中科院力学所科技成果——利科岩土工程分析软件

中科院力学所科技成果——利科岩土工程分析软件
中科院力学所科技成果——利科岩土工程分析软件

中科院力学所科技成果——利科岩土工程分析软件技术介绍及特点

利科(LinkFEA)岩土工程分析软件是针对水利水电工程的渗流、堤坝的应力变形与结构安全性和边坡的稳定性计算分析而自主开发的有限元软件系统。包括渗流计算模块LinkFEA-Seepage、渗流与应力耦合计算模块LinkFEA-Stress和基于有限元应力计算结果的边坡稳定分析模块LinkFEA-Slope三部分。该软件用Fortran语言开发,经历了近20年的水利水电工程分析应用与软件改进扩展,具有计算收敛性好、计算结果可靠等优点。能进行复杂工况下的地下水三维渗流计算、堤坝三维渗流与应力变形耦合计算、堤坝与边坡二维稳定计算。

应用领域

大渡河瀑布沟水电站

澜沧江如美水电站

主要应用于水利水电工程的渗流分析、堆石坝的应力变形与结构安全性分析和边坡稳定分析。近20年来,已经在大渡河瀑布沟、大渡河长河坝、大渡河双江口、澜沧江如美4个里程碑级水电站工程和雅鲁藏布江加查、澜沧江黄登、大渡河硬梁包、黑水河毛尔盖、拉萨河扎雪、象泉河阿青、三岔河引子渡等10多个水电站工程设计的关键问题研究中应用。现正在用于澜沧江如美、金沙江拉哇和雅鲁藏布江米林等超大水电站的设计研究中。该软件也曾应用于上海洋山港码头的研究和部分工程的地下水环境评价分析。

技术成熟度及应用案例

LinkFEA软件的核心计算功能经过若干考题考核,在水利水电行业有近20年的应用,在水电站渗流控制、堆石坝结构设计和边坡稳定评价与边坡工程设计中,其计算分析成果,已经作为工程设计的依据,得到水电行业设计与审查部门的认可。依据工程分析的需要,软件的功能还在不断得到扩充。但软件本身在友好交互界面、建模和后

处理功能上尚欠缺。软件作为产品出售,尚需要进一步开发完善。

应用案例:对大渡河长河坝水电站大坝和地下厂房的渗流场与渗流控制、大坝的应力变形和防渗结构安全,大坝初次蓄水时的坝体水力劈裂风险进行了系统的计算分析,所得计算结果用于指导大坝和地下厂房防渗体系的优化设计。

图大渡河长河坝水电站

图长河坝水电站河谷天然渗流场反演

图长河坝防渗平面的水头等值线(m)

图长河坝河谷纵剖面覆盖层的渗透坡降

图长河坝蓄水期河谷中心剖面防渗墙周边土体沉降(m)

如美库区某堆积体各水位工况的圆弧滑动稳定安全性知识产权情况

1、一种边坡的稳定安全性的分析方法,ZL201510095093.5;

2、一种砂砾石土管涌侵蚀过程中渗透系数动态变化模型,ZL201510295358.6;

3、一种砂砾石土在管涌侵蚀中的本构关系描述方法,

ZL201510303591.4。

中国科学院力学研究所岗位管理实施办法

中国科学院力学研究所岗位管理实施办法 (力发人教字〔2007〕134号) 第一章总则 第一条根据中国科学院《关于印发〈中国科学院岗位管理实施办法〉的通知》(科发人教字〔2007〕207号)的有关规定,为实现我所人力资源管理的科学化、规范化、制度化,结合我所科技发展的规划,制定本办法。 第二条围绕我所科技发展规划的要求,遵循按需设岗、职数控制、结构合理、动态优化、管理规范的原则,按照院核定的岗位总量和结构比例科学设置各类岗位。 第三条本办法适用于我所在岗人员。所级领导干部按照干部人事管理权限的有关规定执行。 第二章岗位类别与岗位等级 第四条我所设置创新岗位和项目聘用两种岗位,分别包括科技、支撑和管理三类岗位。 第五条科技岗位是指各实验室(研究部)从事基础研究和战略高技术研究工作,具有相应专业技术水平和能力要求的工作岗位。我所科技岗位包括自然科学研究系列、工程技术系列专业技术岗位。 科技岗位执行自然科学研究系列或工程技术系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 第六条支撑岗位是指为我所科技工作提供技术支撑和辅助性工作的岗位,主要设置在实验平台技术支撑、实验室(研究部)学术与行政助理、网络与图书信息保障、学会期刊出版等岗位。 支撑岗位主要执行专业技术系列中的工程技术系列、实验技术系列、图书资料和出版系列等专业技术岗位,也包括工勤技能系列岗位。 对兼有管理职责要求的支撑岗位,确因工作需要,也可执行职员系列。 支撑岗位的等级设置按照《中国科学院岗位管理实施办法》规定(见附

表1)。 第七条管理岗位是指职能部门承担领导职责或管理职责的工作岗位。管理岗位主要执行职员系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 对兼有专业技术职责要求的科技管理岗位,根据工作需要,可设置为相应的专业技术岗位。会计、审计等国家有职业资格要求的岗位,设置相应的专业技术岗位。 第八条项目聘用岗位系列的设置与等级同上述创新岗位,但原则上,不设置正高级专业技术岗位和五级及以上职员岗位。 第三章岗位结构比例 第九条创新岗位中科技、支撑与管理三类岗位的宏观结构比例为70%、20%、10%。 第十条创新科技岗位(含执行专业技术系列的管理岗位)中,高级科技岗位(专业技术一至七级岗位)的比例占科技岗位总数的70%,正高级岗位(专业技术一至四级岗位)不超过高级科技岗位总数的40%。其中:正高级科技岗位中,专业技术一级岗位为国家专设的特级岗位,由国家实行总量控制和管理,专业技术二级、三级、四级岗位之间的宏观结构比例为2:4:4; 副高级科技岗位中,专业技术五级、六级、七级岗位之间的结构比例为3:4:3; 中级科技岗位中,专业技术八级、九级、十级岗位之间的结构比例为4:4:2; 初级科技岗位中,专业技术十一级、十二级岗位之间的结构比例为8:2。 第十一条创新支撑岗位中,高级支撑岗位(专业技术三至七级岗位)不超过支撑岗位总数的50%,正高级支撑岗位(专业技术三至四级岗位)不超

中科院力学所科技成果——高速列车系列技术

中科院力学所科技成果——高速列车系列技术2008年科技部与原铁道部签订了两部联合行动计划即《中国高速列车自主创新行动计划》,启动了国家支撑计划重大项目“高速列车关键技术研究及装备研制”,目标是研制最高运行时速380公里的新一代高速列车。在此背景下,初步形成了目前的高速列车空气动力学科研团队。 团队核心成员主要围绕高速列车气动性能和气动噪声评估、气动优化设计、动模型气动实验技术、列车结构静/动强度评估和设计、气动对车辆运行安全性和舒适性影响等开展研究。涉及空气动力学、结构动力学、车辆动力学、噪声工程、实验技术等多学科系统耦合问题。该团队参与了我国已研制和在研的所有高速列车气动性能评估和气动定型设计,具有较强的团队精神、科研攻关能力,对我国高速列车设计技术提升和高铁产业的发展起到了不可替代的作用。 技术介绍及特点 在国家科技支撑计划重大项目“中国高速列车关键技术研究及装备研制”的资助下,中国科学院力学研究所高速列车团队形成了较完备的高速列车空气动力学设计技术。建立了优化设计方法和动模型实验平台,形成了我国高速列车空气动力学研究体系。其主要特点有: 1、基于压缩空气加速、磁涡流非接触制动、实验快速恢复等发明技术,研制了世界上规模最大、实验速度最高的双向运行高速列车动模型实验平台。同时,研制了具有弹性隔振支撑、加减速段限位和实验段自动切换的车载六分量测力天平,填补了动模型气动力测量的

技术空白。利用该平台,已为我国多种高速列车研制提供了气动实验支撑数据。 2、发展了多目标优化设计方法,构建了高速列车气动优化设计平台。以气动阻力、尾车升力和远场气动噪声为设计目标,通过优化,得到了性能更优的标准动车组气动方案。大西线线路考核试验表明,中国标准动车组具有更加优良的气动性能。 3、本项目发展的高速列车气动优化设计技术,已用于我国CRH380系列、中国标准动车组、更高速度等级高速列车、城际列车等研制,为中国高速铁路发展做出了突出贡献。参与“京沪高速铁路工程”项目获2015年国家科学技术进步特等奖。主持“高速列车空气动力学优化设计及评估技术”项目分别获2016年中国力学科技进步一等奖和2014年第五届中国侨界创新成果贡献奖。参与“设计时速380公里高速动车组技术研发及应用”项目获2012年铁道科技进步特等奖。 应用领域 1、高速列车的气动特性评估 2、高速列车动模型试验 3、高速列车外形优化设计 技术成熟度及应用案例 1、CRH380系列高速列车气动定型设计 针对新一代CRH380A高速列车研制,完成了多种头型方案无横风和不同强度横风运行场景下的气动性能和气动噪声评估;完成了单

岩土工程计算原理和方法

岩土工程数值计算原理与方法 随着计算机的计算速度和存储能力的飞速发展以及计算方法的日益完善,数值模拟方法已经成为研究未知领域的强有力的工具。在岩土工程计算与分析中数值计算原理与方法也发展很快。特别是有限元的发展,促进了岩土工程研究、工程预测、优化设计和计算机辅助设计等的发展。但在工程实际中使用数值计算原理与方法却存在一些问题:例如有些人因缺乏对有限元和工程性质的深入了解,而有限元的迅速发展给他们造成一种假象,认为它是万能的,可以处理几乎所有的岩土工程问题;同时他们又被有限元计算结果的精度所迷惑,不了解这些精确结果后面所隐藏的不确定性,也不了解这些数值方法所采用本构模型的局限性以及相应参数的不确定性;因这些不确定性导致数值计算原理与方法的预测结果与实际情况和实际经验相差很大,又由于部分人计算偏于保守,使得岩土工程师难以接受现代数值计算原理与方法。 1. 岩土工程数值计算原理与方法也具有两面性。 有些人偏向于用其进行岩土工程的分析计算的原因在于: (1)数值计算原理与方法能够做任何传统的分析方法所能做到的分析与计算,而且做得更多、更好。 (2)数值计算原理与方法能够给出复杂数学模型的解。因而能够从机理上预测工程性质,而不是统计和经验性的描述,这是一大优点;而简化或经验分析方法有时只能描述其表面或形式上(统计)的关系,缺乏物理机制的描述和探讨。 (3)该方法既能处理简单问题,也能处理复杂问题。 数值计算原理与方法难以被其他人接受的原因在于: (1)使用复杂,难以被很好的掌握。 (2)数值计算原理与方法本身的不确定性(指与精确的解析方法相比所产生的不确定性,特别是在岩土动力非线性问题中这种不确定性会很大)导致预测结果与工程实际不符。 (3)数值计算原理与方法所使用的物理模型或本构模型有局限性,难以反映实际情况,导致预测结果与工程实际不符。 (4)采用复杂模型要求较多的参数,而这些参数难以用简单试验获得。 (5)既然数值计算原理与方法和传统的分析方法都具有很大的不确定性,还不如采用传统的分析方法,因为传统的方法简单、实用。 (6)精确的数值分析结果会误导使用者迷信这些结果的精确性,而没有认识到其后面隐

中国科学院流固耦合系统力学重点实验室

中国科学院流固耦合系统力学 重点实验室 Key Laboratory for Mechanics in Fluid Solid Coupling Systems Institute of Mechanics, Chinese Academy of Sciences 季报 2019年第1期(总第17期) 目录 中科院流固耦合系统力学重点实验室现场评估工作顺利完成 (2) 中科院流固耦合系统力学重点实验室召开2019年室务会 (3) 中国航空学会空气动力学分会飞行载荷专业工作会在扬州召开 (6) 圆柱阵列波浪力幅值的波动现象和预报公式 (8) 轻质金属点阵圆柱壳结构制备与力学性能研究进展 (9) 力学所提出一种大幅提升3D打印点阵结构力学性能的新方法 (11) 雾化稠油掺稀降粘技术研究进展 (12) 南海天然气水合物试采安全评价研究进展 (14) 油气水多相流量计研究进展 (15) 空化致板间液滴界面稳定性研究获得多个奖项 (16) 空泡与柔性膜的流固耦合研究获得2019度中国力学大会优秀墙报奖. 18

中科院流固耦合系统力学重点实验室现场评估工作顺利完成 7月15日,中科院前沿科学与教育局、中科院重点实验室现场评估专家组一行14人莅临中科院力学所,对依托力学所建设的流固耦合系统力学重点实验室进行现场评估。专家组组长顾逸东院士主持了评估会议并宣布了现场评估的议程安排。力学所所长秦伟,党委书记、副所长刘桂菊,副所长魏宇杰,副所长尹明及流固耦合系统力学重点实验室学术委员会主任、实验室主任参加会议。 实验室主任黄晨光做实验室主任工作报告,围绕发展定位与研究方向、科研任务与代表性成果、队伍建设与人才培养、开放交流与运行管理等方面,向专家组汇报了评估期内的发展成果和工作成效。杨国伟研究员、王展研究员分别做“高速列车气动设计与流固耦合动力学特性研究”和“极端海洋环境及其与工程结构的流固耦合理论”代表性成果报告。专家组肯定了实验室取得的成绩以及工作亮点,并就汇报和自评估报告中的存疑事项进行了交流。 现场评估专家组还查看了高速列车动模型试验平台、海洋流固土耦合实验室、多相流体力学实验室、冲击与耦合效应实验室的科研仪器建设、大型科研仪器设备使用共享等情况,同时,参观了实验室的展板窗口。在此基础上,专家组召开会议,根据现场考核情况对实验室进行打分,并初步形成了评估意见。 经过努力,实验室顺利完成了此次中科院重点实验室现场评估工作,并在评估中充分展现了自身的优势和特色,最终取得良好的评估成绩。 在国家科技创新基地优化整合的背景下,实验室将积极适应新形势和新要求,进一步加强实验室建设和运行管理工作,全面提升科研平台建设水平和运行效率,为加快科技创新提供良好的条件支撑。 (流固耦合系统力学重点实验室供稿)

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术 我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H )。不可 2 燃的无机成分经等离子体高温处理后成为无害的渣体。 采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的; (3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本; (4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%; (5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统; (6)整套设备紧凑,占地小,经济效益好。

岩土工程数值分析学习笔记(DOC)

岩土工程数值分析读书笔记 摘要:阅读笔记分为两部分:理论学习和plaxis模拟相关问题。 理论部分 0岩土工程数值分析简介 岩土工程问题解析分析是以弹塑性力学理论和结构力学作为理论依据,适用于解决连续介质、各向同性材料、未知量少、边界条件简单的工程问题,存在很大的局限性。 岩土工程问题数值分析是借助于计算机的计算能力,适用于解决材料复杂、边界条件复杂、任意荷载、任意几何形状,适用范围广。 岩土工程数值分析发展过程: 20世纪40年代,使用差分法解决了土工中的渗流及固结问题,如土坝渗流及浸润线的求法、土坝及地基的固结等。 20世纪60年代,使用有限元法成解决了土石坝的静力问题的求解。 20世纪70年代,使用有限元法解决了土石坝及高楼(包括地基)的抗震分析。 20世纪80年代,边界元法异军突起,解决了半无限域的边界问题;地基的静力及动力问题都使用边界元法得到了有效地解决。 岩土工程数值分析的方法有两类,一类方法是将土视为连续介质,随后又将其离散化,如有限单元法、有限差分法、边界单元法、有限元线法、无单元法以及各种方法的耦合。另一类计算方法是考虑岩土材料本身的不连续性,如裂缝及不同材料间界面的界面模型和界面单元的使用,离散元法,不连续变形分析,流形元法,颗粒流等数值计算方法。 1数值分析过程中存在的问题及解决措施 问题:(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;在什么情况下是属于计算方法问题或本构模型问题;在什么情况下是参数的确定问题或计算本身的问题等。 (2)各种本构模型固有的局限性。具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响; (3)现有的试验手段和设备不能提供适当、合理和精确的参数。靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;土的参数因土样扰动难以高质量的获取,其精度很差。 (4)数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。这样可能使人们忽略了精确的数学公式也照样会有出错的可能性。只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。 措施:(1)加强对土的本构模型的教学与培训,了解和掌握各种土的本构模型的优点和局限性以及模型参数的离散性。 (2)在使用数值分析方法的同时,不断地积累使用经验,包括他人的经验。

国内研究所排名

国内研究所排名.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了。他只是比对方更珍惜这份感情。0201 理论经济学 37 87802 黑龙江省社会科学院 64 0202 应用经济学 69 87802 黑龙江省社会科学院 62 0302 政治学 35 87902 上海国际问题研究所 67 87802 黑龙江省社会科学院 64 0303 社会学 31 87802 黑龙江省社会科学院 64 0403 体育学 27 84601 国家体育总局体育科学研究所 71 0504 艺术学 39 84201 中国艺术研究院 77 84202 中国电影艺术研究中心 65 0601 历史学 39 87802 黑龙江省社会科学院 64 0701 数学 62 80002 中国科学院数学与系统科学研究院 94 0702 物理学 57 80008 中国科学院物理研究所 95 82801 中国原子能科学研究院 70 0703 化学 51 80032 中国科学院化学研究所 96 0704 天文学 11 80025 中国科学院国家天文台 80 80022 中国科学院上海天文台 78 0705 地理学 26 80076 中国科学院寒区旱区环境与工程研究所 86 0706 大气科学 8 80058 中国科学院大气物理研究所 84 85101 中国气象科学研究院 71 0707 海洋科学 12 85301 国家海洋局第一海洋研究所 74 85303 国家海洋局第三海洋研究所 68 0710 生物学 64 80100 中国科学院上海生命科学研究院 81 80103 中国科学院动物研究所 77 0712 科学技术史 10 80029 中国科学院自然科学史研究所 77 0801 力学 42 80007 中国科学院力学研究所 88 0802 机械工程 73 80139 中国科学院长春光学精密机械与物理研究所 70 83303 煤炭科学研究总院(上海分院) 64 83801 铁道部科学研究院 63 0803 光学工程 28 80139 中国科学院长春光学精密机械与物理研究所 85 80142 中国科学院西安光学精密机械研究所 85 0804 仪器科学与技术 27 82932 中国航空研究院(304 研究所) 68 0805 材料科学与工程 72 80144 中国科学院金属研究所 92 82913 中国航空研究院(621 研究所) 75 83801 铁道部科学研究院 64 0808 电气工程 26 80148 中国科学院电工研究所 78 83801 铁道部科学研究院 64 0810 信息与通信工程 42 83000 中国电子科技集团公司电子科学研究院 78 0812 计算机科学与技术 71 83801 铁道部科学研究院 63 0815 水利工程 20 82306 南京水利科学研究院 72 0816 测绘科学与技术 11 86001 中国测绘科学研究院 72 0817 化学工程与技术 41 83310 煤炭科学研究总院(北京煤化所) 64 0818 地质资源与地质工程 20 83306 煤炭科学研究总院(西安分院) 67 0819 矿业工程 15 83311 煤炭科学研究总院(北京开采所) 71 83304 煤炭科学研究总院(抚顺分院) 67

关于岩土工程的数值计算方法的综述

题目:关于岩土工程的数值计算方法的综述学院:资源与土木工程学院 专业:岩土工程 学号: 姓名:

关于岩土工程的数值计算方法的综述 我通过学习和查阅相关资料文献了解到,近年来,数值计算模拟分析在岩土工程中越来越受欢迎,随着城市的建设,地下工程所处的环境越来越复杂,影响的因素也是越来越多,所以依靠传统的解析计算难以实现,计算机的数值模拟恰恰解决的了岩土的计算的问题,它可以模拟各种复杂情况下岩土问题。就岩土工程而言,由于岩土介质涉及本构关系、力学参数、自身构造以及边界条件等的复杂多变性,在未采用计算机数值方法以前,对于复杂、重要的岩土工程,如果用传统的弹性力学或弹塑性力学的解析法难以求解时,只好采用物理模拟或其他方法从宏观上把握工程的受力和变形特征。随着计算机数值分析方法的出现和发展,情况发生了巨大的变化。计算机数值方法已经能够较好的模拟非均匀质体、各向异性介质面临的复杂边界条件问题,也能处理岩土工程中不连续性界面、渗流问题、岩土损伤断裂问题以及复杂的岩土工程结构分析问题,对于涉及时间因素的动力问题、蠕变问题,特别是耦合问题,数值模拟计算方法极大的加强了解决岩土工程的能力。 数值计算方法其主要有有限单元法、有限差分法、边界元法、离散元法和流形元法等。 有限单元法:有限单元法发展非常迅速,至今已经成为求解复杂工程问题的有力工具,并在岩土工程领域广泛的采用,主要的分析软件ANSYS。 有限单元法的最基本的元素是单元和节点,基本计算步骤的第一步为离散化,问题域的连续体被离散为单元与节点的组合,连续体内部分的应力及位移通过节点传递,每个单元可以具有不同的物理特征,这样,便可以得到在物理意义上与原来的连续体相近似的模型。第二步为单元分析,一般以位移法为基本方法,建立单元的刚度矩阵。第三步由单元的刚度矩阵集合成总体刚度矩阵,并由此建立系统的整体方程组。第四步进入计算模型的边界条件,求解方程组,求得节点位移。第五步求出各单元的应变、应力及主应力。 有限差分法:有限差分法在岩土工程中是应用非常广泛的方法,在数值计算模拟上有很大的贡献,主要的应用软件为FLAC3D。 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方

中科院各大研究所

中国科学院数学与系统科学研究院 *中国科学院数学研究所 *中国科学院应用数学研究所 *中国科学院系统科学研究所 *中国科学院计算数学与科学工程计算研究所 中国科学院物理研究所 中国科学院理论物理研究所 中国科学院高能物理研究所 中国科学院力学研究所 中国科学院声学研究所 中国科学院理化技术研究所 中国科学院化学研究所 中国科学院生态环境研究中心 中国科学院过程工程研究所 中国科学院地理科学与资源研究所 中国科学院国家天文台 *中国科学院云南天文台 *中国科学院乌鲁木齐天文工作站 *中国科学院长春人造卫星观测站 *中国科学院南京天文光学技术研究所 中国科学院遥感应用研究所 中国科学院地质与地球物理研究所 中国科学院古脊椎动物与古人类研究所 中国科学院大气物理研究所 中国科学院植物研究所 中国科学院动物研究所 中国科学院心理研究所 中国科学院微生物研究所 中国科学院生物物理研究所 中国科学院遗传与发育生物学研究所 *中国科学院遗传与发育生物学研究所农业资源研究中心(原中国科学院石家庄农业资源研究所) 中国科学院计算技术研究所 中国科学院软件研究所 中国科学院半导体研究所 中国科学院微电子研究所 中国科学院电子学研究所 中国科学院自动化研究所 中国科学院电工研究所 中国科学院工程热物理研究所 中国科学院空间科学与应用研究中心 中国科学院自然科学史研究所 中国科学院科技政策与管理科学研究所

中国科学院光电研究院 北京基因组研究所 中国科学院青藏高原研究所 国家纳米科学中心 院直属事业单位(京外) 中国科学院山西煤炭化学研究所 中国科学院沈阳分院 中国科学院大连化学物理研究所 中国科学院金属研究所 中国科学院沈阳应用生态研究所 中国科学院沈阳自动化研究所 中国科学院海洋研究所 青岛生物能源与过程研究所(筹) 烟台海岸带可持续发展研究所(筹) 中国科学院长春分院 中国科学院长春光学精密机械与物理研究所 中国科学院长春应用化学研究所 中国科学院东北地理与农业生态研究所 *中国科学院东北地理与农业生态研究所农业技术中心(原中国科学院黑龙江农业现代化研究所) 中国科学院上海分院 中国科学院上海微系统与信息技术研究所 中国科学院上海技术物理研究所 中国科学院上海光学精密机械研究所 中国科学院上海硅酸盐研究所 中国科学院上海有机化学研究所 中国科学院上海应用物理研究所(原子核研究所) 中国科学院上海天文台 中国科学院上海生命科学院 *生物化学与细胞生物学研究所 *神经科学研究所 *药物研究所 *植物生理生态研究所 *国家基因研究中心 *健康科学研究中心 *中国科学院上海生命科学信息中心 *营养科学研究所 *中国科学院上海生物工程研究中心 中国科学院上海巴斯德研究所(筹) 中国科学院福建物质结构研究所 中国科学院城市环境研究所 中国科学院宁波材料技术与工程研究所(筹) 中国科学院南京分院

中科院力学所——便携式大气压空气冷等离子体发生器

中科院力学所——便携式大气压空气冷等离子体发生器 中国科学院力学研究所应用等离子体力学课题组隶属于高温气体动力学国家重点实验室。课题组已有近五十年历史。多年来积累了直流等离子体射流产生技术、高频热等离子体射流、大气压非平衡等离子体、交流等离子体射流产生技术,以及多弧离子镀、中频对靶磁控溅射、射频感应等离子体镀膜等技术。在等离子体状态控制和参数诊断方面有长期的工作经验和知识积累。在等离子体材料工艺应用方面开展了大量的低气压/大气压等离子体喷涂、金属表面改性、熔敷、熔凝、镀膜等研究。近年来课题组的主要研究方向集中在等离子体流动稳定性、先进空间电推进、空天高焓流动地面模拟、大气压空气冷等离子体发生器设计等领域。 便携式等离子体发生器 技术介绍及特点 等离子体是物质除固态、液态和气态之外的第四态,按照温度的不同,可以分为高温等离子体和低温等离子体,低温等离子体又分为热等离子体和冷等离子体;按照粒子温度分布的不同可以分为热平衡

等离子体和非热平衡等离子体。大气压冷等离子体以其温度低、无需复杂昂贵真空系统以及活性物质丰富等特征,近年来广泛应用于皮肤治疗、口腔医学、食品工程、材料改性、纳米合成和环境工程等领域,其主要活性物质包括活性氧和活性氮基团、激发态和亚稳态粒子、电场、带电粒子、紫外线及热量等。近些年来,人们根据应用需求的不同,广泛设计了丰富多样的大气压冷等离子体射流发生器。这些射流发生器主要以昂贵的稀有气体作为激发气源,同时等离子体工作离不开体积庞大的气源和电源设备。如何借助自然界条件,充分发挥空气优势,实现大气压空气冷等离子体射流的应用值得我们探讨。我们设计了一款便携式空气冷等离子体发生器,摆脱传统大体积的电源和气源设备,既可以在空气种激发,也可以在水下激发。该便携式空气等离子体射流发生器设计使得大气压冷等离子体从实验室迈向市场走近人类生活成为可能。 应用领域 杀菌消毒:伤口愈合、口腔治疗、医用工具消毒、家居卫生、水果保鲜;

中国科学院力学研究所质量管理体系程序文件.

中国科学院力学研究所质量管理体系程序文件 监视和测量装置控制程序 IMECH-CX-14 版本:00 修改次数:0 编制:2005年6月1日 审核:2006年4月1日 批准:2006年4月10日

2006年4月10日发布2006年4月17日实施

1目的 对用于证实产品和过程符合规定要求的监视和测量装置进行控制,确保监视和测量结果的有效性。 2范围 本程序适用于本所对产品和过程进行监视和测量用的装置、软件等质量控制。 3定义 3.1 监视和测量装置 指能用以直接或间接为实现测量过程所必需的测量仪器、软件、标准物质或辅助设备。 3.2 专用测试装置 我所用于测量工程系统的技术性能指标、评定其质量性能、对被测量的对象进行定量确定或定性区别而专门研制或购置的非通用测试装置。 3.3 检定 为评定计量器具的测量性能、确定其是否合格所进行的全部工作。 3.4 校准 在规定的条件下,为确定测量装置测量系统所指示的量值,或实物量具或标准物质所代表的量值,与对应的由标准所复现的量值之间关系的一组操作。 4职责

4.1 科技处统一管理全所各种监视和测量装置,保证在用监视和测量装置的准确度满足本所产品的规定要求,负责组织并按规定的检定周期进行检定和校准。 4.2 课题组负责送检。 5程序 5.1监视、测量仪器的采购和验收。 5.1.2 课题组根据项目研究过程、产品生产中确定的要求,选择有质量保证能力的生产厂家,采购有CMC标志的计量器具。 5.1.3 新购置的监视、测量仪器执行《力学研究所仪器设备采购管理办法》和《力学研究所小型仪器设备和器材管理办法》。经检定(校准)合格后方可办理登记、建帐、编号、确定检定(校准)周期等手续;不合格的监视、测量仪器,课题组及时返修或退货索赔。 5.2监视、测量装置的检定与管理 5.2.1 监视、测量装置的管理 a) 科技处负责全所监视和测量装置的管理,建立总台账并组织制定周期检定计划; b) 课题组负责测量装置的送检、使用和保管,并建立测量装置的分台账。 5.2.2 监视、测量装置的分类 监视和测量装置分为强制管理(A类)、非强制管理(B类)、一般管理(C类)和封存管理(D类)。 A类:强制检定的工作计量器具,受检率应达100%。

中科院力学所科技成果——利科岩土工程分析软件

中科院力学所科技成果——利科岩土工程分析软件技术介绍及特点 利科(LinkFEA)岩土工程分析软件是针对水利水电工程的渗流、堤坝的应力变形与结构安全性和边坡的稳定性计算分析而自主开发的有限元软件系统。包括渗流计算模块LinkFEA-Seepage、渗流与应力耦合计算模块LinkFEA-Stress和基于有限元应力计算结果的边坡稳定分析模块LinkFEA-Slope三部分。该软件用Fortran语言开发,经历了近20年的水利水电工程分析应用与软件改进扩展,具有计算收敛性好、计算结果可靠等优点。能进行复杂工况下的地下水三维渗流计算、堤坝三维渗流与应力变形耦合计算、堤坝与边坡二维稳定计算。 应用领域 大渡河瀑布沟水电站

澜沧江如美水电站 主要应用于水利水电工程的渗流分析、堆石坝的应力变形与结构安全性分析和边坡稳定分析。近20年来,已经在大渡河瀑布沟、大渡河长河坝、大渡河双江口、澜沧江如美4个里程碑级水电站工程和雅鲁藏布江加查、澜沧江黄登、大渡河硬梁包、黑水河毛尔盖、拉萨河扎雪、象泉河阿青、三岔河引子渡等10多个水电站工程设计的关键问题研究中应用。现正在用于澜沧江如美、金沙江拉哇和雅鲁藏布江米林等超大水电站的设计研究中。该软件也曾应用于上海洋山港码头的研究和部分工程的地下水环境评价分析。 技术成熟度及应用案例 LinkFEA软件的核心计算功能经过若干考题考核,在水利水电行业有近20年的应用,在水电站渗流控制、堆石坝结构设计和边坡稳定评价与边坡工程设计中,其计算分析成果,已经作为工程设计的依据,得到水电行业设计与审查部门的认可。依据工程分析的需要,软件的功能还在不断得到扩充。但软件本身在友好交互界面、建模和后

岩土工程数值分析读书报告

岩土工程数值分析读书报告 一.岩土与数值分析 在很多岩土工程的实际问题中,例如档土墙、板桩、基础梁和板等工程,由于岩土的非均质、非线性的性状以及几何形状的任意性、不连续性等因素,在多数情况下不能获得解析解。最近二十多年来,随着电子计算机的迅速兴起,在岩土工程中,数值分析受到了极大的重视,各种数值方法在岩土工程中都得到了广泛地应用,而岩土工程中的各种复杂问题的解决又深化和丰富了数值分析的内容。 目前.在岩土工程的数值分析中,用的最为普遍的是有限元法和差分法,其他方法如边界元法正在兴起。变分法与加权余量法既可以独立地作为数值方法运用于土工实际问题的求解,又可作为推导前几种数值方法的手段。当数值分析中的差分法首先盛行于工程科学时,土工中的渗流及固结问题在四十年代后期也开始采用差分法成功地解决了某些实际问题,如土坝渗流及浸润线的求法、土坝及地基的固结等。五十年代及六十年代初,弹性地基上的梁与板以及板桩也用差分法来求解。六十年代,土石坝的静力问题用有限元法来求解。由于有限元解法的灵活性,使差分法在土工中的应用暂时趋丁停滞。进入七十年代之后,土石坝及高楼(包括地基)成功地使用有限无法解决了抗震分析。七十午代后期及八十年代,边界元法异军突起。这方法特别适宜于半无限域课题,这些是土力学及地基工程学科经常遇到的边界情况。近十年来,地基的静力及动力问题,例如桩基及强夯(即

动力固结)等,都使用边界元法得到了有效地解决。 岩土工程数值分析的方法有两类,一类方法是将土视为连续介质,随后又将其离散化,如有限单元法、有限差分法、边界单元法、有限元线法、无单元法以及各种方法的耦合。另一类计算方法是考虑岩土材料本身的不连续性,如裂缝及不同材料间界面的界面模型和界面单元的使用,离散元法(DEM),不连续变形分析(DDA),流形元法 (MEM),颗粒流(PFC)等数值计算方法迅速发展。 二.土的本构关系 材料的本构关系(constitutive relationship)是反映材料的力学性状的数学表达式,表示形式一般为应力-应变-时间的关系,也称为本构定律(constitutive law)、本构方程(constitutive equation),还可称为本构关系数学模型(mathematical model)简称为本构模型。 (一)土的弹性模型 在线弹性模型中,假定材料符合弹性力学规律,应力-应变关系式为: { } = [D]{ } 这里刚度矩阵称为弹性矩阵,由广义虎克定律 L,"~,1■- 1 J —V 式中包含了弹性模量和泊松比柑两个常数。。它们可以用另外两 个弹性常数,剪切模量G和体积模量K来代替。它们之间的关系为

中科院所有研究所

北京市 数学与系统科学研究院 力学研究所 物理研究所 高能物理研究所 声学研究所 理论物理研究所 国家天文台 渗流流体力学研究所 自然科学史研究所 理化技术研究所 化学研究所 过程工程研究所 生态环境研究中心 古脊椎动物与古人类研究所大气物理研究所 地理科学与资源研究所 遥感应用研究所 空间科学与应用研究中心 对地观测与数字地球科学中心地质与地球物理研究所 数学科学学院 物理学院 化学与化工学院 地球科学学院 资源与环境学院 生命科学学院 计算机与控制学院 管理学院 人文学院

外语系 工程管理与信息技术学院 材料科学与光电技术学院 电子电气与通信工程学院 华大教育中心 动物研究所 植物研究所 生物物理研究所 微生物研究所 遗传与发育生物学研究所 心理研究所 计算技术研究所 工程热物理研究所 半导体研究所 电子学研究所 自动化研究所 电工研究所 软件研究所 国家科学图书馆 微电子研究所 计算机网络信息中心 科技政策与管理科学研究所 北京基因组研究所 青藏高原研究所 光电研究院 国家纳米科学中心 信息工程研究所 空间应用工程与技术中心(筹)天津市 天津工业生物技术研究所

河北省 渗流流体力学研究所 遗传与发育生物学研究所农业资源研究中心山西省 山西煤炭化学研究所 辽宁省 大连化学物理研究所 沈阳应用生态研究所 沈阳计算技术研究所 金属研究所 沈阳自动化研究所 吉林省 长春人造卫星观测站 长春应用化学研究所 东北地理与农业生态研究所 长春光学精密机械与物理研究所 上海市 上海应用物理研究所 上海天文台 声学研究所东海研究站 上海有机化学研究所 上海硅酸盐研究所 上海生命科学研究院 上海药物研究所 上海微系统与信息技术研究所 上海光学精密机械研究所 上海技术物理研究所 上海巴斯德研究所

关于岩土工程数值计算的理解

关于岩土工程数值计算的理解 这学期,数值分析作为我们研一的必修课,我们进行了13周的学习。它作为数学的一个分支,是一门研究用计算机求解各种数学问题及其理论与软件实现的学科。数值分析方法首先在工程力学得以利用,然后衍生到岩土工程实践。在岩土力学初期,由于计算机还未得到快速发展,再加上力学理论的限制,学者们也只能根据实际情况建立很简单的力学模型,然后通过力学解析近似分析岩体或土体中的应力状态与变形方式。通常情况下,这种方式离精确值相差甚远。当到后面的计算机问世,这种情况得以改变,使得建立在弹性、塑性或粘弹性力学基础上的复杂计算得到了求解方法。另外,可以通过现有技术建立与实际情况相符合的力学模型,完全精确了岩土工程的分析。在土木工程中的开挖、回填、注浆、爆破、支护工程等,都有一整套成功的模拟方法。在现有条件下,研究人员用计算机求解一个由多种工况组合、具有上万个自由度的复杂的三维问题。伴随着岩土工程的定量化,数值方法的分析计算岩土工程分析中很重要的方法。 在岩土工程中有千差万别的数值计算方法。如何评价这些方法的优劣。一般来说,必须要有一个标准,第一要工程建模结构简单,易于计算机的实现;第二要有可靠的理论分析,在理论上要保证方法的收敛性和数值稳定性;第三使用这种方法要计算效率高,时间效率高是指计算速度快,节省时间;空间效率高是指节省存贮量;第四还要通过数值试验来证明是行之有效的。 连续变形数值分析方法起步较早,现今在工程中运用较多的主要有:有限元法、有限差分法、边界元法、无限元法、拉格朗日元法等,其中以有限元法的应用最为广泛。这类方法主要用于分析岩土介质的连续小变形和小位移特性。 主要介绍下比较常用的分析方法。有限元法:有限元法将目标介质离散为有限个单元,利用这种单元的集合体近似地代替无限单元的连续体,然后根据变分原理和弹性力学方程建立单元节点位移和节点受力之间的关系,根据系统的边界条件以及节点的平衡条件列出线性方程组,从而求解单元应力。有限元法是近似解法,单元剖分的疏密程度与质量、效益密切相关,在理论上如何把握好这个度且保证收敛是有待研究的课题。 有限差分法:有限差分法是有限元法求解复杂边界条件和受载情况的工程的一种补充,其适用范围和特点与有限元法相似,在处理复杂受力情况下的边界问题时,它比有限元法有优势。但其在对网格的划分上比有限元法有更为特殊的要求,目前已经很少单独应用,一般只在某些较复杂的工程中与有限元法一同出现。 随着计算机技术和计算方法的发展,数值模拟方法成为研究岩土工程未知领域的强有力的工具。在土力学的数值分析方法也发展很快。特别是有限元的发展,促进了计算土力学以及土的本构模型的研究和发展。但在工程实际中使用土力学的数值分析方法却存在一些问题:例如有些工程师因缺乏对有限元和土的性质的深入了解,而有限元的迅速发展给他们造成一种假象,认为它是万能的,可以处理几乎所有的工程问题;同时他们又被有限元计算结果的精度所迷惑,不了解这些精确结果后面所隐藏的不确定性,也不了解这些数值方法所采用本构模型的局限性以及相应参数的不确定性;因这些不确定性导致数值分析方法的预测结果与实际情况和实际经验相差很。另外,不成功的实例很多,由此导致计算土力学的研究很多,但真正用于实际工程的却较少。 岩土工程的数值分析方法能够做任何传统的分析方法所能做到的分析与计算,而且做得更多、更好。数值分析方法不但能处理简单问题,也能处理复杂问题。针对复杂的模型,该方法能给出解值,因而能够从机理上预测土的工程性质,而不是统计和经验性的描述。就此改变了经验分析方法只能从表面或者是形式的角度来着手问题的方法,这是一大突破。当然事物都

中科院力学所科技成果——发动机缸体内壁激光刻蚀技术

中科院力学所科技成果——发动机缸体内壁激 光刻蚀技术 技术介绍及特点 缸体-活塞环是发动机实现能量转换的最重要的一对摩擦副。发动机正常工作时,本身的摩擦损失在内燃机燃料消耗中约占10%的比例,而缸体-活塞摩擦损耗又占其中60%。因此,减小缸体-活塞环之间的摩擦损耗,可有效节省燃油。另一方面,而缸体-活塞环之间密封缺陷,易引起高温高压燃气漏入曲轴箱,机油窜入燃烧室,增加污染排放。因此减小缸体-活塞环的摩擦损耗,改善密封条件,是发动机节能减排的关键。 我们技术的思路是:在缸体表面加工可控微细形貌,这些离散分布微坑可存储润滑油而不易流失,在活塞环运动时,由于挤压作用,微坑中的润滑油会在坑周围形成油膜,不同微坑油膜的相互作用,在缸体-活塞环间形成均匀完整的油膜,使这对摩擦副处于流体润滑状况,既有效减小了缸体-活塞环间的摩擦系数,又可改善密封。当活塞环运动过后,由于负压影响,润滑油又可收敛于坑中,这些储油的离散分布微坑起到了液体微轴承的作用。 这种离散分布微坑表面结构与传统的互相连通式机械珩磨纹相比,可使摩擦副摩擦系数大大降低,同时提高了发动机的动力性能和燃油经济性能。 应用领域 该技术不仅可用于汽车厂、内燃机厂、缸套厂的规模生产,还能

对在役汽车通过各汽车维修站进行改造,提供一种对现役汽车节能减排改造的有效手段,可以预计,该技术很有应用推广前景。 本技术同时对其他机械摩擦组件的改善润滑和密封,减小摩擦、降低磨损和提高密封性能具有重要的意义,可以为激光微细形貌刻蚀机械摩擦副润滑和密封的控制提供技术手段。 技术成熟度及应用实例 该技术在发动机缸体中的应用,对发动机的进一步节能提供了一种有效技术手段。在缸体(套)内表面进行激光微细造形,减小摩擦副间的摩擦,改善密封。在已进行的发动机台架实验结果看,激光毛化珩磨缸体与常规机械珩磨缸体相比,发动机扭矩提高4%,功率提高了3-4%,机油消耗降低了20%以上,柴油机尾气排放中的颗粒物降低了30-50%,初步显示了该技术节能减排综合效果。该技术不用改变现有发动机的已有结构,同时加工速度快(<3分钟/缸孔),处理成本低。 应用实例 1、北汽集团B235发动机台架试验,检测地点:天津中汽研工程院K8试验间。 通过万有特性云图,对发动机燃油耗区域面积进行统计,试验结果显示对比于原机,采用激光刻蚀处理后发动机最低油耗明显降低,且低油耗区域面积大于原供发动机。

PIV用于微尺度滑移长度测量的问题-中科院力学所

PIV 用于微尺度滑移长度测量的问题 李战华、郑旭 中国科学院力学研究所LNM 实验室,100190,北京 摘要:本文简单介绍了滑移边界条件的基本概念、测量壁面滑移的实验方法,着重分析了焦平面厚度等几个重要因素在MicroPIV 壁面滑移测量中的影响。根据实验发现的近壁粒子浓度非线性分布现象,解释了测量速度偏大的可能原因。 1 微尺度流动滑移问题 微尺度流动中,由于比表面积增大,表面作用成为影响流动的主要因素,边界条件提法的研究受到关注。边界条件分为滑移与无滑移两种提法。在宏观尺度流体力学中常常采用壁面无滑移边界条件(图1a),即认为接触固体表面的液体的速度与固体本身的速度一致。1823年,Navier 率先提出了线性滑移边界条件(图1c)[1][2],即: |slip wall u u b b z γ?==? (1) 这里,u slip 为滑移速度,b 为滑移长度(液体速度降至零的位置到界面的距离)。当b 为常数时,u slip 与壁面剪切率γ 成线性比例关系。由于近壁面区的物理图象不清楚,Girard [3]在19世纪初提出过滞止层边界条件(图1b),即认为液固界面处存在一固定的液体薄层。20世纪末,微制造技术推进了芯片实验室的发展,促进微尺度流动研究。在宏观流动中,边界无滑移假设给出足够精确的近似。但在微/纳米流动中,流动特征尺度L 有可能接近滑移长度b 时,滑移问题显得十分重要。为了研究滑移机理,滑移长度的大小是重要的物理参数之一。 图1 三种不同的边界条件:(a)无滑移BC 、(b)滞止层BC 和 (c)Navier 线性滑移BC [2] 2 壁面滑移的测量 常用测量滑移的实验手段主要包括:(1) 压力-流量(P-Q)关系测量[4],(2) 表面力测量[surface force apparatus (SFA), atom force microscope (AFM)等] [5],[6],(3) 速度剖面测量[MicroPIV/PTV ,全内反射隐失波(evevanescent wave, total internal reflection velocimetry, TIRV)等] [7],[8],[9]等。 (1) P-Q 关系测量。这是一种间接测量u slip 的方法。 物理依据是滑移使得流量增大。

计算流体力学-中国科学院力学所研究生教育网

计算流体力学 Computational Fluid Dynamics 类型: 属性:专业基础课课时/学分:60/3 一、预修课程 流体力学;空气动力学;偏微分方程数值解法 二、内容简介和教学要求 本课程包含基础及应用两个部分。基础部分讲述流体力学方程组及其物理含义,双曲型方程组的数理性质,有限差分法及有限体积法的理论基础及计算方法等;应用部分介绍国内外当前流行的高速流动和不可压缩流动的主要解法,网格生成技术,计算流体力学当前的主要问题、最新计算方法、及发展动向等。此外还介绍了并行计算的基础知识及湍流计算方法等。 本课程的特点是强调基础、突出应用,希望学生通过学习这一课程,对计算流体力学有一个系统深入的理解,具有一定的理论基础和较强的解决实际问题的能力。同时,在这一课程中也注意把课程学习和研究所的工作结合起来,使学生到研究所后能立即开展和计算流体力学有关的研究工作。本课程还将讲授并行程序设计的基本内容,使得学生们能够了解并行程序设计的基本思想及编程方法,并能编制基本的并行计算程序。 为培养学生独立思考和独立工作的能力,本课程采用启发的课程讲习方法,鼓励学生在掌握基础知识的基础上自己动手编制程序,以便加深对计算流体力学本质的理解和增强对实际问题的感性认识。力求学生们学完该课程后,能够独立编写计算流体力学程序。 三、简要目录 第一章引论 1.1 计算流体力学及其特征 1.2 计算流体力学的发展 第二章流体力学方程组及模型方程 2.1 流体力学基本方程 2.2 模型方程及其数学性质 2.3 双曲型方程组的初边值问题 2.4 Riemann 间断解 第三章有限差分方法 3.1 差分方法基本概念 3.2 差分方程的有效性及稳定性分析 3.3 数值解的精度及分辨率分析 3.4 数值解中的耗散效应、色散效应及群速度控制 第四章有限体积法 4.1有限体积法的基本思 4.2 表面积近似及体积积分近似 4.3 插值算法 4. 4 边界条件处理

相关文档
最新文档