以太网接口防雷电路

以太网接口防雷电路
以太网接口防雷电路

以太网接口防雷电路:

R701

R /75/1%/0402

R702R /75/1%/0402

RD-R703

R /75/1%/0402

RD+

TD-TD+

U701

SR05-SOT143REF14I/O12I/O2

3

REF21

U702SR05-SOT143REF14I/O12I/O2

3

REF2

1

RD-网络变压器初级浪涌防护

网络变压器初级浪涌防护

C708

C/474M/16V/X7R/0402C709

C/106M/6.3V/X5R/0805D704

TVS/90V/5KA/BF091M/SMD

D705

TVS/90V/5KA/BF091M/SMD

J700RJ45 10PiN (Plastic) Black

P8

A8

P2A7RX-A6P4A4RX+A3TX-A2TX+A1P5A5S2S2

S1S1S3

S3S4S4

D706

TVS/90V/5KA/BF091M/SMD

R E F 2

R E F 3

C702

C/102M/2KV

D709

TVS/90V/5KA/BF091M/SMD

D708

TVS/90V/5KA/BF091M/SMD

T D +

T C

T D -

R D -

R D +

R X -R C

R X +R C M T X -T C M T X +T700

T/MT10232ANL/DIP12

1

3

2

1516148

6

7

1011

9RD+

RegOUT1

REF0

TD+

TD-C703

C/102M/2KV

R700

R /75/1%/0402

C700

C/102M/2KV

C701

C/102M/2KV

R714R /49.9/0402/1%

C704

C/104K/16V/X7R/0402

网络变压器次级浪涌防护

R715R /49.9/0402/1%

C707

C /104K/16V/X7R /0402

R704

R /49.9/0402/1%

C705

C/104K/16V/X7R/0402

C706

C /104K/16V/X7R /0402

R705R /49.9/0402/1%

REF1

D703

TVS/90V/5KA/BF091M/SMD

+3V3

+3V3

说明:

1、 此电路为以太网接口的标准防雷电路,包括了初级和次级防雷保护电路。应用于以太网

口可能接到室外的产品。

2、 此电路要求产品有接大地的接口,如果没有,初级防雷保护电路的共模防护将不起作用。

3、 此电路采用的POE 以太网接口作为例子,C700 – C703使用4个电容为POE 电路考虑,

如果没有POE 电路,可共用为一个电容,请参见普通的以太网接口电路。 4、 防护器件:

D703 – D706,D708,D709组成初级防护,接的地为大地,U701、U702构成次级

防护,接的地为数字地。

D703 – D706,D708,D709防护器件典型型号:摈城BF091F 。 防护器件的选择要根据对以太网口的雷击测试要求来定。

电路的简化:

由于在很多认证中,不做以太网接口的差模雷击测试,而在实际使用中,共模雷击

为主要的雷击失效原因,对电路可做简化,去掉D708、D709。 进一步的电路简化:只考虑共模雷击测试和实际使用中的共模雷击防护,最小电路

为:去掉D703、D705、D708、D709、U701、U702,防护器件只保留D704、D706。 在做电路的简化前,需要明确测试和使用的要求,在成本和性能之间取得平衡。

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

?以太网电接口采用UTP设计的EMC设计指导书 一、UTP(非屏蔽网线)的介绍 非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。 用来衡量UTP的主要指标有: 1、衰减:就是沿链路的信号损失度量。 2、近端串扰:测量一条UTP链路对另一条的影响。 3、直流电阻。 4、衰减串扰比(ACR)。 5、电缆特性。 二、10/100/1000BASE-T以太网电接口原理图设计 10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。 1、网口变压器未集成在连接器里的网口电路原理图 网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。由电容组成的差模、共模滤波器可以增强EMC性能。在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。电路的右侧四个75Ω的电阻是电路的共模阻抗。 2、网口变压器集成在连接器里的网口电路原理图

网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。中间的电容组成共模、差模滤波器,滤除共模及差模噪声。75Ω的共模电阻也集成在网口连接器的内部。 3、网口指示灯电路原理图 带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。 注意点: 1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。 2)、芯片侧中间抽头需要通过磁珠串接电源,并且注意每一路接一个磁珠,并通过电容0.01-0.1uf接数字地。 3)、点灯部分电路,link和ACT灯走线要加磁珠处理,同时供电电源也要加磁珠处理。但所有显示驱动灯的电源可以共用一个磁珠。 4)、变压器与连接器部分的匹配电阻75欧姆和50欧姆精度可以放低到5%。

高压架空线路的防雷保护(最新版)

高压架空线路的防雷保护(最 新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0902

高压架空线路的防雷保护(最新版) 1.引言 佛山电力局送电管理所所辖110kV及以上高压送电线路总长732.8km,分布于珠江三角洲一带,属于雷电活动频繁地区,年平均雷暴日高达80~90天。近年来,根据我市电网故障分类统计,高压送电线路因雷击而引起的事故日益增多,雷击引起的跳闸占总跳闸率的70~80%,1999年是雷电活动最为强烈的一年,我所110kV及以上线路跳闸总数达到了10次之多。2000年线路17次事故障碍中,因雷击而引起的达到13次。严重威胁着输变电设备的安全运行,也大大加重了运行维护人员的劳动强度。由此可见,加强线路防雷保护尤为迫切。 2.雷电对电力线路的危害 架空线路受到直接雷击或线路附近落雷时,导线上会因电磁感

应而产生过电压,即大气过电压(外过电压)。这个电压往往高出线路相电压的2倍及以上,使线路绝缘遭受破坏而引起事故。当雷击线路时,巨大的雷电流在线路对地阻抗上产生很高的电位差,从而导致线路绝缘闪络。雷击不但危害线路本身的安全,而且雷电会沿导线迅速传到变电站,若站内防雷措施不良,则会造成站内设备严重损坏。 3.防范措施及应用情况 根据运行经验,采取降低杆塔接地电阻、加装耦合地线及线路避雷器、减小线路地线保护角、增加绝缘子片数、采用自动重合闸等措施均可以有效地降低雷击跳闸率。以上加强防护措施可根据线路的重要性、雷电活动的频数、地形地貌特点以及土壤电阻率等情况确定选取合理的一种或几种组合。 3.1架设地线以及减少地线保护角 地线是送电线路最基本的防雷措施之一,它的功能:①防止雷直击导线;②雷击杆塔时对雷电流的分流作用,减小流入杆塔的雷电流,使杆塔顶电位降低;③对导线有耦合使用,降低雷击杆塔时

网络应用程序设计教案

网络应用程序设计 课程教案 课 程 名 称: 网络应用程序设计 课 程 编 号: 4112301 学院、专业、年级: 信息科学院计算机科学与技术 任 课 教 师: 段会川 教 师所 在单位: 信息科学与工程学院 山东师范大学

课程简介 计算机网络已经渗透到我们人类社会生活的方方面面,人们所依赖的Internet提供信息和服务的重要渠道是Web网站。在大学本科教学中,教授网络应用程序设计的基本技术和Web网站建设技术是非常必要的。而这正是我们在计算机科学与技术及通信工程本科专业中开设“网络应用程序设计”课程的基本出发点。 网络应用程序设计和Web技术涉及的范围非常宽广,作为一门实用性的课程,我们对课程所需要涉及的内容的教学方法进行了认真的研究,确定了如下的思路:(1)鉴于网络应用程序设计技术的广泛性,课程内容选取了最有代表性的Internet和Web技术,而且从教学方式上以将学生领入为主,选择的内容也是入门性的内容,以期望通过本课程的学习为学生进一步的深入学习和实战性技能打下切实的基础;(2)本课程是一门实践技能性很强的课程,因而我们从教学内容上对理论性内容深入浅出,强调实践技能的培养,加强学生的上机实践操作,使学生在实践中掌握理论,在实践中学会并提高技能;(3)为了加强创新教育,我们选取了开源的Apache Web服务器和PHP建站技术作为课程的主要内容,使学生将来的创新免受软件版权的限制,为产出创新成果提供较大的空间;(4)为使课堂教学有更强的感染力,我们在课件中提供了大量的实例演示,并将实例演示溶入课件中,同时建立了课程网站,并在网站上提供了大量的练习示例。 课程基本内容包括:(1)Web服务器(Apache、IIS);(2)超文本传输协议HTTP与浏览器; (3)HTML基础篇; (4)HTML高级篇: (5)PHP基础篇; (6)PHP高级篇; (12)PHP数据库篇(MSSQL)。

完整版信号口浪涌防护电路设计

信号口浪涌防护电路设计 通讯设备的外连线和接口线都有可能遭受雷击(直接雷击或感应雷击),比如交流供电线、用户线、ISDN接口线、中继线、天馈线等,所以这些外连线和接口线均应采取雷击保护措施。 设计信号口防雷电路应注意以下几点: 1、防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有一定裕量。 2、防雷电路应有足够的冲击通流能力和响应速度。 3、信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设备兼容。 4、信号防雷电路要考虑阻抗匹配的问题。 5、信号防雷电路的插损应满足通信系统的要求。 6、对于信号回路的峰值电压防护电路不应动作,通常在信号回路中,防护电路的动作电压是信号回路的峰值电压的1.3~1.6倍。 1.1网口防雷电路 网口的防雷可以采用两种思路:一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性。另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。下面的室外走线网口防雷电路和室内走线网口防雷电路就分别采用的是这两种思路。 1.1.1室外走线网口防雷电路 设计。1当有可能室外走线时,端口的防护等级要求较高,防护电路可以按图 R1TX组合式G1PE,低节电容TVS R2 R3组合式RXG2PE,低节电容TVS R4a 变/22.23R097CXTXUNUSESLVU2.8-UNUSE10/10TXTXENTERNERX PH RXUNUSETXUNUSERX RJ47777RXVCVCCGND b 1 室外走线网口防护电路图从图中可以看出该电路的结构与室给出的是室外走线网口防护电路的基本原理图,图1aTVS口防雷电路类似。共模防护通过气体放电管实现,差模防护通过气体放电管和外走线E1它可以同时是三极气体放电管,,型号是3R097CXAG1管组成的二级防护电路实现。图中和G2使电阻,/2W起到两信号线间的差模保护和两线对地的共模保护效果。中间的退耦选用2.2Ω防雷性能电阻值在保证信号传输的前提下尽可能往大选取,前后级防护电路能够相互配合,因为网口传输速率高,在网口防雷TVS后级防护用的管,Ω。会更好,但电阻值不能小于2.21b图。SLVU2.8-4这里推荐的器件型号为管需要具有更低的结电容,TVS电路中应用的组合式 就是采用上述器件网口部分的详细原理图。 三极气体放电管的中间一极接保护地PGND,要保证设备的工作地GND和保护地PGND通过PCB走线在母板或通过电缆在结构体上汇合(不能通过0Ω电阻或电容),这样才能减小GND和PGND的电位差,使防雷电路发挥保护作用。 电路设计需要注意RJ45接头到三极气体放电管的PCB走线加粗到40mil,走线布在TOP层或BOTTOM层。若单层不能布这么粗的线,可采取两层或三层走线的方式来满足走线的宽度。退耦

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计及PCB设计 我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。 下图1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。 图1 以太网典型应用 1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。 图2 变压器没有集成在网口连接器的电路PCB布局、布线参考 a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了

顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去; b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小; c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小; d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil); e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级; f)指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开; g)用于连接GND和PGND的电阻及电容需放置地分割区域。 2.以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点: a)优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里; b)当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%; c)差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射,此电阻有些接电源,有些通过电容接地,这是由PHY芯片决定的; d)差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

常用的防雷典型电路

防雷器基本电路图目录 一、交流电源防雷器 (一)单相并联式防雷器(电路一~电路三) 1~3(二)三相并联式防雷器(电路一~电路三)4~6(三)单相串联式防雷器(通用安全保护电路)7(四)三相串联式防雷器(通用安全保护电路)8二、通信机房用直流电源防雷器 (一)并联式防雷器 1、正极接地(–48V)直流电源 9 2、负极接地(+24V)直流电源 10 3、正负对称(±110V)直流电源 11 (二)串联式防雷器 1、正极接地(–48V)直流电源 12 2、负极接地(+24V)直流电源 13 3、正负对称(±110V)直流电源 14 三、通用二级信号防雷器 (一)双绞线型信号电路 通用电路一~通用电路五 15~19 (二)同轴线型信号电路 (1)外导体接地电路(通用电路一~通用电路三) 20~22 (2)外导体不接地电路(通用电路一~通用电路二) 23~24 (三)提高传输频率/速率的方法25

四、小功率电源变压器或开关电源保护电路(电路一~电路三) 26~28 五、通讯电子设备的保护电路(电路一~电路三)29~31 六、直流电源与信号同传的保护电路32 七、信号电路的双重二级保护方式33 八、检测/控制电路的保护(接地、不接地)34~35 九、单级信号防雷器 1、只用玻璃放电管的保护电路 36 2、只用半导体过压保护器的保护电路 37 3、只用TVS管的保护电路 38 4、复合单级保护电路 39 十、天馈防雷器 1、单级电路天馈防雷器 40 2、二级电路天馈防雷器 41 3、三级电路天馈防雷器 42 十一、防静电保护器 43

(一)单相并联式防雷器 电路一:最简单的电路 600V。当要求的通流容量≤3KA时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

嵌入式Linux系统串口和以太网编程

中国地质大学(北京) 实验报告 课程名称:嵌入式系统 实验名称:嵌入式Linux系统串口和以太网编程 姓名: 学号: 班级: 指导教师:曾卫华 评分: 实验时间: 2013.5

实验题目:嵌入式Linux系统串口和以太网编程 一、实验目的 1、熟悉Linux环境 2、掌握嵌入式开发的基本流程,培养解决问题的能力 3、掌握Linux串口及以太网socket的应用程序开发 4、自学嵌入式Linux中多线程编程基础 二、实验内容 本次实验通过编写服务器(开发板)与客户端(虚拟机ubuntu)上的应用程序,来实现服务器与客户端之间信息的透明转发,构成类似于聊天的功能。该功能实现包括两个方面。 其一:服务器通过串口从终端(电脑键盘)上读取(read)数据,再通过网络(clifd)把读取到的数据发送到客户端,客户端在接收到数据后在显示器上打印出来; 其二:客户端把数据通过网络发送到主机上,主机接收到数据后通过串口写到电脑终端软件(SecureCRT)进行显示。实验流程图如下: 图一:总体框架图 三、基础知识 1、掌握linux串口和以太网socket应用程序开发方法: 串口配置: 打开串口,获得串口的使用句柄fd → 获取原先配置参数并进行保存 →●设置波特率→?设置奇偶校验位→?设置→?设置停止位→?设置最少接受字 符和等待时间→?设置数据位、无流控等相关参数→?激活最新配置→?结束时还 原串口原先配置。 网络socket编程: 服务器端: 创建一个socket→ bind(),给socket注册服务器端口地址→●listen(),

开始监听已经绑定的端口,创建监听队列→?accept(),返回一个新的socket,阻塞 等待客户端client的连接→? send(),recv()发送和接收数据→?close(),关闭服务器。 客户端: 创建一个socket→ connect(),建立与服务器的连接→●send(),recv()发 送和接收数据→??close(),关闭客户端。 2、掌握linux系统中线程的使用方法: 在linux中创建新的线程可以使用两种方式:pthread_create()函数和fork()函数。 pthread_create()使用: int pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr, void *(*start_routine)(void*), void *restrict arg); 参数:thread输出线程id,attr 线程属性,默认NULL,start_routine线程执行函 数,arg线程执行参数。函数成功时返回0,否则返回错误码。 fork()函数的使用: 一个现有进程可以调用fork函数创建一个新进程。由fork创建的新进程被称为子 进程(child process)。fork函数被调用一次但返回两次。两次返回的唯一区别是 子进程中返回0值而父进程中返回子进程ID。这样,对于程序,只要判断fork函 数的返回值,就知道自己是处于父进程还是子进程中。 四、实现过程 1、4.4.3交叉编译工具的PATH已经生效,在任意目录下能够执行arm-linux-gcc –v 2、在开发板上进行内核以及根文件系统的移植,构建嵌入式linux系统 3、nfs网络文件系统的配置: 1.打开nfs1175.exe 2.配置板子ip,使其和电脑ip在同一个网段 3.挂载:在板子上运行#mount -t nfs -o nolock 202.204.100.66:/f/aaa/LINUX/Share /mnt/nfs 4.使用cd /mnt/nfs/0522 进入nfs共享目录下,ls 显示共享目录下的文件; 4、仔细阅读提供的代码server.c和client.c Target为服务器,Ubuntu为客户端。修改和 完善代码,在原代码的基础上实现新的功能 5、交叉编译server.c(# arm-linux-gcc -lpthread -o server server.c) 6、本地编译client.c(# gcc -o client client.c -lpthread) 7、在板子上运行server可执行文件:#chmod 777 server,运行server:#./server 8、在ubuntu上运行client程序:# ./client 202.204.100.67; 五、实验结果 客户端运行client与服务器端运行server建立通信

接口防护措施总结

xx接口防护措施总结 关键字:xx 接口防护 xx是IDU系列产品的低端产品,定位于替代SDU的部分低端市场,主要用于接入网、小模块局、微站等市场,同时兼顾部分户外基站市场的需求xx包含很多接口,其中包括电源输入端口、串口、模拟量输入端口、E1端口、传感器电源输出端口、网口、USB口、I2C口等。如果不进行端口保护,外部危险信号就会通过端口直接引入而造成器件的损坏,特别是电源端口、网口和E1端口等,还会引入雷电信号。xx根据其端口的自身特点进行了一些保护措施,现在对各个端口保护措施进行分析说明。 1. 电源输入端口 图1 电源输入端口 输入电源电压为直流20V-60V。根据电源输入端的特点,防护措施包括防雷、防浪涌、以及过流、防反接等。 ①防雷或防浪涌冲击的措施

采用压敏电阻通过放电管接地的方式进行雷击保护,压敏电阻型号为S20K60。它的防雷电压为85V,可以防护6.5kA的雷电。如图1,采用R152和R151与放电管G1连接来防护共模雷,其中放电管G1可以缩短压敏的泄放通道。R149用来防护差模雷,不采用R152和R151串联的方式来滤除差模雷,是因为这两个压敏电阻串联后的防雷电压为170V,这样将无法滤除85V~170V之间的差模雷。 ②过流保护措施 电源保护电路在正级输入端串联保险丝F1来进行过流保护,当电流太大时,保险丝熔断来对单板进行保护。 ③防反接保护措施 在电源的负极串入二极管D66通过它的单向导电性能来实现电源的反接保护。当电源极性反接时,电路不工作,单板不损坏。 ④电源滤波 图1中,C139、C154、L26、C140、C141、C158组成了电源滤波器,它对滤除差模噪声和共模噪声都有一定的效果。共模电感L26在滤除差模噪声的同时对共模噪声有显著效果,同时,C140、C141也是滤除共模噪声,其选用为0.022微法的陶介电容,有较好的高频特性。 2. 以太网输入端口 以太网接口作为一种宽带网的基本通信接口在产品中得到了大量应用。主要包括10M和100M的以太网接口。这里将从网口滤波电路和网口防护电路两个方面讨论网口的保护措施。 ①网口滤波器 IPLU采用的是具有EMI抑制作用的接口变压器,型号为E&E Magnetic Products Ltd.

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

以太网接口PCB设计经验分享

以太网口PCB布线经验分享 目前大部分32 位处理器都支持以太网口。从硬件的角度看,以太网接口电路主要由 MAC 控制器和物理层接口(Physical Layer ,PHY )两大部分构成,目前常见的以太网接口 芯片,如LXT971 、RTL8019 、RTL8201、RTL8039、CS8900、DM9008 等,其内部结构也 主要包含这两部分。 一般32 位处理器内部实际上已包含了以太网MAC 控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。 常用的单口10M/100Mbps 高速以太网物理层接口器件主要有RTL8201、LXT971 等,均提供MII 接口和传统7 线制网络接口,可方便的与CPU 接口。以太网物理层接口器件主 要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX 编码/ 解码器和双绞线媒体访问单元等。 下面以RTL8201 为例,详细描述以太网接口的有关布局布线问题。 一、布局 CPU M A RTL8201 TX ± 变 压 RJ45 网口 器 C RX± 1、RJ45和变压器之间的距离应当尽可能的缩短. 2、RTL8201的复位信号Rtset 信号(RTL8201 pin 28 )应当尽可能靠近RTL8021,并且,如果可能的话应当远离TX+/-,RX+/-, 和时钟信号。 3、RTL8201的晶体不应该放置在靠近I/O 端口、电路板边缘和其他的高频设备、走线或磁性 元件周围. 4、RTL8201和变压器之间的距离也应该尽可能的短。为了实际操作的方便,这一点经常被放弃。但是,保持Tx±, Rx±信号走线的对称性是非常重要的,而且RTL8201和变压器之间的距离需要保持在一个合理的范围内,最大约10~12cm。 5、Tx+ and Tx- (Rx+ and Rx-) 信号走线长度差应当保持在2cm之内。 二、布线 1、走线的长度不应当超过该信号的最高次谐波( 大约10th) 波长的1/20 。例如:25M的时钟走线不应该超过30cm,125M信号走线不应该超过12cm (Tx ±, Rx ±) 。 2、电源信号的走线( 退耦电容走线, 电源线, 地线) 应该保持短而宽。退耦电容上的过孔直径 最好稍大一点。 3、每一个电容都应当有一个独立的过孔到地。 4、退耦电容应当放在靠近IC的正端(电源),走线要短。每一个RTL8201 模拟电源端都需要退耦电容(pin 32, 36, 48). 每一个RTL8201 数字电源最好也配一个退耦电容。 5、Tx±, Rx ±布线应当注意以下几点: (1)Tx+, Tx- 应当尽可能的等长,Rx+, Rx- s 应当尽可能的等长; (2) Tx±和Rx±走线之间的距离满足下图: (3) Rx±最好不要有过孔, Rx ±布线在元件侧等。

以太网通信接口电路设计规范

目录 1目的 (3) 2范围 (3) 3定义 (3) 3.1以太网名词范围定义 (3) 3.2缩略语和英文名词解释 (3) 4引用标准和参考资料 (4) 5以太网物理层电路设计规范 (4) 5.1:10M物理层芯片特点 (4) 5.1.1:10M物理层芯片的分层模型 (4) 5.1.2:10M物理层芯片的接口 (5) 5.1.3:10M物理层芯片的发展 (6) 5.2:100M物理层芯片特点 (6) 5.2.1:100M物理层芯片和10M物理层芯片的不同 (6) 5.2.2:100M物理层芯片的分层模型 (6) 5.2.3:100M物理层数据的发送和接收过程 (8) 5.2.4:100M物理层芯片的寄存器分析 (8) 5.2.5:100M物理层芯片的自协商技术 (10) 5.2.5.1:自商技术概述 (10) 5.2.5.2:自协商技术的功能规范 (11) 5.2.5.3:自协商技术中的信息编码 (11) 5.2.5.4:自协商功能的寄存器控制 (14) 5.2.6:100M物理层芯片的接口信号管脚 (15) 5.3:典型物理层器件分析 (16) 5.4:多口物理层器件分析 (16) 5.4.1:多口物理层器件的介绍 (16) 5.4.2:典型多口物理层器件分析。 (17) 6以太网MAC层接口电路设计规范 (17) 6.1:单口MAC层芯片简介 (17) 6.2:以太网MAC层的技术标准 (18) 6.3:单口MAC层芯片的模块和接口 (19) 6.4:单口MAC层芯片的使用范例 (20) 71000M以太网(单口)接口电路设计规范 (21) 8以太网交换芯片电路设计规范 (21) 8.1:以太网交换芯片的特点 (21) 8.1.1:以太网交换芯片的发展过程 (21) 8.1.2:以太网交换芯片的特性 (22) 8.2:以太网交换芯片的接口 (22) 8.3:MII接口分析 (23) 8.3.1:MII发送数据信号接口 (24) 8.3.2:MII接收数据信号接口 (25) 8.3.3:PHY侧状态指示信号接口 (25) 8.3.4:MII的管理信号MDIO接口 (25) 8.4:以太网交换芯片电路设计要点 (27) 8.5:以太网交换芯片典型电路 (27) 8.5.1:以太网交换芯片典型电路一 (28)

通信接口保护电路

AC220V,RS232,RS485,CAN等保护电路 220V电源保护 , MOV选用压敏电阻20D471 , GDT选用陶瓷气体放电管2R470 ,可选择10欧姆电阻,也可以选用自恢复保险丝JK250-180. , Tvs可选用1.5KE440CA(P6KE440CA) RJ45保护方案

满足100以太网YD/T1542-2006要求: 1 正常工作电压(V) 5 2 标称放电电流线对地 250A YD/T1542-2006 线对线 15A 3 最大放电电流线对地 500A YD/T1542-2006 线对线 30A 4 保护电压水平线对地 600V YD/T1542-2006 线对线 15V 5 响应时间 1ns YD/T1542-2006 6 传输速率 10/100/1000M YD/T1542-2006 7 误码率<1×10-9 T1542-2006 8 对地阻抗≥1000Ω YD/T1542-2006 9 近端串扰 >60dB YD/T1542-2006 10 数据脉冲波形变化率≥0.95 YD/T1542-2006 11 电气间隙和爬电距离≥0.4mm YD/T1542-2006 12 保护对象 8条线 13 接口类型 RJ45 一.此保护电路使用SLVU2.8-4对RJ45接口保护。 二.为更好满足防雷设计要求,可在每条线对地加上玻璃放电管SA41-301M作为一级保护。(如果有较大空间,也可使用陶瓷放电管,效果更佳) 三.SLVU2.8-4,SA41-301M电容值C<5PF,满足100M以太网传输速率要求。

CAN电路保护 说明: 1.Gas Tube1,.Gas Tube2,.Gas Tube3可选用贴片陶瓷气体电管2R470或者插件陶瓷2PF。 2.PPTC1,PPTC2可选用贴片保险丝SMD014或者SMD020。 https://www.360docs.net/doc/4711699347.html,S1,TVS2,TVS3可选用SMBJ30CA 4. 此电路可满足此保护电路承受10、1000μs,4Kv雷击测试。满足IEC6100-4-5,国标GB9043的雷击浪涌抗扰度测试标准。 5. 防雷地都需要可靠的连接至大地,可靠的接地可以大大提高防护效果,而不良的防护效果。 贴片485保护电路 说明:

RJ 以太网口防雷设计总结

以太网口防雷设计总结 关键字:以太网口;浪涌;TVS管;共模;差模; 问题背景介绍: 对于主要的100M网口接口需要做特殊的保护处理,具体要求需要达到6KV设计目标(10/700雷电模拟电压波),作者在调试过程中对传统bob-smith端接和防雷设计做了相关的工作,在此总结出来供以后网口防雷设计参考。 具体原理及步骤: 一、网口的接口模型: 1,网线: 网口室内连接,一般为CAT-5或者CAT-5E(超5类双绞线,四对UTP无屏蔽双绞线)的网线,支持频率为100MHz,最高传输速率1000Mbps。用于1000Base-T,100Base-T,10Base-T一般家用网线。 2,变压器: 变压器用在RJ45端口主要作用:满足IEEE802.3中电气隔离的要求,不失真的传输以太网信号,EMI抑制。具体变压器模型分析在以太网口辐射设计中详述。 3,RJ45接口: RJ45接口在防浪涌选用中需要注意,如果选用带屏蔽的网口座子,需要注意屏蔽罩和插件/贴片脚之间要有足够的电气间隙,不能发生浪涌时候管脚直接对屏蔽罩放电的现象;如果选用非屏蔽的网口座子,需要注意增加座子固定的方式。不推荐选用带LED灯的座子,这样会增加布线的难度和PCB空间。 二、网口防雷概述: 网线雷击主要分为: 1,室外感应雷击或者直接雷击; 2,建筑物内感应雷击; 防雷器对端口的保护,分为共模保护和差模保护两个方面。RJ45接头的以太网信号电缆是平衡双绞线,感应的雷电过电压以共模为主,线缆间的差模过电压/过电流相对小一些。但是非理想网络变压器情况下,共模的过电压/过电流也可以转化成差模。 网口的防雷可以采用两种思路: 一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性; 另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。 我们设计的防护电路要获得满意的防雷效果,应注意以下几点要求: 1,防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有一定裕量; 2,防雷电路应有足够的冲击通流能力和响应速度; 3,信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设备兼容; 4,信号防雷电路要考虑阻抗匹配的问题; 5,信号防雷电路的插损应满足通信系统的要求;

RJ45以太网接口EMC防雷设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。 二、接口电路原理图的EMC设计 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明: (1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01μF~0.1μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。注意选择半导体放电管,要注意器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连。

保护电路图全集

保护电路图全集 一.低功耗定时开关电路图 二.LM339组成的过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此 采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电 源中亦需要设置过热保护电路。 图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。N1.3为过热比较器,RT为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。N1.4用于外部故障应急关机,当其正向端 输入低电平时,比较器输出低电平封锁PWM驱动信号。由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。如将电路 稍加变动,亦可使比较器输出高电平封锁驱动信号。

图4 过压、欠压、过热保护电路 · [图文] 低功耗定时开关电路图 · [图文] LM339组成的过压、欠压及过热保护电路 · [图文] 采用继电器和限流电阻构成的软启动电路 · [图文] 采用晶闸管和限流电阻组成的软启动电路 · [组图] 防浪涌软启动电路 · [图文] CW431CS过电压保护应用电路 · [图文] 弧焊电源保护电路的设计 · [图文] 电动车控制器短路保护时间的计算方法 · 太阳能热水器与防雷电设计方案 · ESD保护元件的对比分析及大电流性能鉴定 · [图文] PolySwitch元件的保护特性解析 · 如何正确选择中小型断路器 · 变频器过电压产生的原因及解决方法 · [图文] ESD保护时怎样维持USB信号完整性 · [图文] 集成运算放大器输出过流保护电路原理 · [图文] 集成运算放大器供电过压保护电路原理 · [图文] 保险丝熔断自愈电路图原理 · [图文] 停电自锁保护开关电路原理图 · [图文] 压敏电阻原理及应用 · [图文] 选用压敏电阻的方法 · [图文] 整流电源的过压保护-压敏电阻及其应用 · [图文] 用于三极管的过压保护-压敏电阻及其应用 · [图文] 彩电消磁电路的过压保护-压敏电阻及其应用 · [组图] 显像管放电保护-压敏电阻及其应用 · [图文] 直流电机的稳速保护-压敏电阻及其应用 · [图文] 固态继电器电路的过压保护-压敏电阻及其应用 · [图文] 电视机的防雷保护-压敏电阻及其应用 · [图文] 电视机稳压保护器-压敏电阻及其应用 · [图文] 由TL431组成的高精度的恒流源电路图 · [图文] 带滞回区的电池放电保护电路 · [图文] 红外线探测报警器制作原理 · [图文] 过流保护电路原理 · [图文] 直流电路的过流保护设计方法 · [图文] 蒸汽熨斗自动保护电路原理图 · [图文] 含指示灯的短路保护电路 · [图文] 三相三线制电源缺相保护电路 · [图文] 锂芯保护电路 · [图文] T3(E3)保护电路及解决方案 · [图文] VDSL保护电路及解决方案

接口保护设计一种常见方案

接口保护设计一种常见方案 接口是嵌入式设备中最常见的组成部分,是数据传输的通道,它起着数据传输与隔离保护电路的作用,今天我们一起探讨接口保护设计一种常见方案。 气体放电管是一种陶瓷或玻璃封装的,内充低压惰性气体(氩气或氖气)的短路型保护器件,主要利用放电管两金属极板间的气体放电实现保护,气体放电管的原理图符号详见下图1。 图 1 气体放电管常见符号 气体放电管的工作原理是气体放电,当两极间电压足够大时,极间气体间隙将被击穿,由原来的绝缘状态转化为导电状态,类似短路。导电状态下两极间维持的电压很低,一般在20~ 50V ,因此可以起到保护后级电路的效果。气体放电管的主要指标有:响应时间、直流击穿电压、冲击击穿电压、通流容量、绝缘电阻、极间电容、续流遮断时间等。

图 2 气体放电管工作原理 防雷电路的设计中,应注重气体放电管的直流击穿电压、冲击击穿电压、通流容量等参数值的选取。在普通交流线路上与其他保护器件配合使用的放电管,要求它在线路正常运行电压及其允许的波动范围内不能动作,则它的直流放电电压应满足: min(Ufdc)≥1.8UP。式中, Ufdc为直流击穿电压, min(Ufdc )表示直流击穿电压的最小值, UP为线路正常运行电压的峰值。

图 3 防雷电路设计 气体放电管主要可应用在交流电源口相线、中线的对地保护,直流电源的工作地和保护地线之间的保护;信号口线对地的保护,射频信号馈线芯线对屏蔽层的保护。 气体放电管的失效模式多数情况下为开路,因电路设计原因或其它因素导致放电管长期处于短路状态而烧坏时,也可引起短路的失效模式。气体放电管使用寿命相对较短,多次冲击后性能会下降。因此由气体放电管构成的防雷器长时间使用后存在维护及更换的问题。

相关文档
最新文档