调强适形放射治疗(IMRT)优点

调强适形放射治疗(IMRT)优点

调强适形放射治疗(IMRT)优点

应用调强适形放射治疗(IMRT)技术治疗头颈部、颅脑、胸部、腹部、盆腔和乳腺等部位的肿瘤优于普通适形放射治疗的研究均已得到肯定的结论。对头颈部肿瘤及鼻咽癌,调强适形放疗提高了疗效,同时降低了腮腺的损伤,减轻了口感的痛苦,而且降低了脑和脊髓的损伤;另外对复发的鼻咽癌,调强适形放疗能很方便地进行第二次放疗而不增加放疗的并发症;对于前列腺癌,调强适形放疗获得了与手术相同的疗效,同时病人免除了手术的痛苦和损伤;对脑肿瘤,调强适形放疗在提高疗效的同时,降低了放疗对正常脑组织的损害;对乳腺癌,调强适形放疗可以明显改善靶区剂量分布,对肺及心脏的保护更好;对肺癌,调强适形放疗能降低对正常肺组织、心脏、食道等脏器的损伤,可以使放疗和化疗的联合治疗因为副作用减少而变得容易实施,明显提高疗效;对胃肠肿瘤、肝肾等腹腔肿瘤,过去由于正常的胃肠肝肾组织对放射线比较敏感,但放疗时易导致明显的副反应,一般不适合放疗或者三维适形放疗不能完成计划的患者,调强适形放疗的出现,使此类病人放疗成为可能。由于调强适形放疗能最大成都保护正常器官,扩大了放疗适应症,提高了放疗剂量和疗效,减轻了放疗损伤,提高生存率和生存质量。

三维适形调强放射治疗剂量验证研究进展

三维适形、调强放射治疗剂量验证研究进展▲ 梁 远 (广西壮族自治区卫生厅医政处,南宁市 530021) 【关键词】 三维适形放射治疗;调强放射治疗;剂量验证 【中图分类号】 R114 【文献标识码】 A 【文章编号】 025324304(2008)1021520202 随着计算机技术和放射治疗计划系统的飞速发展,放射治疗技术日新月异,相继出现了三维适形放射治疗(three di m ensi onal radi otherapy,3D2CRT)和调强放射治疗(intensity modulated radi otherapy,I M RT)。3D2CRT的目的是使放射治疗的三维高剂量分布与靶区的三维形状一致,以保护靶区周围的正常组织。然而,对于形状特殊的肿瘤,传统的3D2CRT无法实现三维高剂量分布与靶区的三维形状一致,这时就需要根据要求对每一射束的输出强度进行调节,从而实现肿瘤三维空间上的高剂量分布适形,这就是所谓I M RT。 1 原 理 调强放射治疗(I M RT)由于采用计算机逆向设计,即根据设定的靶区及各器官的剂量要求,计算所有影响剂量分布的物理参数,使高剂量区对GT V和CT V达到充分的剂量适形,并使PT V尽可能地缩小,从而达到显著提高治疗增益比的效果,并能很好地遵循放疗四原则:靶区剂量准确;邻近正常器官受照剂量小;保护关键器官;靶区剂量分布均匀。这样就可以有效地拉开肿瘤组织和正常组织所受的照射剂量,从而能够在保护正常组织的前提下,更好地杀死肿瘤细胞,达到改善生存质量、提高肿瘤控制率的目的[1]。20世纪90年代以来,这一技术日臻成熟。其主要实现方式包括:二维物理补偿器、断层治疗技术、多叶光栅(multileaf colli m at or,MLC)静态调强、MLC动态调强、电磁扫描调强、二维调强准直器、独立准直器的静态调强和机器人直线加速器调强等。 2 I M RT的优点 与3D2CRT相比,I M RT有许多优势。首先,它能够优化配置照射野内各线束的权重,使高剂量区的等剂量分布在三维方向上与靶区的实际形状一致,并可使PT V内的剂量分布更均匀,同时还可以在PT V边缘形成非常陡的剂量梯度。其次, I M RT可在一个计划内同时实现多个剂量水平,满足不同靶区对放射治疗剂量的要求,从而更符合肿瘤的放射生物学原则[2]。然而,I M RT技术与常规放射治疗技术及3D2CRT三维适形放射治疗相比,更为复杂,由于其技术上的复杂性,物理师不仅要像传统放射治疗一样验证患者的治疗摆位,还要验证患者所受的剂量分布[3,4]。I M RT尚属于发展中的技术,逆向计算的优化算法在某些方面还不成熟,且放射治疗中还存在众多不确定因素,因此治疗前的剂量验证是确保治疗剂量准确的关键步骤[5,6]。3 放射治疗验证工具 目前报告的关于调强放射治疗验证的典型工具为电离室、胶片、体模、胶片扫描仪配合相应的分析软件。传统的验证方法:电离室配合胶片法,计量学验证一般包括3个测量项目:一是用电离室在人体等效模体中测量靶区参考点的绝对剂量;二是采用胶片测量,一个治疗计划的所有射野在有机玻璃模体内形成的复合剂量分布,最后是采用胶片在干水模体中测量单个射野的强度分布,即患者相对剂量的测试及验证[7~10]。戴建荣等[7]报告针对一个患者的调强计划进行验证过程:首先在CT扫描体模传到计划系统作为标准体模,然后将经过医生确认的患者调强放射治疗计划移植到标准体模并计算剂量,将移植后的计划传到加速器进行验证,用电离室进行参考点的绝对剂量验证,并使用胶片进行所有射野和单个射野的相对剂量验证,最后用分析软件将计划结果和体模测量结果进行比较分析,如果两者差异在可以接受的误差范围,则认为计划可以执行并执行患者治疗,反之要找出原因并修正引起误差的原因重新验证直至误差减小到可以接受的程度再执行患者治疗。上述验证程序和过程为目前被广大医生和物理师所普遍接受的通用方法,具有以下优点[11]:(1)可以同时完成定位和剂量验证;(2)胶片法精度较高高可分辨0.15 mm的绝对位置误差和0.04mm的相对位置误差;(3)与常用模体相结合可以开展模体内任意平面的剂量验证;(4)在条件允许的情况下可以直接与EP I D等先进设备相连开展实时自动验证。但是成本高、工作量大,测量结果受曝光和冲洗条件影响,且胶片不能重复利用,浪费很大。例如不同批次的胶片、不同批次的显影液定影液、同一批次不同使用时间的显影液定影液都有很大差异,胶片冲洗是胶片辐射剂量分析过程的关键环节,也是胶片剂量仪的重要误差来源之一。由于放射物理学中的胶片剂量测量,尤其是当胶片用于测量绝对剂量或进行刻度时的精确性要求甚高,对冲洗过程加以控制或进行必要的质量保证就非常重要[12~15]。并且用于调强验证的电离室的灵敏体积,不能简单地认为越小越好。正确的认识应该是在使用大电离室时要考虑体积平均效应,并且测量点尽量选在剂量均匀区域;在使用小灵敏体积的电离室时要注意漏电和噪声对测量结果的影响。所以根据经验传统的验证方法,同时进行上述绝对剂量验证和相对剂量验证大概需要2人3h在加速器上的测量时间和1人2h的准备及数据处理时间[7],在目前国内大部分医院加速器治疗时间紧张的情况下,很难保证临床顺利实施,急需找到省时省力的更好的调强放射治疗质量保证(QA)和质量控制(QC)的方法。 0251Guangxi M edical Journal,O ct.2008,V ol.30,N o.10 ▲广西医疗卫生科研课题(桂卫科发Z2008499)

三维适形、调强放疗的流程与计划设计技巧

精确放疗的计划设计及实施流程 1.计划设计的基本流程 1.1体位或面罩固定 病人经放疗医师确定放疗后,首先需严格的体位或面罩固定,体位固定以病人舒适、身体重复性好为主,,固定好后行定位CT扫描。 1.2输入患者基本信息和图像信息 基本信息是患者姓名、性别、住院号等,图像信息是模拟定位获得的人体外轮廓或人体CT断层图像,或其它影像学检查获得的图像(MRI、PET),扫描后图像通过网络输入到TPS中。 1.3标记参考点和图像配准 标记参考点是翻动扫描图像找到CT图像在体表标记三个(十)字对应的激光在体表的位置,以此点做为坐标原点。配准图像是建立两组不用图像之间空间位置关系的过程,配准的图像可能来自同机或异机。异机是指融合的图像是在不同的机器上采集的,患者需要两次摆位,体位变化的可能性比较大,配准需要人工或半自动化完成,配准的准确性可能受影响。同机是指两组图像是在一个机器上采集的,两次采集之间患者的体位无变化,配准率较高。 1.4精确定义解剖结构并给定处方剂量要求 要精确定义解剖结构一般有人体外轮廓、靶区、危及器官等,根据ICRU62号报告需要定义的靶区有肿瘤原发灶(GTV)、临床靶区(CTV)、和计划靶区(PTV)。GTV和CTV及危及器官由主管医生

精确勾画,医生根据输入到计划系统的患者图像及其它诊断材料,结合特定的肿瘤临床表现,精确地完成这项任务,并给与靶区及危及器官的耐受剂量。PTV由计算机根据靶区外扩自动产生,外扩的大小取决于摆位误差、放疗设备误差和器官运动幅度。由物理师通过对平时治疗技师摆位后拍治疗验证片以骨性标记或DRR片图像对比定量分析后得出头部、胸部、腹部等外扩数据。 1.5采用正向或逆向方式确定射野参数 物理师检查医师勾画的靶区及危及器官无误后,根据医师提供的剂量要求设定目标函数。逆向方式是指物理师根据医师提供的剂量要求填写目标函数和约束条件及各自的重要性,用约束条件描述靶区剂量均匀度要求和正常组织耐受量要求,然后用计算机以一定的数学模型进行优化,然后给出一组数据最优的射野参数和剂量分布,若医师满意,射野参数就确定下来;若不满意,则调整优化的射野参数,如:正常组织最大耐受量、靶区的剂量限值、以及相应的重要系数,如此反复,直至计划满意。 1.6评估治疗计划 评估治疗计划由医师和物理师共同参与,首先判断治疗计划是否能顺利实施和实施效率,其次是该计划需要满足临床的处方剂量要求,且满足临床计量学要求,评估主要用剂量体积直方图(DVH)和每层剂量分布,一般先看DVH图是否满足临床要求,再看三维层面上逐层评估剂量分布是否满足临床的处方剂量要求,且要注意热点和冷点的位置,如果冷点位于GTV内或热点位于重要器官内,则计

三维适形调强放疗的原理及其疗效

三维适形调强放疗在肺癌的治疗中的原理及其疗效的概括说明 发表者: 适形调强放射治疗(Intensity Modulated Radiation Therapy, IMRT)调强的原理最早由瑞典的放射物理学家Brahme提出。它启发于CT成像的逆原理,即当CT X球管发出强度均匀的X线束穿过人体后,由于其组织厚度与组织密度不同,其强度分布就变成了不均匀的射线束,反向投影后形成了组织的影像。反之,如果放射治疗给于一个不均匀的射线束照射,则出来的射线束就变成均匀而投射到靶区中。 适形调强放射治疗的概念是指,以各种物理手段的放射治疗技术,根据肿瘤靶区的形状,通过调节和控制射线在照射野内的强度分布产生不同剂量梯度来提高对肿瘤靶区给予致死性的高剂量照射,而对肿瘤周围正常组织控制在正常耐受剂量以下的一种放射治疗技术。其首先是对肿瘤靶区达到三维适形的照射,其次是使肿瘤靶区和邻近敏感器官可以获得照射剂量强度的调节。 1、实现束流调强的四种方式:(1)固定野物理方式调强——采用固定式楔形板、动态式楔形板(一维调强)、补偿器(二维调强)和IMRT调制器等方式;(2)断层(CT)式螺旋调强;(3)多叶准直器(Multi-Leave Collimator, MLC)调强——在固定野或旋转照射过程中通过MLC叶片移动式调强。例如,用V ARIAN的MLC作同中心照射,设计6~9个照射野。(4)束流调制式调强——用调节线束扫描的速度和能量而产生笔型束的射线强度,以达到调强。例如,NOMOS的Peacock System, 通常在270度的弧度内,每5度设计一个照射野,照射时作弧形动态旋转放疗。 2、适合适形调强放射治疗用的治疗计划系统必须具备以下条件:(1)不仅要采用精确的(正向)剂量算法,还必须有逆向的算法;(2)必须具有三维数字图象重建(DRR)的功能;(3)不仅有冠状、矢状、横断及任意斜切面图象及剂量分布显示的功能。还必须有截面剂量分布(dose profile)、积分和微分式剂量体积直方图(cDVH和dDVH)等进行定量评估计划优劣的手段。(4)安排和设计射野时,除有射野方向观视(BEV)功能外,还需要有模拟类似模拟定位机的射野选择功能。(5)治疗方案确认后,能够将射野条件送到CT模拟机进行治疗模拟。(6)治疗方案确认后,治疗条件能够传送到治疗机的计算机,包括机架、准直器、治疗床的转角与范围;射野大小、方向、MLC的叶片位置;照射过程中叶片移动范围及速度等。(7)治疗方案确认后,治疗的辅助装置如射野挡块、组织补偿等的参数能传送到相应的装置制作器上。(8)能够接收和比较治疗机射野影像系统送来的射野确认图象。

调强适形和立体定向放射治疗题库3-0-8

调强适形和立体定向放射治疗题库3-0-8

问题: [单选,A型题]关于MLC静态调强的描述不正确的是() A.多叶准直器的运动和照射同时进行 B.将射野要求的剂量强度进行分级 C.利用MLC形成多个子野 D.将多个子野分步照射 E.将所有子野的流强相加,形成所要求的强度分布

问题: [单选,A型题]MLC动态调强的特征是() A.MLC形成多个子射野 B.stopandshot C.旋转调强 D.MLC运动和照射同时进行 E.以上都不是 MLC运动和照射同时进行的调强是MLC动态调强。

问题: [单选,A型题]实施调强治疗时,加速器控制界面上的MUs表示() A.标准剂量 B.吸收剂量 C.照射量 D.剂量仪的跳数 E.处方剂量 实施调强治疗时,加速器控制界面上的MUs表示剂量仪的跳数,它不直接代表吸收剂量或照射量的值,它通过剂量测量时的校正系数校正以后,才转换为吸收剂量或照射剂量,实际工作中剂量师在测量时,通过调整机器参数使得该系数为1,此时MUs才在数值上等于吸收剂量。 (湖北快3 https://www.360docs.net/doc/4815146292.html,)

问题: [单选,A型题]与旋转调强无关的是() A.在治疗过程机架做多次旋转 B.机架每次旋转,MLC同时改变大小 C.机架每次旋转,MLC同时改变形状 D.综合了MLC静态调强、MLC动态调强和断层治疗技术的优点 E.利用铅挡块形成射野 旋转调强综合了MLC静态调强、MLC动态调强和断层治疗技术的优点。在治疗过程机架做多次旋转,机架每次旋转,MLC同时改变大小和形状。

问题: [单选,A型题]关于vnrvnc结构的描述不正确的有() A.由两组共40叶片组成,每组20片,相对排列 B.每片高8cm,近源端5mm,远源端6mm C.叶片在加速器等中心处投影大约10mm D.相邻叶片间有5组"凹凸槽",以减少散射线 E.每个叶片由电动马达控制其运动 MIMIC由两组共40叶片组成,每组20片,相对排列,每片高8cm,近源端5mm,远源端6mm,叶片在加速器等中心处投影大约10mm,相邻叶片间有5组"凹凸槽",以减少散射线,每个由气动独立控制。

调强适形和立体定向放射治疗题库2-1-8

调强适形和立体定向放射治疗题库2-1-8

问题: [单选,A型题]放射治疗方案的优化的过程不包括() A.确定靶区和重要组织和器官 B.正确诊断、确定分期 C.物理方案的设计 D.物理方案的实施 E.选择治疗的目标 放射治疗方案的优化的过程包括:确定靶区和重要组织和器官、选择治疗的目标、物理方案的设计和实施。

问题: [单选,A型题]人工优化过程不包括() A.正确诊断、确定分期 B.选择射线能量 C.确定射野剂量权重 D.确定外加射野挡块 E.选择射线种类 人工优化过程包括选择射线能量、确定射野剂量权重、确定外加射野挡块、选择射线种类、计算剂量分布、评估计划和确定方案。

问题: [单选,A型题]目前关于射野入射方向的研究认为,对未经调强的均匀射野,如果射野数为多少,射野人射方向对剂量分布影响很大() A.n<3 B.n≤3 C.n≥2 D.n=4 E.n>3 射野入射方向的选择仍然是放疗计划设计至今尚未解决的一个重要问题。目前关于射野入射方向的研究成果认为,对未经调强的均匀射野,如果射野数较少n≤3,射野入射方向对剂量分布影响很大,故调强计划设计时尽可能采取多野方案。 (打羽毛球的好处 https://www.360docs.net/doc/4815146292.html,/)

问题: [单选,A型题]当调强束照射且射野数很多时,射野可以(),这样可以较好地控制靶区的剂量分布 A.直接穿过重要器官 B.避开重要器官 C.减少 D.增加 E.不变 当调强束照射且射野数很多时,射野可以直接穿过重要器官,只要控制重要器官的剂量受量,就可以较好地控制靶区的剂量分布。当非调强束照射时,射野不能直接穿过重要器官。

放射治疗计划系统(TPS)逆向调强参考步骤

如何制作调强计划 2010年2月5日 一、准备工作: (1) 导入病人数据 (CT、MRI、PET); (2) 勾画器官:勾画靶区 (GTV、 CTV、PTV) 及重要器官; (3) 添加射野,选择射线能量和种类。 二、调强步骤: 1 添加射野 (BEAM) 1.1 射野个数 在制作调强计划的时候,通常需要添加4~13野。野的具体个数要根据靶区的大小及周围器官 的数目来确定。 (1)头颈部:靶区较大,重要器官较多,一般添加9~13个野。 (2)胸腔:一般添加4个野。或者根据情况添加2~6个野。 (3)胸肺部:一般添加4~7个野。 (4)腹部:根据靶区形状大小添加4~9个野。 1.2 射野角度 (1)小机头角度(COLLIMATOR) 在选择小机头的角度时,应首选叶片运动方向上最小的角度,其次则应根据最佳的适形效果 综合考虑。一般情况下,可选择0度或90度。 光栅90度安装情况下,小机头为0度时叶片运动方向为Y1,Y2方向,如下图: 需要注意:一个计划中各射野的小机头角度应尽量统一。

(2)大机架角度(GANTRY) 在选择大机架的角度时,应遵循以下几点: A. 射野的中心线要尽量避开重要器官。 B. 选择靶区等中心离皮肤较近的角度选择射野,如下图,以减少正常组织受射量 C. 布野要尽量避开对穿野。 D. 相邻射野之间要间隔一定的角度,一个计划中的所有射野应尽量实现均匀分布。

1.3 等中心 (Iso-center) 靶区的等中心一般由放射治疗计划系统(TPS)根据靶区形状自动设置,无需手工定义。 如遇到特殊情况,系统自定义的等中心不够理想时,可以手工修改等中心。一般只需修改等中心的W和H位置,L位置(层厚位置)不用修改。 特殊情况示例: (1)等中心在靶区边缘 系统自定义的等中心位置在靶区边缘时,计算调强剂量后,靶区周围需要保护的其他器官受到的照射剂量会过高。 此时,可手工拖动等中心点,使其处在靶区内部,如下图:

放射治疗中适形和调强的定义和区别

三维立体适形放疗和调强放疗的定义和区别? 三维适形放疗〔Three dimensional conformal RT,3D-CRT〕 肿瘤的生长方式和部位复杂,放射治疗照射野应该包括全部肿瘤组织和淋巴引流区以及一定范围的外周边缘,也称安全边缘。要达到射线体积与靶体积形状一致、同时避免对正常组织的不必要照射的要求,绝大多数照射野的形状是不规则的,在过去的临床放疗实践中,一般采用低溶点铅挡块技术实施不规则照射野的放疗。在上个世纪40年代开始有人在二维放疗计划的指导下,应用半自动的原始多叶光栅(MLC)技术或者低溶点铅挡块,采用多个不规则照射野实施最原始的适形放疗,这一技术在临床一直沿用至今已半个世纪。由于计算机技术的进步,放射物理学家用更先进的多叶光栅代替手工制作的铅挡块以达到对射线的塑形目的,用计算机控制多叶光栅的塑形性,可根据不同视角靶体积的形状,在加速器机架旋转时变换叶片的方位调整照射野形状,使其完全自动化。将适形放疗技术提高到一个新的水平。近年来,影像诊断图像的计算机处理使得人体内的放疗靶区和邻近的重要组织器官可以三维重建,因而实现了临床上以三维放疗计划指导下的三维适形放疗。目前世界范围内被越来越多的医院及肿瘤治疗中心用于放射肿瘤的临床实践,并逐渐被纳入常规应用。 实现对躯干部肿瘤三维适形放疗的定位技术要求比较复杂,与头颈部肿瘤放疗技术比较,由于胸腹部生理运动影响影像的三维重建和放疗计划的精确度,另外,躯干部肿瘤体积较大,治疗体积也大;再者躯干部肿瘤的放疗靶体积形状一般不规则。因此,对躯干部肿瘤的三维适形放疗技术的要求比较高。ICRU50号报告对肿瘤体积、临床靶体积、计划靶体积、治疗处方的规范化作了详细说明。广义上讲,在三维影像重建的基础上、在三维治疗计划指导下实施的射线剂量体积与靶体积形状相一致的放疗都应称为三维适形放疗。但是利用立体定向放射外科〔SRS〕糸统实施头部肿瘤的三维适形放疗与躯干部肿瘤三维适形放疗的设备和附属器具有所不同,操作技术方面也有一些差别,许多文献报告中一般将用SRS 系统进行头部肿瘤三维适形放疗称为立体定向放疗〔Stereotactic radiotherapy,SRT〕,而称采用体部固定架、MLC或低溶点铅挡块实施的躯干肿瘤的放疗为三维适形放疗〔3D-CRT〕。实际上SRS、FSRT、SRT、3D-CRT以及立体定向近距离放疗〔Stereotactic brachtherapy,STB〕都应属于立体定向放疗的范畴。三维适形放疗的实施主要靠如下4个方面的技术支持: 〔1〕多叶光栅系统MLC,它的种类有多种,有手动、半自功和全自动。它的叶片大小和数目也不尽相同。MLC糸统的用途是:代替铅挡块;简化不规则照射野的塑形过程,从而可以增加照射野的数目以改善对正常器官结构的屏蔽;应用多叶光栅的静止照射野和单一机架角度可用于调整线束平整度;叶片可在机架旋转时移动以适应对不规肿瘤形状的动态调整。 〔2〕三维放疗计划系统,它的主要特点是在CT影像三维重建基础上的治疗显示。如线束视角显示〔Beameye view,BEV〕功能可以显示在任意射线入射角度时,照射野形状和肿瘤形状的符合程度以及对邻近关键结构的屏蔽情况,是实现“适形照射”的关键功能。治疗方位的显示〔Room-view,RV〕功能,可以显示在治疗室内任何方位所见的治疗情况,这一功能补偿了线束视角显示BEV的不足,尤其是设定射线等中心深度时能同时显示多个线束,可以对治疗技术作适

调强放疗

什么是调强放疗? 调强放疗(intensity modulated radiation therapy,IMRT)即调强适形放射治疗是三维适形放疗的一种,要求辐射野内剂量强度按一定要求进行调节,简称调强放疗。它是在各处辐射野与靶区外形一致的条件下,针对靶区三维形状和要害器官与靶区的具体解剖关系对束强度进行调节,单个辐射野内剂量分布是不均匀的但是整个靶区体积内剂量分布比三维适形治疗更均匀。 严格地说,使用楔形板和常规的表面弯曲补偿器也是调强。但这里我们所说的调强放射治疗是指一种形式的三维适形放射治疗,它使用计算机辅助优化程序不获取单个放射野内非均匀的强度分布以达到某种确定的临床目的。下面要讲的就是这个意义上的调强放射治疗。 编辑本段调强分布的设计 1、正向计划设计调强放疗 在CT影像上勾画好解剖轮廓后,三维适形放射治疗是由计划者根据靶区部位和大小在计划系统上安排照射野的入射方向、大小、形数目并对各个辐射野分配权重然后由计算机系统进行剂量计算,算完后显示射野分布,计划者依据靶区及正常组织所受剂量来评估计划的好坏。如果剂量分布不符合治疗要求,再由计划者改变射野的入射方向和权重,重新计算,如此反复进行,直至满意为止。这种制定计划的方式叫做正向计划设计。 2、调强放疗多采用逆向计划设计方案 调强概念是受了CT成像的逆原理启发:当CT的X射线管发出强度均匀的X射线穿过人体后,其强度分布与组织厚度和组织密度的乘积成反比;那么我们不是可以先确定射线照到靶区及正常组织上产生的剂量分布,然后再由此推算出各个射野应该贡献的束流强度吗?根据调强的概念,首先要依据病变(靶区)与周围重要器官和正常组织的三维解剖特点,以及期望的靶区剂量分布和危及器官(OAR)的剂量耐受极限,由计划者输入优化参数,通过计划系统计算出各个射野方向上需要的强度分布。即在完成勾画轮廓和确定辐射野数目及入射方向后,先确定对CT影像中各个兴趣区的剂量要求。由计划者以数学形式输入这些临床参数(即目标函数),如对靶区剂量范围的要求,对相关危及器官剂量的限制等,然后由计算机通过数学的方法(如迭代法、模拟[font color=#000000]退火[/font]法、蒙特卡洛法等)自动进行优化,在经过几百乃至上千次计算与比较后得出最接近目标函数并能够实现的计划方案。它是常规治疗计划设计的逆过程,所以叫做逆向计划设计。 在患者影像获取、勾画轮廓和确定辐射野数目及方向这些步骤上两者相同,但它们的优化过程是不同的。前者是先计算剂量,看结果如何,不行就人为地改动计划再试,如此反复,直到可以接受为止。后者是先由计划者通过输入目标函数来限定靶区和危及器官主剂量分布,再由计划系统自动反复进行优化计算,反复的次数由病例的复杂程度决定,至少需要一二百次。 编辑本段调强放疗的应用

非小细胞肺癌适形调强放射治疗规范(精编文档).doc

【最新整理,下载后即可编辑】 非小细胞肺癌适形调强放射治疗规范一.I期(T1N0, T2N0)、II期(T1N 1M 0, T2N 1M 0, T3N 0M 0) (一)适应症: 1.拒绝手术者 2.一般情况不允许手术,如肺功能差,近期心肌梗塞史,出血倾向等。 (二)放射治疗规范: 1.剂量:66Gy/33fx 2Gy/f。 2.靶区 GTV:包括肺窗中所见的肺内肿瘤范围以及纵隔窗中所见的纵隔受累范围,病变的毛刺边缘应包括在GTV 中。应基于CT 所见勾画GTV 的范围,PET 检查所见仅可用于分期,而不适于用来勾画靶区。 CTV:对所有的组织学类型GTV 都外放8 mm 。除非确有外侵存在,CTV 不应超出解剖学边界。不进行淋巴引流区选择性预防照射。 PTV :为CTV 加上8mm(3-10mm)肿瘤的运动范围(ITV),再加上7mm 的摆位误差。 运动范围确定方法:模拟机下测量肿瘤的活动范围,作为确定ITV 的依据。 二.局部晚期IIIA (T3N 1M 0, T1-3N 2M 0) 和IIIB (TxN 3M 0, T4NxM0)

1.放疗剂量 单纯放疗模式:60-70 Gy/ 33 f 每日一次照射。 同步放化疗;诱导化疗+ 同步放化疗;诱导化疗+ 单纯放疗模式:60-66Gy ,2 Gy/f 。 新辅助性同步放化疗+ 手术模式:45Gy 。 2.靶体积 GTV: 影像学(包括CT/PET 、FOB 等)显示的原发肿瘤+ 转移淋巴结区域。GTV 应在CT 影像上勾画,PET 作为参考。如果PET 结果显示有病变但CT 上并无相应的阳性表现,应当请影像诊断科医生会诊;如果CT 有符合诊断标准(最短径大于1.0cm )的阳性LN,而PET 阴性,应包进GTV。 如果病人有阻塞性肺不张,应考虑将不张的肺置于GTV 以外。CT 和PET 均可作为排除不张肺的依据。经过3-4 周的治疗,不张的肺可能已经张开,这时候应该重新进行模拟定位。 纵隔淋巴结阳性标准:最短径大于1cm ,或虽然最短径不足1cm 但同一部位肿大淋巴结多于3 个。 对侧纵隔、对侧肺门或隆突下淋巴结仅在影像学阳性时包入GTV 。 化疗后放疗的病人,GTV 应以化疗后的肺内病变范围为准,加上化疗前的受侵淋巴结区域,如果纵隔或者隆突下淋巴结受侵应包括同侧肺门。化疗后CR ,应将化疗前的纵隔淋巴结受侵区及肺内病变的范围勾画为CTV ,最少给予50 Gy 。如果化疗期间病变进展,GTV 则应包括进展的病变范围。

放疗学术年会及适形、调强放疗的规范化治疗学习班测试题

××省放射治疗专业委员会年会及适形、 调强放疗的规范化治疗学习班测试题 一、A1型题 1.放射治疗中应用最广的射线是() A.浅层X线 B.深部X线 C.高压X线 D.高能X线 E.γ线 2.在恶性肿瘤中,在病程的不同时期需要作放射治疗的大约占() A.30% B.50% C.70% D.90% E.100% 3.决定肿瘤倍增时间的三个重要因素是() A.细胞周期时间,生长比例和细胞丢失速度 B.细胞周期时间,氧含量和细胞丢失速度 C.生长比例,细胞增长速度和氧含量 D.细胞周期时间,细胞丢失速度和细胞形态 E.细胞周期时间,放射敏感性和细胞丢失速度 4.对放射最敏感的肿瘤是() A.细胞分裂慢的肿瘤 B.高分化肿瘤 C.低分化或未分化肿瘤 D.囊腺癌 E.腺癌 5.关于放化疗结合的描述,正确的是() A.序贯效果最好 B.交替效果最好 C.同步效果最好 D.同步毒性最小 E.序贯毒性积累 6.早期乳腺癌腋窝淋巴结清扫术() A.清扫第一组淋巴结 B.清扫第一、二组淋巴结 C.清扫第一、二、三组淋巴结 D.清扫第二、三组淋巴结 E.不用清扫 7.患者女,35岁,浸润性乳腺癌,肿瘤2cm直径,腋窝淋巴结0/10,ER+,PR+,保乳术后应行() A.单纯放疗 B.单纯化疗 C.单纯三苯氧胺治疗 D.放疗及化疗 E.放疗、化疗及三苯氧胺治疗 8.直肠癌(T3N0M0)单纯根治术后的局部复发率为() A.小于5% B.5%~10% C.10%~15% D.15%~35% E.35%~50% 9.直肠癌术前常规放疗剂量是() A.20Gy/10F B.30Gy/15F C.40Gy/20F D.50Gy/25F E.60Gy/30F 10.直肠癌常规单纯放疗盆腔照射和残存肿瘤局部加量至多少为宜() A.45~50Gy,66~70Gy B.30Gy,66~70Gy C.40Gy,66~70Gy D.30Gy,60Gy E.40Gy,60Gy 11.宫颈癌放疗时靶体积的确定不考虑() A.肿瘤恶性程度 B.病理分类 C.年龄 D.周围组织受侵范围 E.区域淋巴结转移 12.关于食管解剖的叙述,错误的是() A.食管上端相当于第六颈椎下缘 B.三个生理性狭窄,一个位于食管入口处 C.三个生理性狭窄,一个位于经膈的食管裂孔处 D.食管沿气管后缘经上纵隔和后纵隔止于贲门 E.食管末端相当于第12胸椎水平

TC化疗方案联合三维适形调强放疗治疗非小细胞肺癌的效果分析

TC化疗方案联合三维适形调强放疗治疗非小细胞肺癌的效果 分析 摘要:目的探讨TC化疗方案联合三维适形调强放疗对非小细胞肺癌的治疗效果。方法选取60例非小细胞肺癌患者作为此次研究对象,60例患者均于2015 年1月至2017年7月期间在我院接受治疗,将其随机分成实验组和对照组两组,各30例,两组患者均采用三维适形调强放疗(3D—IMRT)的常规治疗措施,实 验组患者在此治疗基础上接受TC化疗进行联合治疗。分别观察两组患者放射性 并发症,包括肺损伤、食管炎、皮炎、神经炎的发生状况;并观察记录治疗后两 组患者的无进展生存期情况。结果两组患者治疗后放射性并发症发生率比较无 统计学意义P>0.05;实验组患者治疗后PFS与总生存时间显著高于对照组,差 异具有统计学意义P<0.05。结论TC化疗方案联合三维适形调强放疗不但能够 延长患者的无进展生存期,而且具有安全性高的优点,疗效显著,临床上值得大 力推广。 关键词:TC化疗;三维适形调强放疗;非小细胞肺癌 [Abstract] objective to explore the therapeutic effect of TC chemotherapy combined with three-dimensional conformal intensity modulated radiotherapy on NSCLC. Methods to select 60 patients with non-small-cell lung cancer(NSCLC) as the research object,60 cases were in January 2015 to July 2017 in our hospital during the period of treatment,will be randomly divided into experimental group and control group two groups,each 30 cases,two groups of patients were using three-dimensional conformal intensity modulated radiation therapy(3 d - IMRT) of conventional treatment,the experimental group on the basis of the treatment of patients with TC chemotherapy for joint treatment. The incidence of radiation complications including lung injury,esophagitis,dermatitis and neuritis were observed in two groups. The unprogression-free survival of the two groups was observed and recorded. Results the incidence of radiation complications in the two groups after treatment was not statistically significant(P>0.05). PFS and total survival time of patients in the experimental group were significantly higher than those in the control group after treatment,and the difference was statistically significant P < 0.05. Conclusion TC chemotherapy combined with 3d conformal intensity modulated radiotherapy can not only prolong the patient's progression-free survival period,but also has the advantages of high safety and remarkable curative effect,which is worthy of great promotion in clinical practice. [Key words]TC chemotherapy;Three-dimensional conformal intensity modulated radiotherapy;Non-small cell lung cancer 肺癌属于恶性肿瘤类并且是我国发病率最高的癌症,而85%以上的肺癌为NSCLC即非小 细胞肺癌。且由于受到环境、遗传等诸多因素的影响,患者的病龄呈现低龄化趋势,但发病 率却在逐年上升[1]。由于NSCLC的肿瘤细胞具有扩散晚、增殖慢的特点,致使约70%的NSCLC患者在最终确诊时已错过最佳治疗期[2]。目前,临床上治疗NSCLC患者采取的治疗措 施主要有化疗和放疗,3D-IMRT即三维适形调强放疗是目前比较先进的放疗方式,其CT影 像能够全方位检测放疗状况,放疗方案更加合理[3]。TC化疗是目前技术较为成熟的一种化疗 方式,也是临床上常用的化疗方式。但是化疗、放疗对患者有着严重的毒副作用,如由于食 管鳞状上皮的敏感性导致被放疗、化疗的患者极易发生炎症甚至致使食管穿孔,因此,患者

相关文档
最新文档