三、分式与数论

【例14】 将a b b a -写成两个因式的积,使它们的和为a b b a +,求这两个式子。

【例15】 求最大的正整数n ,使得3100n +能被10n +整除。

【巩固】在12009这2009个正整数中,使221

n n ++不是既约分式的n 共有多少个?

1. 若对于3±以外的一切数,

28339

m n x x x x -=+--均成立,求mn . 课后作业

2. 将下列分式写成部分分式的和的形式:322

41338(1)(2)(1)x x x x x x -+++--.

3.

已知x 、y 、z 为三个不相等的实数,且111x y z y z x +=+=+,求证:2221x y z =.

4. 已知

223344371642a b a b a b a b x y x y x x x y +=+=+=+=,,,,求证:5520a b x y

+=。

分式的恒等变形教学提纲

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法:)(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性) (2)如果bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++

4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

三角恒等变换公式大全

三角函数 cos (a+ B)=CoS a'-cos B - sin a - sin B cos (a-B)=cos a-cos B + sin a - sin B sin (a+ B)=S in a'-cos B cos a - sin B sin (a-B)=sin a-cos B - cos ,a?sin B tan (a+ B)=(ta n a+ta n B)/ (1-tan a - tan B) tan (a-B)=(ta n a-ta n B)/ (1+ta n a - tan B) 二 倍 角 sin (2a) =2sin a - cos a =2tan (a) /[1-ta门(a)] cos (2 a) =cosA2 (a) -si 门八2 (a) =2cosA2 (a)-1=1-2si nA2 (a)=[1-ta 门 八(a)]/[1+tanA2 (a)] tan (2a) =2tan a /[1 -ta门八2 (a)] 三倍角 sin3 a =3sin a -4sinW (a) C0S3 a =4COS A3 (a) - 3C0S a tan3 a = (3tan a -ta门八3 (a))*( 1-3ta门八2 (a)) sin3 a =4sin aX sin ( 60- a) sin (60+a) C0S3 a =4cos aX COS ( 60- a) C0s ( 60+a) tan3 a =tan aX tan ( 60- a) tan (60+a) 半角公式 sin A2 (a /2 )= (1-cos a) /2 cosA2 (a /2 )= (1+cos a) /2 tan A2 (a /2 )= (1-CoS a) / ( 1+cos a) tan ( a /2 ) =sin a / ( 1+cos a) = ( 1- CoS a) /si n a 半角变形 sinA2 (a /2 ) = (1-cos a) /2 sin(a/2 ) =V[ (1-cos a) /2] a/2 在一、二象限 =-V[ (1-cos a) /2] a/2 在三、四象限 C0SA2 (a /2 ) = (1+cos a) /2 cos(a/2 ) =V[ (1+cos a) /2] a/2 在一、四象限 =-V[ (1+cos a) /2] a/2 在二、三象限 tan A2 (a 12 ) = ( 1-COS a) / ( 1+COS a) tan (a /2 ) =S in a / ( 1+COS a) =( 1- COS a) /si n a =V[ ( 1-COS a) / ( 1+COS a)] a/2在一、三象限 =-V [ ( 1- COS a) / ( 1+COS a) ] a/2 在二、四象限

奥数-分式恒等变形学

分式恒等变形 方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。 例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求 111a b c bc ca ab a b c ++---的值。 例2. 若0abc ≠,0a b c ++=,求222 a b c bc ac ab ++的值。 例3. @ 例4. 求证: 2220()()()()()() a bc b a c c ba a b a c a b b c c b a c ---++=++++++ 例5. 设正数x ,y ,z 满足不等式 2222x y z xy +-+2222y z x yz +-+222 2z x y xz +->1,求证x ,y ,z 是某个三角形的三边长 例6. 求分式 24816 1124816 111111a a a a a a +++++ -+++++,当2a =时的值. ; 例7. 若1111a b c a b c ++= ++,求证:777777 1111 a b c a b c ++=++.

例8. 化简:()()()()()() a b b c c a a b b c c a a b b c c a a b b c c a ------+++++++++. ! 例9. 计算:2132x x x -++262x x ---210 4 x x -- -. 例10. 化简22 32233223222244 113a b a b a a b ab b a a b ab b a b a b a b +++-- +++-+--+-. 例11. # 例12. 化简: () () () () () () 2222222 2 2 2 2 2 a b c b c a c a b a c b a b c b c a ------+ + +-+-+- 例13. 已知0a b c ++=,求证222222222 111 0b c a a c b b a c ++=+-+-+- 例14. 已知0a b c ++=,求222 222222a b c a bc b ac c ab +++++的值 … 例15. 已知1,2xyz x y z =++=, 22216 x y z ++=,求代数式 111 222xy z yz x zx y +++++的值。

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

奥数-分式恒等变形学

分式恒等变形 方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。 例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求 111 a b c bc ca ab a b c ++---的值。 例2. 若0abc ≠,0a b c ++=,求222 a b c bc ac ab ++的值。 例3. 求证: 2220()()()()()() a bc b a c c ba a b a c a b b c c b a c ---++=++++++ 例4. 设正数x ,y ,z 满足不等式 2222x y z xy +-+2222y z x yz +-+222 2z x y xz +->1,求证x ,y ,z 是某个三角形的三边长 例5. 求分式 24816 1124816 111111a a a a a a +++++ -+++++,当2a =时的值. 例6. 若1111a b c a b c ++= ++,求证:777777 1111 a b c a b c ++=++.

例7. 化简:()()()()()() a b b c c a a b b c c a a b b c c a a b b c c a ------+++++++++. 例8. 计算:2132x x x -++262x x ---210 4 x x -- -. 例9. 化简22 32233223222244 113a b a b a a b ab b a a b ab b a b a b a b +++-- +++-+--+-. 例10. 化简: () () () () () () 2222222 2 2 2 2 2 a b c b c a c a b a c b a b c b c a ------+ + +-+-+- 例11. 已知0a b c ++=,求证222222222 111 0b c a a c b b a c ++=+-+-+- 例12. 已知0a b c ++=,求222 222222a b c a bc b ac c ab +++++的值 例13. 已知1,2xyz x y z =++=, 22216 x y z ++=,求代数式 111 222xy z yz x zx y +++++的值。

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

§4.2 多项式的恒等变形

§4.2 多项式的恒等变形 教学目的:使学生掌握多项式的有关理论及多项式变形的方法,主要是 解析式的求法——拉格朗日插值公式,因式分解的常用方法。 教学重点与难点:解析式的求法——拉格朗日插值公式,因式分解的 常用方法。 课时安排:2课时。 教学内容如下: 一、 多项式的基本概念 多项式是由数与字母进行+、—、?运算而构成。 定义 设n 是一非负整数,形如1110()n n n n f x a x a x a x a --=++++ 的多项式,当0n a ≠时,叫做一元n 次多项式。 所有系数全为零的多项式叫做零多项式,记为0。零多项式是唯一不定义次数的多项式。 二、多项式的恒等定理(多项式的基本定理) 定理1 如果在给定的数域里,对于变数字母的任意值,多项式 1110()n n n n f x a x a x a x a --=++++ 的值都等于零,那么这个多项式的所 有系数都等于零。 证明 用数学归纳法 (1)当n=1时,10()f x a x a =+。因为对于x 的任意值,f(x)的值都等于零,所以令x=0,即得0 0a =。由此得1()0f x a x =≡, 再令x=1,则有10a =。因此,命题对于一次多项式成立。 (2)假定命题对于次数低于n 的多项式成立,现在来证明对于

n 次多项式也成立。 如果对于x 的任意值,都有 1 11 ()n n n n f x a x a x a x a --=++++ 0≡ ① 在等式①中,以2x 代x ,得 11 110(2)2220n n n n n n f x a x a x a x a ---=++++≡ ② ①2n ?—②,得1 12221202 (21)2(21)(21)0n n n n n n n a x a x a -------+-++-≡ ③ 这是一个次数低于n 次的多项式,它恒等于零,依归纳假定,它的所有系数都等于零,即 122 122(21)0,2(21)0,,n n n n a a -----=-= 02(21)0,,(21)0n k k n n k a a ---=-= 因为 20,210( 1,2,n k k k n -≠-≠= 所以 12100,0,,0,0 n n a a a a --=== = 代入①得,0n n a x ≡,令x=1,得0n a = 根据(1)、(2),命题对于任意的一元多项式都成立。 定理2 两个多项式 1110()n n n n f x a x a x a x a --=++++ (0n a ≠) 1m 110 g(x)=b (0)m m m m x b x b x b b --++++≠ 恒等的充分必要条件是它们的次数相等,且对应项系数相等,即 ,(1,2,,)i i n m a b i n === 证明 条件的充分性是显然的,下面证明必要性。 为了确定起见,不妨设n ≥m 。若两个多项式的次数不同,可以在次数较低的多项式中添系数为零的项,使

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

高一数学上期三角函数恒等变换知识归纳与整理

《三角函数恒等变换》知识归纳与整理 一、 基本公式 1、必须掌握的基本公式 (1) 两角和与差的三角函数 S S C C C βαβαβα =±) ( 同名乘积的和与差 S C C S S βαβαβα±=±) ( 异名乘积的和与差 T T T T T β αβαβα 1) (±=± (2) 二倍角的三角函数 C S S ααα22 = S C S C C 2 22222112ααααα -=-=-= 差点等于1 T T T 2 212α αα -= (3) 半角的三角函数 212 C S α α -± = 2 12 C C α α+± = C C T α α α +-± =112 θ θ θθθsin cos 1cos 1sin 2 -=+= T 2、理解记忆的其他公式 (1) 积化和差 ][2 1 )()(C C C C βαβαβ α-++=

=S S βα][21)()-(C C βαβα+- ][21)()(S S C S βαβαβα-++= ][21)()(S S S C βαβαβα-+-= (2) 和差化积 ][22 2 C S S S βα βαβα-+=+ ][22 2 C S S S βαβαβα+-=- ][22 2C C C C βα βαβα-+=+ ][22 2 S S C C βα βαβα-+-=- (3) 万能公式(全部用正切来表示另外的三角函数称为万能公式) T T S 2 2 212α α α += T T C 22 2 211α α α+-= T T T 2 2 212α α α- = (4) 辅助角公式 )sin(cos sin 2 2 ?++=+x x b x a b a 其中:a b = ?tan 常见的几种特殊辅助角公式: ① ) 4 sin(2cos sin π + =+x x x

代数变形中常用的技巧

代数变形中常用的技巧 数学与应用数学专业 摘要:代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。本文就初等代数变形中的解题技巧,作一些论述。关键词代数变形技巧 两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。 代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。 代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。 一、整式变形 整式变形包括整式的加减、乘除、因式分解等知识。这些知识都是代数中的最基础的知识。有关整式的运算与化简求值,常用到整式的变形。 例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2 分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。 解:设y-z=a, z-x=b, x-y=c,则a+b+c=0,y+z-2x=b-c, x+z-2y=c-a, x+y-2z=a-b。于是原式=(b-c)2+(c-a)2+(a-b)2-3a2-3b2-3c2 =b2-2ac+c2+c2-2ac+a2+a2-2ab+b2-3a2-3b2-3c2 =-a2 -b2-c2-2ac-2ab-2bc =-(a+b+c)2 =0 例2:分解因式 ①(1-x2)(1-y2)-4xy ②x4+y4+ x2y2 分析:本题的两个小题,若按通则变形,则困难重重,不知从何下手,但从其含平方的项来研究,考虑应用配方法会使变形迎刃而解。①题先将括号展开,并把-4xy拆成-2xy和-2xy,再分组就可以配成完全平方式。②题用添项、减项法加上x2y2再减去x2y2,即可配方,然后再进行变形分解。 解:①原式= 1-y2-x2+x2y2-2xy-2xy =(1-2xy+x2y2)-( x2+2xy+ y2)

高中数学三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式: Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

分式的恒等变形精讲精练

一、化分式为部分分式的和 【例1】 (4级)(第10届华罗庚金杯决赛) 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1, 且一次项系数相同),则p 的最大值是 . 【例3】 (5级)若213111 a M N a a a -=+ --+,求M 、N 的值. 【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244 x x -,求a ,b . 【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足111 4 a b +=,则a b +的最大值是 . 【例6】 (4级)若对于3±以外的一切数,2 8339 m n x x x x -=+--均成立,求mn . 【例7】 (5级)若关于x 的恒等式 222Mx N c x x x a x b +=- +-++中,22 Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N . 【例8】 (4级)将2 6 9 x -化为部分分式. 分式恒等变形(竞赛部分)

【例9】 (4级)化21 (1)(2) x x x ---为部分分式. 【例10】 (4级)将下列分式写成部分分式的和的形式:234 2 x x x +--. 【例11】 (4级)将下列分式写成部分分式的和的形式:32222361 (1)(3) x x x x x -++++. 【例12】 (5级)将下列分式写成部分分式的和的形式:322 41338 (1)(2)(1)x x x x x x -+++--. 【例13】 (4级)计算:2132x x x -++262x x ---2 10 4 x x ---. 【例14】 (4级)将下列分式写成部分分式的和的形式:4322231 (1)(1) x x x x x ++-+-. 二、分式的恒等证明 【例15】 (4级)(1994广东潮州市初中数学竞赛) 求证:()()3322222222 22a a a ab b a ab b a ab b a ab b a b a b ????++--+-=++-+ ???-+? ??? 【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111 x y z y z x +=+=+,求证:2221x y z =.

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法:)(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性)

(2)如果 bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++ 4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

第14讲有式的恒等变形

第14讲有理式的恒等变形 可以数是属统治着整个量的世界,而算数的四 则运算则可以看作是数学家的全部装备 麦克斯韦 知识方法扫描 有理式的恒等变形可以分为无条件限制等式和有条件限制等式两大类. 无条件等式的证明方法很多,常用的有:直接从左到右或从右到左的变形(常 常是从较复杂的一边向较简单的一边变形),还有比较法、分析法等. 条件等式的证明实质上是有根据,有目标的有理式的恒等变形,条件等式证 明的基本方法是对约束条件或待证等式进行适当变形, 运用有理式的对称,轮换 性质,有关非负数的性质及比较法,消元法和换元法等?在证明过程中,不但要 注意已知条件的变换,使之有利于应用,同时也要研究结论的需求, 结论部分复 杂的也要进行比较变换,使之有利于已知条件的沟通. 经典例题解析 2 2 b ea ab e (b e)(b a) (e a)(e b) 分析要证A=B ,可先证A-B=O ,这种方法称为求差法。 这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a , e 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第 三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作 轮换式.利用这种特性,可使轮换式的运算简化. 证明因为 例1.求证: a 2 be (a b)(a e) 左-右 a 2 be (a b)(a e) b 2 ca (b e)(b a) e 2 ab (e a)(e b) a 2 be (a b)(a e) a 2 ae ae be (a b)(a e) a(a c) c(a b) (a b)(a e) a. e abac 同理 b 2 ea e 2 ab (b e)(b a) b e b a (e a)(e b) e a b e

三角恒等变换所有公式

WOIRD格式 三角恒等变换所有公式 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 专业资料整理

(完整版)三角恒等变换所有公式

三角恒等变换所有公式 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角恒等变形公式大全

和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

相关文档
最新文档