光电鼠标道理及维修

光电鼠标道理及维修
光电鼠标道理及维修

鼠标的组成及工作原理

鼠标的组成及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

鼠标的组成及工作原理 1,分类 鼠标按接口类型可分为串行鼠标、PS/2鼠标、总线鼠标、USB鼠标(多为多为光电鼠标)四种 鼠标按其工作原理及其内部结构的不同可以分为机械式,光机式和光电式 2,组成 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。 3,工作原理

管脚排列 管脚说明

这里主要介绍光电鼠标 光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的电垫板配合使用 光电鼠标器是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动。光电鼠标用光电传感器代替了滚球。这类传感器需要特制的、带有条纹或点状图案的垫板配合使用。与光机鼠标发展的同一时代,出现一种完全没有机械结构的数字化光电鼠标。设计这种光电鼠标的初衷是将鼠标的精度提高到一个全新的水平,使之可充分满足专业应用的需求。这种光电鼠标没有传统的滚球、转轴等设计,其主要部件为两个发光二极管、感光芯片、控制芯片和一个带有网格的反射板(相当于专用的鼠标垫)。工作时光电鼠标必须在反射板上移动,X发光二极管和Y发光二极管会分别发射出光线照射在反射板上,接着光线会被反射板反射回去,经过镜头组件传递后照射在感光芯片上。感光芯片将光信号转变为对应的数字信号后将之送到定位芯片中专门处理,进而产生X-Y坐标偏移数据。

光电鼠标工作原理 物理

光电鼠标基础知识浅解 ——普通物理课外作业 班级:10-生物技术 姓名:李向阳 学号:201006040063

光电鼠标基础知识浅解 互联网的普及空前地打破了空间、时间的界限,小小鼠标,大大世界,点击之间,精彩萦绕你眼前。使用最广泛的鼠标有机械鼠标和光电鼠标,与传统的机械式鼠标相比,光电鼠标具有定位准确、移动流畅且不易脏污等优势,受到越来越多用户的认可。随着光电鼠标价格的不断下跌,取代机械式鼠标而成为市场主流的趋势已不可阻挡。 机械鼠标光电鼠标 光电鼠标的工作原理 光电鼠标定位的工作流程大致为:发光二极管照亮采样表面,对比度强烈的待采样影像通过透镜在CMOS(Complementary Metal Oxide Semiconductor---互补金属氧化物半导体,电压控制的一种放大器件。是组成CMOS数字集成电路的基本单元,CMOS制造工艺也被应用于制作数码影像器材的感光元件)上成像,CMOS将光学影像转化为矩阵电信号传输给DSP(digital singnal processor---数字信号处理器。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式)。当鼠标移动时,DSP则将此影像信号与存储的上一采样周期的影像进行比较分析,然后发送一个位移距离信号到接口电路。接口电路对由DSP 发来的位移信号进行整合处理,而已传入计算机内部的位移信号再经过驱动程序的进一步处理,最终在系统中形成光标的位移。 光电鼠标的参数 分辨率

光电鼠标的分辨率通常用CPI(Count Per Inch : 每英寸的测量次数)来表示,CPI 越高,越利于反映用户的微小操作。而且在鼠标光标移动相同逻辑距离时,分辨率高的需要移动的物理距离则要短。拿一款800 CPI的光电鼠标来说,当使用者将鼠标移动1英寸时,其光学传感器就会接收到反馈回来的800个不同的坐标点,鼠标箭头同时会在屏幕上移动800个像素点。反过来,鼠标箭头在屏幕上移动一个像素点,就需要鼠标物理移动1/800英寸的距离。所以,CPI高的鼠标更适合在高分辨率的屏幕下使用。光学机械鼠标的分辨率多为200~400 CPI,而光电鼠标的分辨率通常在400~800 CPI之间。 除CPI以外,DPI(Dots Per Inch : 每英寸像素数)也常被人用来形容光电鼠标的分辨率。由于光电鼠标的分辨率反映了一个动态过程,所以用CPI来形容更恰当些。但无论是CPI还是DPI,描述的都是光电鼠标的分辨率,不存在性能差别。 刷新频率 光电鼠标的刷新频率也被称为扫描频率或者帧速率,它反映了光学传感器内部的DSP对CMOS每秒钟可拍摄图像的处理能力。在鼠标移动时,光学传感器中的数字处理器通过对比所“拍摄”相邻照片间的差异,从而确定鼠标的具体位移。但当光电鼠标在高速运动时,可能会出现相邻两次拍摄的图像中没有明显参照物的情况。那么,光电鼠标势必无法完成正确定位,也就会出现我们常说的“跳帧”现象了。而提高光电鼠标的刷新频率就加大了光学传感器的拍摄速度,也就减少了没有相同参考物的几率,达到了减少跳帧的目的。 像素处理能力 虽然分辨率和刷新率都是光电鼠标重要的技术指标,但它们并不能客观反映光电鼠标的性能,所以罗技(罗技是全球著名的电脑周边设备供应商)提出了像素处理能力这个指标,并规定:像素处理能力=CMO晶阵像素数×刷新频率。根据光电鼠标的定位原理我们知道,光学传感器会将CMOS拍摄的图像进行光学放大后再投射到CMOS晶阵上形成帧,所以在光学放大率一定的情况下,增加了CMOS晶阵像素数,也就可增大实际拍摄图像的面积。而拍摄面积越大,每帧图像上的细节也就越清晰,参考物也就越明显,和提高刷新率一样,也可减少跳帧的几率。 不过,需要注意的是,大多数情况下,厂商不会公布鼠标的CMOS尺寸,其大小从15x15到30x30像素(Pixel)不等。 光电鼠标的内部构成 从功能实现角度看,光电鼠标主要由发光二极管、固定夹、光学透镜、光学传感器、接口控制器芯片以及微动开关6部分元器件组成。

鼠标结构及原理

鼠标的定位原理 光电鼠标就是通过红外线或者激光检测鼠标的位移,将位移信号转换为电脉冲信号,通过程序的处理控制屏幕中光标箭头的移动。 一.鼠标的结构 光学鼠标主要由四部分的核心组件构成,分别就是发光二极管、透镜组件、光学引擎以及控制芯片组成。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送与收取。我们可以将其理解成就是光电鼠标中的“管家婆”,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就就是dpi对鼠标定位的影响。dpi就是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi 越大,用来定位点数就多,定位精度就高。 光学感应器 光学感应器就是光电鼠标的核心。 光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)与DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算与比较,通过图像的比较,便可实现鼠标所在位置的定位工作。

光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图中可以清楚地瞧到,光学透镜组件由一个棱光镜与一个圆形透镜组成。 其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观瞧光电鼠标的背面外壳,我们可以瞧出圆形透镜很像一个摄像头。 不管就是阻断棱光镜还就是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。 发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将就是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管就是红色的(也有部分就是蓝色的),且就是高亮的(为了获得

光电鼠标常见故障的排除_徐军

I SS N1672-4305CN12-1352/N 实 验 室 科 学LABORAT ORY SC I ENCE 第3期 2009年6月No .3 Jun .2009 仪器、设备、技术 光电鼠标常见故障的排除 徐 军,王春燕,刘瑞斌,李怡文,杨敏霞 (大连理工大学基础化学实验中心,辽宁大连 116023) 摘 要:根据多年的经验,主要对光电鼠标在使用中出现的常见问题及解决方法进行详细介绍,供高校教师和相关科技工作者参考。 关键词:光电鼠标;光敏元件;灵敏度 中图分类号:TP334.2 文献标识码:B 文章编号:1672-4305(2009)03-0155-03 Repairing co mmon malfuncti ons of the optical mouse XU Jun,WANG Chun -yan,L I U Rui -bin,L I Yi -wen,Y ANG M in -xia (Funda mental Che m ical Experi m ental Center,Dalian University of Technol ogy,Dalian 116023,China )Abstract:I n order t o offer a reference f or the university teachers and researchers,the common tr ou 2bles and res oluti ons in the use of op tical mouse are intr oduced in detail based on the authors ’experi 2ences . Key words:op tical mouse;op tical components;sensitivity 自从1999年微软与安捷伦公司合作,推出了第一款光学成像鼠标(I ntelli m ouse Exp l orer )。光电鼠标就因为有着极高的适应能力和无需清洁等优点,在短短的时间里将统治了计算机桌面几十年之久的机械滚轮鼠标赶下台。图1是光电鼠标的内部构造,图2是光电鼠标电路图。因为光电鼠标是使用发光管等光敏元件来定位,所以很容易出现如灵敏度下降、指针飘移等小故障 。 图1 光电鼠标的内部构造 1 光电鼠标的工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。光电鼠标的工作原理 [1] 是:在光电 鼠标内部有一个发光二极管,通过该发光二极管发 出的光线,照亮光电鼠标底部表面( 这就是为什么 图2 光电鼠标的电路图 鼠标底部总会发光的原因)。然后将光电鼠标底部 表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专 用图像分析芯片(DSP,即数字微处理器),对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、控制芯片、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或US B 接口、外壳等。

光电鼠标原理与电路图

传统光学鼠标的工作原理 传统光学鼠标工作原理示意图 光学跟踪引擎部分横界面示意图 光学鼠标主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎(Optical Engine)以及控制芯片组成。 光学鼠标通过底部的LED灯,灯光以30度角射向桌面,照射出粗糙的表面所产生的阴影,然后再通过平面的折射透过另外一块透镜反馈到传感器上。 当鼠标移动的时候,成像传感器录得连续的图案,然后通过“数字信号处理器”(DSP)对每张图片的前后对比分析处理,以判断鼠标移动的方向以及位移,从而得出鼠标x, y方向的移动数值。再通过SPI传给鼠标的微型控制单元(Micro Controller Unit)。鼠标的处理器对这些数值处理之后,传给电脑主机。传统的光电鼠标采样频率约为3000 Frames/sec(帧/秒),也就是说它在一秒钟内只能采集和处理3000张图像。 根据上面所讲述的光学鼠标工作原理,我们可以了解到,影响鼠标性能的主要因素有哪些。 第一,成像传感器。成像的质量高低,直接影响下面的数据的进一步加工处理。 第二,DSP处理器。DSP处理器输出的x,y轴数据流,影响鼠标的移动和定位性能。

第三,SPI于MCU之间的配合。数据的传输具有一定的时间周期性(称为数据回报率),而且它们之间的周期也有所不同,SPI主要有四种工作模式,另外鼠标采用不同的MCU,与电脑之间的传输频率也会有所不同,例如125MHZ、8毫秒;500MHz,2毫秒,我们可以简单的认为MCU可以每8毫秒向电脑发送一次数据,目前已经有三家厂商(罗技、Razer、Laview)使用了2毫秒的MCU,全速USB设计,因此数据从SPI传送到MCU,以及从MCU传输到主机电脑,传输时间上的配合尤为重要。 光电鼠标电路图

IC资料-SMC522光电鼠标芯片

SMC522 PS/2光电3D鼠标控制芯片SMC522 1.概述 SMC522是一款性能优良的PS/2光电3D鼠标控制芯片,可与PAN101B204/208系列、ADNS-2051系列配对使用构成高性能光电鼠标。SMC522采用MICRO控制接口,可使鼠标的解析度400CPI/800CPI动态切换并适用于PS/2 2D 3KEY、PS/2 3D 3KEY、PS/2 3D 5KEY等多种工作模式(根据不同的系统及驱动程序自动切换)。当工作于3D 3KEY模式时,其第4(Forward)、5(Back)两键相当于中间键。 2.主要特点 ● 与IBM PS/2 Mouse及Microsoft IntelliMouse完全兼容 ● 包括IBM PS/2 Mouse规格内的所有指令、回应、状态、错误处理等,毫无删减 ● PS/2 Mouse的同步串列传输时序精准,与各厂牌IBM PC相容型电脑的相容性最高 ● 采用MICRO控制接口,可使鼠标的解析度400CPI/800CPI动态切换 ● 兼容多种光电传感器 ● 兼容PS/2 2D 3KEY、PS/2 3D 3KEY、PS/2 3D 5KEY等多种工作模式 ● 仅须外接一个电阻组成RC振荡器,振荡频率8MHz ● 外部的零件已减到最少,有效降低生产装配成本 ● 滚轮为除2设计,适合一般的编码器设计,同时也支持光学滚轮 3.管脚排列 4.管脚功能说明 编号 引脚名 方向 功能描述 1 Z1 I 侦测滚轮翻动的光耦或编码器输入 2 PS_CLK I/O 与电脑做同步串行传输的CLK讯号线 3 PS_DATA I/O 与电脑做同步串行传输的DATA讯号线 4 GND - 地 5 R I 鼠标右键的输入

鼠标的结构及工作原理

鼠标的结构及工作原理 鼠标器(Mouse)是一种相当普通的、廉价的点输入设备(Pointing Device)。随着Windows 的日益流行,鼠标对于大多数的PC机用户来说已必不可少。较之其他的点设备(如跟踪球、数字化仪、光笔、触摸屏等),它更为便宜和方便,所以鼠标在PC机上的应用相当普及。鼠标器按与电脑连接的方式(即接口)分为:通过串行口与电脑建立连接的串口鼠标,及通过PS/2口与电脑建立连接的过PS/2鼠标。当鼠标器在平面上移动时,随着移动的方向和快慢的变化,会产生两个在高低电平之间不断变化的脉冲信号,主机接收这两个脉冲信号,并对其计数。根据接收到的这两个脉冲信号的个数,来控制电脑屏幕上的鼠标器指针在横(X)轴、纵(Y)轴两个方向上移动距离的大小。按照该方式,即可以控制鼠标器指针在屏幕上随意地移动。 脉冲信号是由鼠标器内的半导体光敏器件产生的。根据结构的不同,鼠标器主要可分为机电式鼠标和光电式鼠标。 机电式鼠标的底部有一个实心的橡胶球,内部有两个互相垂直的滚轴靠在橡胶球上。在两个滚轴的顶端,各装有一个开有径向槽(或开窗格)的光栅轮。光栅轮的两侧分别安装着由发光二极管和光敏三极管构成的光电检测电路。当移动鼠标器,橡胶球滚动时,带动滚轴及其上的光栅轮旋转。因为光栅轮开槽处透光,使得光敏三极管接收到由发光二极管发出的光线时断时续,从而产生不断变化的高低电平,形成脉冲电信号。互相垂直的两个轴对应着屏幕平面上的横(X)轴、纵(Y)轴两个方向。脉冲信号的数量对应着位移的大小。 机电式鼠标一般用摩擦滚动球的方法来进行操作,所以使用极为方便,价格也便宜。但是,这类鼠标则容易因轻微的振动,包括滚动球的跳动及滚动球与X、Y传感滚柱之间的相对位置的变化等因素而影响其精度,而且其重复定位精度也较差。由于有滚动球、传感滚柱、辅助滚柱等机械部件,故机电式鼠标器也容易因机械故障而失灵。 光电式鼠标器没有橡胶球和带光栅的轮的滚轴。这类鼠标器内的两对光电检测器互相垂直,光敏三极管检测发光二极管照射到鼠标器下面垫板上产生的反射光来进行工作,因此,光电式鼠标器工作时需要上面画有黑白相间格子的专用垫板。当发光二极管发出的光线照到黑格上,光线被吸收而无反射光;若光线照到白格上,则有反射光。光敏三极管据此而产生高低电平,形成脉冲信号。光电式鼠标没有机械部件,主要用光电位移传感器取代滚动球,所以不会出现机械故障的可能。这类传感器需要带有特制条纹或点状图案的垫子配合使用,因此光电式鼠标器有一个专用的光电极(反射板)。这类鼠标器的重定位精度较高,将鼠标从一个地点移到另一个地点再返回来,屏幕上的光标也将会精确地回到原来的位置。光电式鼠标的主要缺点是价格较贵,使用要受制于光电板的位置的局限。优点是精度高和故障率低。此外,还有一种称为轨迹球的鼠标器。它的工作原理与机电式鼠标器相同,内部结构也类似。差别是轨迹球鼠标器工作时球在上面,直接用手拨动,而球座固定不动。故轨迹球鼠标器占用的空间小,多用于便携机上。

光电鼠标、激光鼠标、蓝光鼠标和蓝影鼠标之间的区别

光电鼠标、激光鼠标、蓝光鼠标和蓝影鼠标之间的区别 鼠标的种类有很多,目前常用的鼠标按照定位原理分为光电鼠标、激光鼠标、蓝光鼠标和蓝影鼠标,可能大部分用户并不了解它们之间的区别,只有少数游戏玩家听说过这些鼠标种类。今天我们就来说说光电鼠标、激光鼠标、蓝光鼠标和蓝影鼠标之间的区别和优缺点。 普通光电鼠标 定位原理:红光侧面照射,棱镜正面捕捉图像变化。 优缺点:成本低,足以应付日常用途,对反射表面要求较高,所以购买使用还是要配个合适的鼠标垫(偏深色、非单色、勿镜面较为理想),缺点是分辨率相对较低。 分辨率典型值:1000dpi,正常范围800-2500dpi。 光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的垫板配合使用。 激光鼠标 定位原理:激光侧面照射,棱镜侧面接收 优缺点:成本高,虽然激光鼠标分辨率相当的高,对反射表面要求低,也就是对激光鼠标垫的要求很低,但是也并非传说中的无所不能,还是配个合适的鼠标垫为好。激光鼠标具有很高的分辨率,实际上价格并非贵的离谱,主要是因为这个东西可以山寨,而且鼠标真正的成本是花费在无线收发器和模具上,缺点暂时没发现。 分辨率典型值:5000dpi,也有小于2000分辨率的低端产品 激光鼠标其实也是光电鼠标,只不过是用激光代替了普通的LED光。好处是可以通过更多的表面,因为激光是 Coherent Light(相干光),几乎单一的波长,即使经过长距离的传播依然能保持其强点击此处添加图片说明度和波形;而LED 光则是Incoherent Light(非相干光)。 蓝光鼠标 定位原理:蓝光侧面照射,棱镜正面捕捉图像变化。

无线鼠标原理简介

无线鼠标原理 无线鼠标原理简介: 目前的市场上售卖的基本上都是光学鼠标和激光鼠标,更古老的机械鼠标、光电机械鼠标都已经淘汰,无线鼠标也是如此。因此要明白无线鼠标的工作原理,其实并没有太大困难,可以简单理解为:无线鼠标=有线鼠标-数据线+无线模块,这样是不是直白多了呢?

光学鼠标的工作原理如上图,LED或者Laser发出的光通过透镜,照射在鼠标工作表面(比如鼠标垫、或者桌面)上,部分反射光通过透镜进入成像传感器成像,并提供给图像分析芯片(DSP 数字微处理器)进行分析;当鼠标移动时,传感器就会截获一组高速拍摄的连贯图像,经DSP芯片分析处理后,得出鼠标的移动方向和移动量,并将这一信息传输给电脑,于是便有了桌面光标的移动行为。 CMOS成像传感器和DSP两部分合称鼠标的光学引擎,激光引擎和普通光学引擎的差异是,采用了具有相干性、波长单一、功率集中的激光(Laser)取代LED光来照射工作表面,这样可以提高鼠标对不同工作表面的适应能力,目前高端无线鼠标也大都采用激光引擎。

图中NRF字样的小方块就是2.4G无线芯片 其实无线鼠标和传统有线鼠标基本上是一样的,区别主要集中在最后一步的数据传输方式上,有线鼠标通过PS/2或者USB接口的数据线传输信息,而无线鼠标则采用红外、27MHz、2.4GHz和蓝牙等无线传输技术发送数据,摒弃了数据线,使用起来“无牵无挂”,自然更加方便。 无线传输技术介绍: 无线技术根据不同的用途和频段被分为不同的类别,其中包括蓝牙、Wi-Fi (IEEE 802.11)、Infrared (IrDA)、ZigBee (IEEE 802.15.4)等等多个无线技术标准,但市场上产品最多、消费者接触最广的,也仅有27Mhz、2.4G和蓝牙无线鼠标共三类。 27 MHz RF技术

光电鼠标自动移动

光电鼠标自动移动问题 出现鼠标问题大部分是鼠标自身的问题,需要到另外一台电脑做测试,首先排除鼠标自身的问题。如果是系统的原因请修复一下系统。 1、开机按F8进入安全模式后在退出,选重启或关机在开机,就可以进入正常模式(修复注册表)。 2、如果故障依旧,请你用系统自带的系统还原,还原到你没有出现这次故障的时候修复(如果正常模式恢复失败,请开机按F8进入到安全模式中使用系统还原)。 3、如果故障依旧,使用系统盘修复,打开命令提示符输入SFC /SCANNOW 回车(SFC和/之间有一个空格),插入原装系统盘修复系统,系统会自动对比修复的。 4、如果故障依旧,在BIOS中设置光驱为第一启动设备插入系统安装盘按R键选择“修复安装”即可。 5、如果故障依旧,建议重装操作系统。 另外还有一种原因,就是USB接口供电不足,可能是USB接口连接的外设太多造成供电不足。建议使用带电的USBHUB或者使用USB转PS/2的转接头。还有可能WindowsXP默认开启了节电模式,致使USB 接口供电不足,使USB接口间歇性失灵。右击我的电脑/属性/硬件/设备管理器,双击“通用串行总线控制器”会到好几个“USB Root Hub”双击任意一个,打开属性对话框,切换到“电源管理”选项卡,去除

“允许计算机关闭这个设备以节约电源”前的勾选,点击确定返回,依次将每个USB RootHub的属性都修改完后重新启动电脑。USB设备就能恢复稳定运行了,频率尽量设低一些。 光电鼠标常见的故障诊断方法 (一)光电鼠标故障主要包括:鼠标按键失灵、找不到鼠标、灵敏度变差、鼠标定位不准或经常无故发生飘移现象。光电鼠标故障90%以上为断线、按键接触不良、光学系统脏污三类故障,但也有虚焊和原件损坏的情况。 (1)电缆芯线断线主要为光标不动或时好时坏,用手触动连线,光标抖动。一般断线故障多发生在插头或电缆引出端等频繁弯折处,此时护套完好无损,从表面一般看不出来,需要用万用表测量。电缆芯线断线故障的排除方法为:拆开鼠标,将电缆排线插头从电路板拔下,并按芯线颜色与插针的对应关系做好标记后,然后把芯线按断线的位置剪去5cm-6cm左右,再将鼠标芯线重新接好即可。 (2)按键失灵故障多为微动开关中的簧片断裂或内部接触不良所致,这种故障可以采用另换一只按键的方法维修。更换方法为:用电烙铁焊下鼠标左、中键,把拆下的中键焊回左键位置即可。 (3)灵敏度变差是光电鼠标的常见故障,具体表现为移动鼠标时,光标反应迟顿,不听指挥。灵敏度变差的原因主要是发光管或光敏元件老化、光电接收系统偏移,焦距没有对准、外界光线影响、透镜通路有污染。对于发光管或光敏元件老化造成的故障可以更换型号相同

鼠标的组成及工作原理

鼠标的组成及工作原理 1,分类 鼠标按接口类型可分为串行鼠标、PS/2鼠标、总线鼠标、USB鼠标(多为多为光电鼠标)四种 鼠标按其工作原理及其内部结构的不同可以分为机械式,光机式和光电式2,组成 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。 3,工作原理

管脚排列 管脚说明

这里主要介绍光电鼠标 光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的电垫板配合使用 光电鼠标器是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动。光电鼠标用光电传感器代替了滚球。这类传感器需要特制的、带有条纹或点状图案的垫板配合使用。与光机鼠标发展的同一时代,出现一种完全没有机械结构的数字化光电鼠标。设计这种光电鼠标的初衷是将鼠标的精度提高到一个全新的水平,使之可充分满足专业应用的需求。这种光电鼠标没有传统的滚球、转轴等设计,其主要部件为两个发光二极管、感光芯片、控制芯片和一个带有网格的反射板(相当于专用的鼠标垫)。工作时光电鼠标必须在反射板上移动,X发光二极管和Y 发光二极管会分别发射出光线照射在反射板上,接着光线会被反射板反射回去,经过镜头组件传递后照射在感光芯片上。感光芯片将光信号转变为对应的数字信号后将之送到定位芯片中专门处理,进而产生X-Y坐标偏移数据。

光电鼠标的原理

光电鼠标的工作原理 摘要本文从结构、工作原理、性能参数以及和传统鼠标的对比等几个方面详细介绍了光电鼠标,并且简单介绍了激光鼠标的相关特性,最后对鼠标的未来发展趋势进行了简单的展望。 关键词光电鼠标光学感应器激光鼠标发展趋势 一、鼠标的概述 鼠标,全称为光电显示系统纵横位置指示器,是计算机系统的一种输入设备,因形似老鼠而得名。按其工作原理及其内部结构的不同可以分为机械式鼠标,光机式鼠标和光电式鼠标。下面将简单介绍机械式鼠标和光机式鼠标的工作原理: 1、机械式鼠标 机械鼠标主要由滚球、辊柱和光栅信号传感器组成。当拖动鼠标时,带动滚球转动,滚球又带动辊柱转动,装在辊柱端部的光栅信号传感器产生的光电脉冲信号反映出鼠标器在垂直和水平方向的位移变化,再通过电脑程序的处理和转换来控制屏幕上光标箭头的移动。这种机械鼠标的底部采用一个可四向滚动的胶质小球。这个小球在滚动时会带动一对转轴转动,分别为X转轴、Y转轴,在转轴的末端都有一个圆形的译码轮,译码轮上附有金属导电片与电刷直接接触。当转轴转动时,这些金属导电片与电刷就会依次接触,出现“接通”或“断开”两种形态,前者对应二进制数“1”、后者对应二进制数“0”。接下来,这些二进制信号被送交鼠标内部的专用芯片作解析处理并产生对应的坐标变化信号。只要鼠标在平面上移动,小球就会带动转轴转动,进而使译码轮的通断情况发生变化,产生一组组不同的坐标偏移量,反应到屏幕上,就是光标可随着鼠标的移动而移动。由于它采用纯机械结构,定位精度难如人意,加上频频接触的电刷和译码轮磨损得较为厉害,直接影响了机械鼠标的使用寿命。在流行一段时间之后,它就被成本同样低廉的“光机鼠标”所取代,后者正是现在市场上还很常见的所谓“机械鼠标”。 2、光机式鼠标 光机式鼠标,顾名思义是一种光电和机械相结合的鼠标。它在机械鼠标的基础上,将磨损最厉害的接触式电刷和译码轮改为非接触式的LED对射光路元件。当小球滚动时,

废旧光电鼠标的“重生”

废旧光电鼠标的“重生” 光电鼠标在使用过程中,由于鼠标左、右键开关的质量可能存在差舁,在使用过程中一般是左键使用的频率往往比右键的使用频率要高;但是个人使用的习惯不同,比如有的人是左撇子,这样的话,反而是右键的使用频率比左键高。不管是哪种情况,一般都是出现左键或者右键的点击失灵情况。笔者所在的单位就有好几个这样的废旧光电鼠标,用螺丝刀小心的将光电鼠标打开,仔细观察发现原来失灵的键的开关要么是按下不能弹起,要么是按下后弹起缓慢,不能及时的弹起,因而出现所谓的失灵现象。 一修一:这种情况是比较理想的,也最容易修。打开光电鼠标后将少量的食用调和油或者机油滴入失灵开关,增加其润滑度,使其容易弹起。注意油别滴太多了,注意适量,以免将光电鼠标的内部污染,影响使用。 二修一:这种情况对于没有电子元器件焊接功夫的人来说就要稍微的难一些。首先用电烙铁,最好是使用功率为25W或25W 以下的电烙铁。如果电烙铁功率太大了,温度极高反而容易将电子器件及开关损坏;同时最好是使用防静电的电烙铁,因为光电鼠标内部有静电敏感电子元器件,以防电烙铁的静电将其损坏;如果没有防静电的电烙铁,我们在焊下开关时也可以采取将电烙铁的电源线拔下的方法,有条件的话还可以将电烙铁与地面相连的金属物品上接触两下,将电烙铁上的静电兖分放掉。同时在几秒钟内将开关迅速焊下。

在将开关焊下的时候,我们最好采用堆焊法,或者用吸焊法,即是用屏蔽线的屏蔽层或者新的多芯铜线先将开头焊脚上的焊锡吸掉,直到可以将开关直接取下来为止。 通过以上的方法,先将其中一个光电鼠标上坏的开关焊下来,再将其中个光电鼠标上好的开关焊下来,然后将取下来的好开关焊上,一个与新的灵敏度一样的光电鼠标就这样用二修的方案给解决了,这种方法笔者在单位试过了,屡试屡爽,很不错的。 总之,只要我们在生活中注意观察,平时多总结,勤动脑筋,这样我们在生活中遇到的有些事就完全可以自己动手解决。

鼠标结构

光电鼠标内部结构 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 目录 ? 1 光学感应器 ? 2 光电鼠标的控制芯片 ? 3 光学透镜组件 ? 4 发光二极管 ? 5 轻触式按键 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 图1:光电鼠标内部的光学感应器 安捷伦公司的光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)和DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算

和比较,通过图像的比较,便可实现鼠标所在位置的定位工作。 图2:光学感应器内部的组成方式 图1是方正光电鼠内部的光学感应器,它采用的是安捷伦公司的H2000-A0214光学感应元件,其芯片内部的组成方式可参见图2。图3是H2000-A0214光学感应器的背面,从图中我们可以看到,芯片上有一个小孔,这个小孔用来接收由鼠部底部的光学透镜传送过来的图像。 图3光学感应器背面的小孔用来接收由鼠部底部的光学透镜传送过来的图像 [编辑] 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。图4是罗技公司的CP5919AM控制芯片,它可以配合安捷伦的H2000-A0214光学感应元件,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就

光电鼠标原理

光电鼠标原理 电脑硬件 2009-08-02 13:17 阅读619 评论0 字号:大中小 传统光学鼠标的工作原理 光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电 鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数 就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标 无法进行定位,由此可见光学透镜组件的重要性。

光电鼠标原理

光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的垫板配合使用 光电鼠标的工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。 光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。

光电鼠标内部结构

光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 图1:光电鼠标内部的光学感应器 安捷伦公司的光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)和DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算和比较,通过图像的比较,便可实现鼠标所在位置的定位工作。 图2:光学感应器内部的组成方式 图1是方正光电鼠内部的光学感应器,它采用的是安捷伦公司的H2000-A0214光学感应元件,其芯片内部的组成方式可参见图2。图3是H2000-A0214光学感应器的背面,从图中我们可以看到,芯片上有一个小孔,这个小孔用来接收由鼠部底部的光学透镜传送过来的图像。

图3光学感应器背面的小孔用来接收由鼠部底部的光学透镜传送过来的图像 [编辑] 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。图4是罗技公司的CP5919AM控制芯片,它可以配合安捷伦的H2000-A0214光学感应元件,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 图4罗技公司的CP5919AM控制芯片 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 [编辑] 光学透镜组件

光学鼠标的工作原理是什么

光电鼠标操作原理及优势 目前最受宠的定位和点击设备莫过于光电鼠标了。滚轴的鼠标基本是看不见了,被这种新型的鼠标逐渐代替。 这款微软智能鼠标利用了光学技术 这种鼠标利用一个小照相机每秒拍摄1,500张照片,而且几乎能在任何表面上工作。它具有一个红色的小发光二极管(LED),用于将光从工作表面反射到互补金属氧化物半导体(CMOS)传感器上。CMOS传感器将每一幅图像都发送给数字信号处理器(DSP)进行分析。DSP以18MIPS (1MIPS表示每秒1百万条指令)的速度运行,能够检测图像中的图案,并确定这些图案与前一个图像相比,发生了怎样的移动。根据一系列图像中图案位置的变化,DSP确定鼠标的移动距离并将相应坐标发送给计算机。随后,计算机根据从鼠标接收到的坐标信息,移动屏幕上的光标。此过程每秒发生数百次,才使得光标的移动看上去非常流畅。 在这张照片中,您可以看到鼠标底部的LED 1)与滚轮鼠标相比,光电鼠标有以下几个优势: 2)没有可移动的零部件,这意味着磨损更少、故障率更低。 3)灰尘无法进入鼠标内部,这样就不会干扰跟踪传感器。

4)跟踪分辨率的提高意味着响应更加顺畅。 5)不需要鼠标垫等专用表面。 例如苹果将自己的光电鼠标转变成了一件现代艺术品 虽然使用LED的光电鼠标是最近才出现的,但另一种光电鼠标早已现身十年之久。在最初的光电鼠标技术中,一束汇聚的光线发射到一个反射率很高的鼠标垫上,然后从鼠标垫表面再反射到传感器上;鼠标垫上有较暗的线条构成的网格,这样,每次移动鼠标时,网格会使光束中断;光束中断时,传感器会向计算机发送一个信号并且光标会移动相应的量。这种光电鼠标很难使用,要求您在握住它的时候必须使其与鼠标垫正好成直角,才能确保光束和传感器能够对齐。此外,如果鼠标垫损坏或遗失,那么在买到新的鼠标垫之前,这种鼠标就将无法使用。如今使用LED的光电鼠标则对用户友好得多,也可靠得多。 计算机硬件和设备频道https://www.360docs.net/doc/48755920.html,/jishu-yingjianshebei-cp-isp-mat

光电鼠标与机械鼠标工作原理之不同

光电鼠标与机械鼠标工作原理之不同 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处 理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。可以将其理解成是光电鼠标中的“管家婆”。 一个非常重要的概念,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而 光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位 精度上能够轻松超过机械式鼠标的主要原因。

光电鼠标几种故障和维修方法

光电鼠标几种故障和维修方法 光电鼠标使用光电传感器替代机械鼠标中的机械元件,因而维修方法具有独特性。光电鼠标故障的90%以上为断线、按键接触不良、光学系统脏污造成,少数劣质产品也常有虚焊和元件损坏的情况出现。 1.电缆芯片断线 电缆芯线断路主要表现为光标不动或时好时坏,用手推动连线,光标抖动。一般断线故障多发生在插头或电缆线引出端等频繁弯折处,此时护套完好无损,从外表上一般看不出来,而且由于断开处时接时断,用万用表也不好测量。处理方法是:拆开鼠标,将电缆排线插头从电路板上拔下,并按芯线的颜色与插针的对应关系做好标记后,然后把芯线按断线奈恢眉羧?cm~6cm左右,如果手头有孔形插针和压线器,就可以照原样压线,否则只能采用焊接的方法,将芯线焊在孔形插针的尾部。 为了保证以后电缆线不再因疲劳而断线,可取废圆珠笔弹簧一个,待剪去芯线时将弹簧套在线外,然后焊好接点。用鼠标上下盖将弹簧*线头的一端压在上下盖边缘,让大部分弹簧在鼠标外面起缓冲作用,这样可延长电缆线的使用寿命。 2.按键故障 1)按键磨损。这是由于微动开关上的条形按钮与塑料上盖的条形按钮接触部位长时间频繁摩擦所致,测量微动开关能正常通断,说明微动开关本身没有问题。处理方法可在上盖与条形按钮接触处刷一层快干胶解决,也可贴一张不干胶纸做应急处理。 2)按键失灵:按键失灵多为微动开关中的簧片断裂或内部接触不良,这种情况须另换一只按键;对于规格比较特殊的按键开关如一时无法找到代用品,则可以考虑将不常使用的中键与左键交换,具体操作是:用电烙铁焊下鼠标左、中键,做好记号,把拆下的中键焊回左键位置,按键开关须贴紧电路板焊接,否则该按键会高于其他按键而导致手感不适,严重时会导致其他按键而失灵。另外,鼠标电路板上元件焊接不良也可能导致按键失灵,最常见的情况是电路板上的焊点长时间受力而导致断裂或脱焊。这种情况须用电烙铁补焊或将断裂的电路引脚重新连好。 3.灵敏度变差 灵敏度变差是光电鼠标的常见故障,具体表现为移动鼠标时,光标反应迟钝,不听指挥。故障原因及解决方法是:

相关文档
最新文档