含绝对值函数的图象 0

含绝对值函数的图象 0
含绝对值函数的图象 0

含绝对值函数的图象

【基础内容与方法】

1.绝对值在自变量上,则去掉函数y 轴左边的图像,再把y 轴右边的图像沿y 轴翻折得到新的图像;

2.绝对值在函数解析式上,把x 轴下方的图像沿x 轴翻折得到新的图像;

3.同时,函数图像也遵循平移的原则. 类型一:含绝对值的一次函数

1.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题:

(1)求函数+2y k x b =+的表达式;

(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;

(3)已知函数1

+12y x =的图象如图所示,结合你所画出+2y k x b =+的图象,

直接写出1

+2+12

k x b x +>的解集.

类型二:含绝对值的二次函数

(一)绝对值在自变量上

2.某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.

(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:

其中,m=.

(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函

数图象的一部分,请画出该函数图象的另一部分.

(3)观察函数图象,写出两条函数的性质.

(4)进一步探究函数图象发现:

①方程﹣x2+2|x|+1=0有个实数根;

②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是.

3.写出函数1

x

x

f在什么范围内,y随x的增大而增大,y随x的

=x

2

)

(2+

-

增大而减小?

(二)绝对值在解析式上 4.探究函数

22y x x

=-的图象与性质.

(1)下表是y 与x 的几组对应值.

x

其中m 的值为_______________;

(2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分; (3)结合函数的图象,写出该函数的一条性质:_____________________________;

(4)若关于x 的方程220x x t --=有2个实数根,则t 的取值范围是___________________.

幂函数题型归纳

幂函数知识点归纳及题型总结 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如() -1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 三、幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数 幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递 增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两

点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 一、幂函数解析式的求法 1. 利用定义 (1)下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21(1)y x -=+ ④0 y x = ⑤1y = (2(3 2 3 1. (1)、函数3 x y =的图像是( ) (2)右图为幂函数y x α =在第一象限的图像,则,,,a b c d 的大小关系是 ( )

含绝对值的函数的图像

在下面分别从三个方面讲如何画含绝对值的函数的图像,以及在具体的题目中的应用。希望对雨我们学习这部分的知识有所帮助。 、三点作图法 三点作图袪是画函数ιy = ? f +? ?^-c(ak≠ 0)的图象的一种i罚捷方法(该函数图形?Ufft G V fl i故称召型图人 步曝是E①先画出站型图顶点,石; —) ②在顶点两侧各找出一点;卩 ③次顶点为端点分别与另两个点画两条射线,就得到函数y ≈k? ax+? I???≠ 0)的图彖* 例1作出下列各函数的圏象. (1) y =| 2x 亠J ll 一1; {2) y = 1- ∣2x ÷ 11 ? 解’⑴ 顶点:,-才两点g 0λ (b O)D其图彖如图1所示. 圏b <2)顶点f-lΛ两点(一1, 0), (0, 0).其图象如图2所示. I 2 j

图2 注 I 当40时图象奔口向上,当衣D时图彖开口向下?函数图象关于直线Λ= --对称口 翻转作图法是画函数y H .rω I的图象的一种简捷方法. 注I ? k>0时图象开口向上,当衣0时图象开口向下.函数图象关于直线Λ = --对称" 制转作图法是画函数丁H∕ω I的图象的一种简捷方法. 二爾转作IS 二詡转作l?

步麋是 * ?5t 作出 P = /(x) 的图彖;②若y - /(Λ)的图家不位于X轴下方, 则函数I y = /(>)的图象就??^ιy =| f{x) \的图象;③若函数4y = h∕(x)的图象育位于H轴下方的,则可把X轴下方的图象绕X轴翻转180φ到盟轴上方,就得到了函数 I y=I I/(Λ)∣的图家? 例t作出下列各函数的图讓. U) 7=U?-?i y=∣√-2^-3∣j ¢3) y=∣?(r+3)∣c 解;⑴先作出^=μ∣-l的图象如图3,把图3中盟轴下右的图家翻上去!得至(]图乳图召就是妾IsJ的函数图象n C2)先作出y = X2- 2x-3的图熟如图5.把图5中梵轴T方的图象翻±? ⑶ 先作出^ = Ig(X+ 3)的图熟如图亿把图7中忙轴下丹的图象翻上去,得 到图3.图&就是婪画的1S数图象? 三、分段破作图法 分段函数作图法是把瘟函数等价转化沟分段函数后再作图,这种右法是画含有绝对值的函数的图象的有效有法. 例1作出下列函数的图家U (I)J = Z a-2μ∣+b ¢2) J=μ + l∣ + μ-l∣j (3) jμ=∣Λ2-2τr-3h 图4

赏析幂函数的图象特征及应用

一、幂函数图像的分布规律 幂函数图像的分布规律可用“一全有、二一偶、三一奇、四全无”来说明。 1.“一全有”:指所有幂函数的图像在第一象限都出现, 分布情况如图1所示,其特点如下:①抓住三条特征 线:直线x=1,y=x ,y=1把幂函数的图像分为三个区 域,这三个区域对应着幂函数y=x α在α<0,0<α<1, α>1时的图像;②第一象限内幂函数y=x α图像的区 域分布情况为:在直线x=1的右边,α越大,图像越高,越趋向于直线x=1;在直线x=1的右边,α越小,其图像越低,越趋向于x 轴。 2.“二一偶”:指当幂函数为偶函数时,其图像关于y 轴对称,即幂函数的图像出现在第一、第二象限。 3.“三一奇”:指当幂函数为奇函数时,其图像关于原点对称,即幂函数的图像出现在第一、第三象限。 4.“四必无”:指由定义,知幂函数的图像不可能出现在第四象限。 二、幂函数图像的应用 1.识别图像 例1.图2中 的曲线是幂函数y=x α在第一象限的图像,已知α取±2,±12四个值,则其相应于曲线C 1,C 2,C 3,C 4的α依次为( ) A.-2,-12,12,2 B.2,12,-12,-2 C.- 12,-2,2,12 D.2,12,-2,-12 解:根据幂函数的图像特点,立即可以断定相应于曲线C 1,C 2,C 3,C 4的α值排序是由大到小,故选B 。 2.用于判断方程的个数 例2.方程x 2=2x 的根的个数为( ) A.1 B.2 C.3 D.

解:令f(x)=x2,g(x)=2x,在同一坐标平面内作出这两个函数的图象,如图三所示,由图可知,交点有三个,所以方程x2=2x的根的个数为3,故选C。

含绝对值函数的最值问题

专题三: 含绝对值函数的最值问题 1. 已知函数2()2||f x x x a =-- (0>a ),若对任意的[0,)x ∈+∞,不等式(1)2()f x f x -≥恒成立,求实数a 的取值范围、 不等式()()12f x f x -≥化为()2 212124x x a x x a ----≥-- 即:()242121x a x a x x ---+≤+-(*)对任意的[)0,x ∈+∞恒成立因为0a >,所以分如下情况讨论: ①当0x a ≤≤时,不等式(*)24120[0,]x x a x a ++-≥?∈对恒成立 ②当1a x a <≤+时,不等式(*)即24160(,1]x x a x a a -++≥?∈+对恒成立 由①知102 a <≤,2()416(,1]h x x x a a a ∴=-+++在上单调递减 2662a a ∴≤--≥-或 11626222 a -<∴-≤≤Q 2、已知函数f (x )=|x -a |,g (x )=x 2+2ax +1(a 为正数),且函数f (x )与g (x )的图象在y 轴上的截距相等.(1)求a 的值;(2)求函数f (x )+g (x )的最值. 【解析】(1)由题意f (0)=g (0),∴|a |=1、又∵a >0,∴a =1、 (2)由题意f (x )+g (x )=|x -1|+x 2+2x +1、 当x ≥1时,f (x )+g (x )=x 2+3x 在[1,+∞)上单调递增, 当x <1时,f (x )+g (x )=x 2+x +2在????? ???-121上单调递增,在(-∞,12-]上单调递减. 因此,函数f (x )+g (x )在(-∞,12-]上单调递减,在????? ???-12+∞上单调递增. 2min ()4120[0,]()(0)120 1 02 g x x x a a g x g a a =++-≥∴==-≥∴<≤Q 在上单调递增只需2min ()(1)420h x h a a a ∴=+=+-≥只需

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

含绝对值函数的综合问题一

含绝对值函数综合问题 一、含绝对值函数的最值 1、含一个绝对值的一次绝对值函数的最值、单调性、对称性 (1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值 “(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x = (2)()||(0)f x kx b k =+≠图像是以(,0)b k -为顶点的“V ”字形图像;在顶点取得最小值: “()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k =- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值: “()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =- 0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值: “()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =- 2、含两个绝对值的一次绝对值函数的最值、单调性、对称性 (1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的 “平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数 在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2 m n x +=。 (2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在 (,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2 m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对 称中心为( ,0)2 m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。 当0a b +>时,两端向上无限延伸,故最小值,最小值为min{(),()}f m f n ; 当0a b +<时,两端向下无限延伸,故最大值,最大值为{(),()}Max f m f n ; 当0a b +=时,两端无限延伸且平行x 轴,故既有最大值又有最小值,最大值为 {(),()}Max f m f n ;最小值为min{(),()}f m f n 。 3、含多个绝对值的一次函数的最值、单调性 函数1212()||||||(,,,)n i n f x x a x a x a a R i n N a a a *=-+-++-∈∈<<< 设 (1)若21()n k k N *=-∈,则()f x 的图像是以(,())k k a f a 为顶点的“V ”字形图像 (a )当且仅当k x a =时,min 1211221[()]|()()|k k k k f x a a a a a a -++-=+++-+++ (b ) 函数()f x 在(,],[,)k k a a -∞↓+∞↑,若{}i a 为等差数列,则图像关于k x a =对称 (2)若2()n k k N *=∈,则()f x 的图像是以点11(,()),(,())k k k k A a f a B a f a ++为折点的“平 底形”图像 (a )当且仅当1[,]k k x a a +∈,min 12122[()]|()()|k k k k f x a a a a a a ++=+++-+++ (b ) 函数()f x 在1(,],[,)k k a a +-∞↓+∞↑,在1[,]k k x a a +∈无单调性。若{}i a 为等差数列, 则图像关于1 2 k k a a x ++= 对称 这一结论从一次绝对值函数图像上了不难看出,当1x a < 及 n x a >时,图像是分别向左、右两边向上无限伸展的两条射线,中间各段在区间1[,](1,2,1)i i a a i n +=- 上均为线段.它们首尾相连形成折线形,在中间点或中间段处最低,此时函数有最小值. 证明:当21()n k k N * =-∈时,1221()||||||k f x x a x a x a -=-+-++- , 1221k a a a -<<< 设由绝对值不等式性质得: 121121211|||||()()|k k k x a x a x a x a a a ----+-≥---=-,当且仅当121[,]k x a a -∈时取“=” 222222222|||||()()|k k k x a x a x a x a a a ----+-≥---=-, 当且仅当222[,]k x a a -∈时取“=”

绝对值函数图像的画法

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 首先要从简单的绝对值函数画起。 2-=x y :是一条以()0,2为拐点的折线。 或者可以理解为将直线2-=x y 在x 轴下面的部分沿x 轴翻折上去 然后再着手于复杂的图像的画法。 22 1121-++=x x y ,先单独画出两个绝对值的图像,再合到一起。(叠加后直线的斜率不同) 其中-2和4由两个绝对值为零算的,3为由x=-2和x=4算得的y 值。 最后,最复杂的二次函数中的绝对值的画法。 122--=x x y ,很显然绝对值是将x 变成正数,由前面的图像可知a x y -=的图像总会关于a x =轴对称,故x y 21-=关于y 轴对称,又122-=x y 也关于y 轴对称,所以图像合并起来就容易多了。

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerzie llen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

幂函数的图像与性质

幂函数的图像与性质

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1 y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数 y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

3、幂函数的性质 y=x y=x 2 y=x 3 12 y x = y=x -1 定义域 R R R [0,+∞) {}|0x x R x ∈≠且 值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增 x ∈[0,+∞)时,增; x ∈(,0]-∞时,减 增 增 x ∈(0,+∞)时,减; x ∈(-∞,0)时,减 定点 (1,1) 例3.比较大小: (1)112 2 1.5,1.7 (2)33( 1.2),( 1.25)--(3)112 5.25,5.26,5.26---(4)30.530.5,3,log 0.5 4.幂函数的性质及其应用 幂函数y =x α有下列性质: (1) 单调性:当α>0时,函数在(0,+∞)上单调递增; 当α<0时,函数在(0,+∞)上单调递减. (2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断. 例4.已知幂函数2 23 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于 原点对称,求m 的值.

含绝对值函数的图象 0

含绝对值函数的图象 【基础内容与方法】 1.绝对值在自变量上,则去掉函数y 轴左边的图像,再把y 轴右边的图像沿y 轴翻折得到新的图像; 2.绝对值在函数解析式上,把x 轴下方的图像沿x 轴翻折得到新的图像; 3.同时,函数图像也遵循平移的原则. 类型一:含绝对值的一次函数 1.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题: (1)求函数+2y k x b =+的表达式; (2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1 +12y x =的图象如图所示,结合你所画出+2y k x b =+的图象, 直接写出1 +2+12 k x b x +>的解集.

类型二:含绝对值的二次函数 (一)绝对值在自变量上 2.某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整. (1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下: 其中,m=. (2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函

数图象的一部分,请画出该函数图象的另一部分. (3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现: ①方程﹣x2+2|x|+1=0有个实数根; ②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是. 3.写出函数1 x x f在什么范围内,y随x的增大而增大,y随x的 =x 2 ) (2+ - 增大而减小?

(二)绝对值在解析式上 4.探究函数 22y x x =-的图象与性质. (1)下表是y 与x 的几组对应值. x 其中m 的值为_______________; (2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分; (3)结合函数的图象,写出该函数的一条性质:_____________________________; (4)若关于x 的方程220x x t --=有2个实数根,则t 的取值范围是___________________.

含参数含绝对值的函数综合题

含参数含绝对值的函数综合题探究 一.解题策略: 1.去绝对值的思考,2012年~2014年的高考流行的是“遇见绝对值就考虑分类讨论去绝对值变为分段函数”;这几年高考反而流行“不去绝对值”即“整体换元后进行画函数图像数形结合”。 2.分类讨论要“慢”; 3.能换元就“换”; 4.有函数就“画”。 二.精题例析 例1 (2017年4月浙江省学考第25题)已知函数) f=3|x?a|+|ax?1|,其中a∈R (x ①当a=1时,写出函数) (x f为偶函数,求实数a的值; (x f的单调区间;②若函数) ③若对任意的实数x∈[0,3],不等式) (x f≥3x|x?a|恒成立,求实数a的取值范围. 点评:2012年~2014年的高考流行的模式延续到2015年~2017的浙江省学考中。

练习1 (2016年10月浙江省学考第25题)设函数2)|1(|1)(a x x f --=的定义域为D ,其中1

例2 (2017年6月浙江省高考第 17题即填空题的最后一题) 已知R ∈a .函数()a a x x x f +-+ =4在区间[]4,1上的最大值是5,则a 的取值 范围是_____. 点评:这几年高考反而流行“不去绝对值”即“整体换元后进行画函数图像数形结合”,往往作为填空题考查学生,切忌小题大做,考查学生的转化与化归的思想意识、整体处理思想及数形结合。 练习1.(2018年4月浙江学考第22题即填空题的压轴题) 若不等式2x 2?(x ?a )|x ?a |?2≥0对于任意x ∈R 恒成立,则实数a 的最小值是________________. 练习 2. 设函数m m x x x f 2294)(2+-+-=在区间[]4,0上的最大值是9,则实数m 的取值范围是______________.

幂函数图象规律

幂函数图象有规律 幂函数()n y x n Q = 的图象看似复杂,其实很有规律。假如我们能抓住这些规律,那么幂函数图象问题就可迎刃而解。那么幂函数图象有哪些规律呢? 1.第一象限内图象类型之规律(如图1):1.n >1时,过(0,0)、(1,1)抛物线型,下凸递增。2.n =1时,过(0,0)、(1,1)的射线。 3.0<n <1时,过(0,0)、(1,1)抛物线型,上凸递增。4.n =O 时,变形为y =1(x ≠0),平行于x 轴的射线。 5.n <0时过(1,1),双曲线型,递减,与两坐标轴的正半轴无限接近。 2.第一象限内图象走向之规律(如图1): x ≥1部分各种幂函数图象,指数大的在指数小的上方;O <x <1部分图象反之,此二部分图象在(1,1)点穿越直线y =x 连成一体。 3.各个象限内图象分布之规律:设p n q = ,,p q 互质,,p Z q N 挝。 1.任何幂函数在第一象限必有图象,第四象限必无图象。 2.n =奇数/偶数时,函数非奇非偶,图象只在第一象限(如图1)。 3.n =偶数/奇数时,函数是偶函数、图象在第一、二象限并关于y 轴对称(如图2)。 4.n =奇数/奇数时,函数是奇函数,图象在第一、三象限并关于原点对称(如图3)。 5. 当n<0时,图像与x 轴,y 轴没有交点。 知识点:幂函数的图象特征: (1)任何幂函数在第一象限必有图象,第四象限必无图象. 先根据函数特征画出第一象限图象; ① 所有的幂函数在(0,+∞)都有定义, 并且图象都过点(1,1); ②0>α时,幂函数的图象通过原点, 并且在区间),0[+∞上是增函数. ③0<α时,幂函数的图象在区间),0(+∞上是减 函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴, 当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. (2)如果幂函数是奇函数,在第 象限内有其中心(坐标原点)对称部分;如果幂函数是偶函数,在第 象限内有其轴(y 轴)对称部分;如果幂函数是非奇非偶函数,则其函数图象只在第一象限内.

【新课标】函数.幂函数课堂教案

§2.3幂函数(教案) 教学目标: 知识与技能 通过具体实例了解幂函数的概念,掌握幂函数的图象和性质,并能进行简 单的应用。 过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,研究幂函数 的图象和性质;培养学生数形结合、分类讨论的思想,以及分析归纳的能力。 情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性,培养学生合作交流的意识。 教学重点: 重点 从五个具体幂函数图象中认识幂函数的一些性质。 难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律。 教学关键:揭示出幂函数y x α =的图象的规律。 教学准备:多媒体课件,几何画板。 教学方式:引导教学法、探索讨论法、多媒体教学法。 学法指导:操作实验、自主探索、合作交流。 教学程序与环节设计: 教学过程与操作设计:

材料二:幂函数的图象变化规律归纳 ∞)都有定义,并且图象都经

板书设计: 幂函数 1、幂函数的定义例2 例4 2、幂函数的图象与性质 教案说明: (1)本节课的教学内容,课本中虽然只有3页,但内容丰富。课本通过几个特殊幂函数的图象类比

归纳,得到图象都通过点(1,1)。 (2)本节是新课标新增加的内容,教材不仅仅学习有关幂函数图象与性质的问题,还包含着教会学 生通过观察和思考,得到有关幂函数的一些知识的问题。 (3)有意识地将新知识的学习和研究方法渗透到教学过程之中,通过教学过程的设计,将这部分内 容适当展开,重新组合,使知识的传授和能力的培养有机地结合到一起。 (4)利用几何画板方便地研究出幂函数的图象,充分展示由幂指数的变化引起幂函数图象的变化的 内部规律。这样学生就容易从所举函数的个性中归纳出共性来,从而在整体上对幂函数的图象 与性质有较深刻的了解。

幂函数的图像性质和应用

幂函数 分数指数幂 正分数指数幂的意义是:m n a =0a >,m 、n N ∈,且1n >) 负分数指数幂的意义是:m n a -= (0a >,m 、n N ∈,且1n >) 1、幂函数的图像与性质 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论: ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a = 时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点.

0n < 幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 规律总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. O x y O x y O x y

幂函数的图像与性质之令狐文艳创作

2.3幂函数 令狐文艳 学习目标 1. 通过具体实例了解幂函数的图象和性质; 2. 体会幂函数的变化规律及蕴含其中的对称性并能进行简单的应用. 学习重点 幂函数的图像与性质 学习难点 幂函数性质的应用 学习过程 问题:分析以下五个函数,它们有什么共同特征? (1)边长为a 的正方形面积2 S a =,S 是a 的函数; (2)面积为S 的正方形边长12 a S =,a 是S 的函数; (3)边长为a 的立方体体积3 V a =,V 是a 的函数; (4)某人ts 内骑车行进了1km ,则他骑车的平均速度1/v t km s -=,这里v 是t 的函数; (5)购买每本1元的练习本w 本,则需支付p w =元,这里p 是w 的函数. 1.幂函数的概念:一般地,形如 y x α =()a R ∈的函数称为幂函数,其中α为常数. 判断下列函数哪些是幂函数. ① 1 y x = ;②22y x =;③3 y x x =-;④1y =. 2.幂函数的图象与性质 作出下列函数的图象:(1)y x =;(2)12 y x =;(3) 2y x =; (4)1 y x -=;(5)3 y x =. 从图象分析出幂函数所具有的性质. x y = 2x y = 3x y = 2 1x y = 1-=x y 定义域 值域 奇偶性 单调性 定点

1.幂函数的性质: 2.幂函数图象变化规律:. 练习:下列关于幂函数的命题中不正确的是( ) A 幂函数的图象都经过点(1,1) B 幂函数的图象不可能在第四象限内 C 当n x y =的图象经过原点时,一定有n>0 D 若n x y =是奇函数,则n x y =在其定义域内一定是减函数 例1讨论()f x x =在[0,)+∞的单调性. 解析:证明函数的单调性一般用定义法。 证明:任取),0[,21+∞∈x x ,且21x x <,则 2 1212 121212121) )(()()(x x x x x x x x x x x x x f x f +-= ++-= -=-, 因为21x x <,021>+x x ,所以 02 121<+-x x x x , 所以)()(21x f x f <,即()f x x =在[0,)+∞为增函数。 点评:证明函数的单调性要严格按照步骤和格式写。 例2利用单调性比较大小: (1)215与3 15 ; (2)223 (2) a -+与23 2- ; (3)1.19.0与8 .02.1. 关于指数式值的比较,主要有:①同底异指,用指数函数单调性比较; ②异底同指,用幂函数单调性 比较; ③异底异指,构造中间量(同 底或同指)进行比较。

含绝对值的函数问题处理

含绝对值的函数问题处理 1.(2005年江苏卷)已知a ∈R ,函数f(x)=x 2|x-a|. (I)当a=2时,求使f(x)=x 成立的x 的集合; (II)求函数y=f(x)在区间[1,2]上的最小值. 解析:(I)若a=2,则有:22 2(2),2()2(2),2x x x f x x x x x x ì?- ?=-=í ?--0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递增在区间递减. ②当x 0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递减在区间递增. 由于所求区间为[1,2],故a 按所求区间进行讨论: ①若a ≤1,则 22,33 a £取f 1(x)图象在x>a 部分,因函数f1(x)在区间[1,2]部分单调递增,故当x=1 时取最小值,即m=f 1(1)=1-a; ②若1a 时,f 1(x)从0单调递增;当xa ≥2, 则242,33 a > 函数f 2(x)在区间为先增后减,当x= 23 a 时取最大值,则最小值为 m 1=f 2(1)=-1+a 或m 2=f 2(2)=-8+4a,下面讨论m 1与m 2的大小问题: a. 若2≤a< 73 ,则m 1>m 2,最小值为m 2=-8+4a;b.若 73 ≤a<3,则则m 2>m 1,最小值为m 1=-1+a.

幂函数图象规律

幂函数图象有规律 江苏 王佩其 幂函数()n y x n Q = 的图象看似复杂,其实很有规律。假如我们能抓住这些规律,那么幂函数图象问题就可迎刃而解。那么幂函数图象有哪些规律呢? 1.第一象限内图象类型之规律(如图1):1.n >1时,过(0,0)、 (1,1)抛物线型,下凸递增。2.n =1时,过(0,0)、(1,1)的射线。 3.0<n <1时,过(0,0)、(1,1)抛物线型,上凸递增。4.n =O 时, 变形为y =1(x ≠0),平行于x 轴的射线。 5.n <0时过(1,1),双曲 线型,递减,与两坐标轴的正半轴无限接近。 2.第一象限内图象走向之规律(如图1): x ≥1部分各种幂函数图 象,指数大的在指数小的上方;O <x <1部分图象反之,此二部分图象在(1,1)点穿越直线y =x 连成一体。 3.各个象限内图象分布之规律:设p n q =,,p q 互质,,p Z q N 挝。 1.任何幂函数在第一象限必有图象,第四象限必无图象。 2.n =奇数/偶数时,函数非奇非偶,图象只在第一象限(如图1)。 3.n =偶数/奇数时,函数是偶函数、图象在第一、二象限并关于y 轴 对称(如图2)。 4.n =奇数/奇数时,函数是奇函数,图象在第一、三象限并关于原点对称 (如图3)。 利用规律,解题有方。请看以下例题: 例1 分别画出(1)25 27y x -=, (2)82 9y x =, (3)5 y x = ,(4)1 8y x =的大致图象。 解析:(1)2527 n =-=奇数/奇数<0,故双曲线型在第一、三象限,关于原点对称,如图3中的①。 (2)829 n ==偶数/奇数>1,故抛物线型,在第一、二象限,关于y 轴对称,如图2中的④。 (3)551n == =奇数/偶数>1,故抛物线型,在第一、三象限,关于原点对称,如图3中的④。 (4)18 n ==奇数/偶数,0<n <1,故抛物线型,仅在第一象限,如图2中在第一象限中的③。 例2 请把相应的幂函数图象代号填入表格。 (1);(2);(3);(4);(5);

高中一轮复习__含绝对值的函数

学案17 含绝对值的函数 一、课前准备: 【自主梳理】含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类: 1.形如)(x f y =的函数,由于0 )(0)()()()(<≥???-==x f x f x f x f x f y ,因此研究此类函数往往结合函数图像,可以看成由)(x f y =的图像在x 轴上方部分不变,下方部分关于x 轴对称得到; 2.形如)(x f y =的函数,此类函数是偶函数,因此可以先研究0≥x 的情况,0”之一). (2)函数2ln -=x y 的图像与函数1=y 的图像的所有交点的横坐标之和为________. (3)函数x y 21log =的定义域为],[b a ,值域为[0,2],则b -a 的最小值为_______.

高中--含绝对值的函数

含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类: 1.形如)(x f y =的函数,由于0 )(0)()()()(<≥???-==x f x f x f x f x f y ,因此研究此类函数往往结合函数图像,可以看成由)(x f y =的图像在x 轴上方部分不变,下方部分关于x 轴对称得到; 2.形如)(x f y =的函数,此类函数是偶函数,因此可以先研究0≥x 的情况,0”之一). (2)函数2ln -=x y 的图像与函数1=y 的图像的所有交点的横坐标之和为________. (3)函数x y 21log =的定义域为],[b a ,值域为[0,2],则b -a 的最小值为_______.

幂函数教案

2.3 幂函数 教学分析 一、教学目标: 1、掌握幂函数的概念;熟悉α=1,2,3,?, -1时的1幂函数的图象和性质;能利用幂函数的性质 解决实际问题。 2、通过学生对情境的观察、思考、归纳、总结形成结论, 培养学生的发现问题,解决问题的力。 二、教学重难点: 重点:幂函数的定义,图象与性质。 难点:幂函数的图象与性质。 三、教学准备: 教师:将幂函数 1 231 2 ,,,, y x y x y x y x y x- =====图象提前画 在小黑板上。 四、教学导图:

教学设计 一、教学过程: (一)教学内容:幂函数概念的引入。 设计意图:从学生熟悉的背景出发,为抽象出幂函数的概念做准备。这样,既可以让学生体会到幂函数来自于生活,又可以通过对这些案例的观察、归纳、概括、总结出幂函数的一般概念,培养学生发现问题、解决问题的能力。 师生活动: 教师:前面我们学习了指数函数与对数函数,这两类描述客观世界变化规律的数学模型。但是同学们知道,不是所有的客观世界变化规律都能用这两种数学模型来描述。今天,我们将学习新的一类描述客观世界变换规律的数学模型,也就是本书二点三节的幂函数。首先我们来看这样几个实际问题。第一个问题,如果老师现在准备购买单价为每千克1元的蔬菜W 千克,老师总共需要花的钱P是多少? 教师:非常好,老师总共需要花的钱P=W。第二个问题,如果正方形的边长为a,那么正方形的面积S等于多少? 教师:回答的非常正确。面积S=2 a. 下面的问题都很简单,请同学们跟上老师的思路。第三个问题,如果正方体的边长为a,那么他的体积V等于多少了? 教师:对。正方体的体积V= 3 a。第四个问题,

含绝对值的函数图象的画法及其应用

- 1 - 含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,;②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图1 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x - =对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数)(x f y =的图象就是函数|)(|x f y =的图象;③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2--=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4 (2)先作出322--=x x y 的图象,如图5。把图5中x 轴下方的图象翻上去,得到图6。图6就是要画的函数图象。 图5 图6 图7 图8 (3)先作出)3lg(+=x y 的图象,如图7。把图7中x 轴下方的图象翻上去,得到图8。图8就是要画的函数图象。 三、分段函数作图法 分段函数作图法是把原函数等价转化为分段函数后再作图,这种方

相关文档
最新文档