分光光度法测定水质总氰化物含量的不确定度评定(精)

分光光度法测定水质总氰化物含量的不确定度评定(精)
分光光度法测定水质总氰化物含量的不确定度评定(精)

第7期化学世界 #397#

分光光度法测定水质总氰化物含量的不确定度评定

顾宗理

(上海市轻工业研究所有限公司分析测试中心, 上海200031

摘要:根据5测量不确定度评定与表示6(JJF1059-1999 对水质总氰化物含量测定进行测量不确定度的分析与评定。分别计算各分量的不确定度, 再计算出合成不确定度, 并取k =2(置信概率95% 得出扩展不确定度。建立的不确定度评定方法适合于分光光度法测定水质总氰化物含量的不确定度的分析。

关键词:分光光度法; 不确定度评定; 水质总氰化物含量中图分类号:O 657. 32 文献标志码:A 文章编号:0367-6358(2011 07-0397-04

Evaluation of U ncertainty for the Determination of Content of

T otal Cyanide in Water by Spectrophotomet ry

GU Zong -li

(S hangh ai L ig ht I ndu stry Resear ch Institute Co. , L td A nalytica l Te sting Center , S hangh ai200031, China

Abstract:The uncer tainty for the determination o f co ntent o f total cy anide in w ater by spectrophotometry w as studied based on 5Evaluatio n and Expressio n of Uncertainty M easurem ent 6(JJF1059-1999 . T he combined uncertainty w as obtained by combining all standard uncertainty, then the expanded uncertainty

w as calculated by using a coverage facto r k =2, giving a level of confidence of approx im ately 95%.This method is appropriate to be used in the uncertainty ev aluation for the determination of content of to tal cyanide in w ater by spectropho to metr y.

Key w ords:spectr ophotom etry ; evaluation of uncertainty; content of total cyanide in w ater

不确定度是表征合理地赋予被测值的分散性与被测量结果相联系的参数[1]。一个完整的测量结果除了应给出被测量的最佳估计值之外, 还应同时给出测量结果的不确定度。根据5测试和校准实验室能力的通用要求6(ISO/IEC17025 , 测量不确定度分析成为近年来计量认证和国家实验室认可评定的重点内容之一。随着人们对检验结果的可靠性的要求不断提高, 测量不确定度的评定日益关注和重视, 测量不确定度在分析化学领域也得到了深入研究和广泛的应用。本文以分光光度法测定水质总氰化物含量的不确定度为例, 依据国家质量技术监督局批

收稿日期:2010-07-18; 修回日期:2011-05-13

准发布的5测量不确定度评定与表示6(JJF1059-1999 并参考有关文献[2-5], 建立了分光光度法测定水质总氰化物含量的不确定度评定方法, 对测定过程中各影响因素进行分析评估最终得出测定结果的扩展不确定度。1 实验部分

1. 1 主要仪器与试剂

水中氰标准溶液:有证标准物质, 批号:1001(国家环境保护总局标准样品研究所 ; 盐酸、氢氧化钠、氯胺T 、异烟酸、吡唑啉酮都为分析纯试剂, 实验用水为去离子水, H elio s Gam ma 分光光度仪(美国热

作者简介:顾宗理(1958~ , 男, 上海人, 高级工程师, 主要从事环境化学监测和控制分析工作。E -mail:gz12015@yahoo. com M obile:139********

#398#化学世界 2011年

电集团制造。

1. 2 实验方法

采用H J484-2009方法测定水质总氰化物含量, 具体步骤为:向水样中加入磷酸和EDTA 二钠, 在pH <2的条件下, 加热蒸馏并在100mL 的接受瓶内预先加入1%

氢氧化钠溶液10m L 作为吸收液, 当接受瓶内的试样体积接近100mL 时停止蒸馏, 用少量水冲洗溜出液导管, 并用水稀释至刻度。然后取10mL 溜出液加入5mL 磷酸缓冲液混匀再加0. 2m L 氯胺T 混匀放置3~5min 后再加入5mL 异烟酸-吡唑啉酮

溶液发色40m in 后以试剂空白作为参比在638nm 波长处比色测定水质总氰化物含量。

1. 3 实验数据

取同批号样品6份, 蒸馏后收集置于100mL 容量瓶中作为母液待用。而后分别取10mL 馏出液进行测定样品中总氰化物含量其结果分别为:1. 105L g (55. 25L g /L , 1. 100L g (55. 00L g /L , 1. 106L g (55. 30L g /L , 1. 109L g (55. 45L g/L , 1. 102(55.

10L g /L , 1. 108(55. 40L g /L 。1. 4 数学模型

水质中总氰化物含量按式(1 计算

1

M =

V V 2

式中:M 为样品中总氰化物的质量浓度L g/L

m 依回归方程计算的总氰化物质量L g

V 水样体积mL

V 1 样品蒸馏时收集的馏出液体积m L V 2 比色时所取馏出液体积mL

(1

2 测量不确定度的主要来源

分光光度法测定水质总氰化物含量的不确定度来源可归纳如下:

2. 1 由回归方程拟合引入的相对标准不确定度u (m /m

2. 2 未知样品的配制稀释引入的相对标准不确定度u(V /V

2. 3 样品加标回收引入的相对标准不确定度u (R /R

2. 4 样品重复测试引入的相对标准不确定度u (x /x

3 不确定度评定和计算

3. 1 实验室所用容器引入的不确定度

以5m L 单标线移液管为例计算如下:体积校准的不确定度按供应商给定的容器容量允差为? 0. 015mL 服从均匀分布则:u(v 1-1 =0. 015/=0. 00866, 体积读数的不确定度按估读误差0. 005mL 同样也服从均匀分布则:u(v 1-2 =0. 005/3=0. 00289, 移液管和溶液温度与校正时的温度不同, 温差为4e , 水的膨胀系数为2. 1@10-4也服从均匀分布则:u (V 1-3 =2. 1@10-4@5@4/=0. 00242, 将以上三项合成得u (V 1 =u (V 1-1 +u (V 1-2 +u (V 1-3

=

00866+0. 00289+0. 00242=0. 00944相对标准不确定度为u 相对=u (V 1 /5=0. 00944/5=0. 00189. 其它实验所用容器引入的不确定度同5mL 单标线移液管一样计算, 并把计算结果列入表1中:

表1 实验所用容器引入的不确定度

容器5m L 移液管10m L 移液管100m L 容量瓶200m L 容量瓶250m L 容量瓶

不确定度符号u(V 1 u(V 2 u(V 3 u(V 4 u(V 5

校准0. 008660. 01150. 04620. 08660. 0866

不确定度分量

读数0. 002890. 02890. 1150. 2890. 462

温度0. 002420. 004850. 04850. 09700. 121

合成不确定度0. 009440. 03150. 1330. 3170. 485

相对标准不确定度0. 001890. 003150. 001330. 001580. 00194

3. 2 回归方程拟合引入的相对标准不确定度u (m /m

3. 2. 1 配制氰化物标准使用液引入的标准不确定度u(c s

总氰化物测量的工作曲线所用的氰化物标准溶液其定值证书是[20e , k =2, p

=95%, 氰化物的标准值为50. 0mg/L, 不确定度为2. 1mg/L]按均匀

分布转化成标准不确定度u(c o =2. 1/3=1. 21则相对标准不确定度u(c o /c o =1. 21/50=0. 0242, 标准溶液的配制方法:取5m L 氰化物标准溶液置于250mL 容量瓶中, 用水定容至刻度此标准溶液的浓度为1L g/mL, 标准使用溶液的浓度按式(2 计算

o 1

c s =V 5

(2

第7期化学世界 #399#

式中:c o 氰化物标准溶液的储备液浓度

V 1 5mL 单标线移液管, 移取的体积V 5 250mL 容量瓶, 量取的体积则相对标准不确定度:o c o

b 回归方程的斜率:b =0. 1235

A j 各标准溶液的吸光度值

以上数据代入(3 式得u(c q =0. 0278; 因此线

=

性回归方程引入的相对标准确定度为u(c q /c q =0. 0278/1. 105=0. 0252

上述校正过程得出回归方程拟合引入的2个不确定度分量u(c s /c s 、u(c q /c q 互不相关, 因此回归方程拟合引入的相对标准不确定度u(m /m 计算如下:

=m

s c s

s c s

+

1V 1

+

5V 5

上述3个不确定度分量相互独立, 把表1中u (V 1 与u(V 5 以及u(c o /c o 的数据代入, 且合成得

s 相对标准不确定度为:=

c s . 0242+0. 00189+0. 00194=0. 0244

3. 2. 2 线性回归方程引入的标准不确定度u(c q 对系列氰化物标准溶液进行测定, 结果列入表2中。

表2 系列氰化物标准溶液测定结果

分析编号12345678

氰化物质量/L g 0. 000. 200. 501. 002. 003. 004. 005. 00

0. 000. 02800. 06900. 1370. 2650. 3820. 5060. 616

吸光度, A 0. 000. 02700. 06800. 1320. 2610. 3800. 5050. 612

0. 000. 02800. 06600. 1380. 2630. 3840. 5010. 617

吸光度平均值0. 000. 02770. 06770. 1360. 2630. 3820. 5040. 615

+

q c q

=

. 0244+0. 0252=0. 0351

3. 3 未知样品的配制稀释引入的相对标准不确定度u(V /V

用200mL 容量瓶取水样置于蒸馏瓶中蒸馏, 馏出液定容至100m L, 再取出10m L 进行显色反应。此过程所用的玻璃器皿有200mL 和100mL 容量瓶, 10m L 的移液管由表1可知它们的相对标准不确定度分别为:u (V 4 =0. 00158, u (V 3 =0. 00133, u(V 2 =0. 00315, 各项不确定度分量相互独立, 将它们的不确定度分量合成。得到未知样品的配制稀释引入的相对标准不确定度u(v /v 如下:=v

u(V 2 V 2

+

u(V 3 V 3

+

u(V 4 V 4

=

. 00315+0. 00133+0. 00158=0. 003773. 4 样品加标回收引入的相对标准不确定度u (R /R

样品蒸馏过程中损失被测成份不可避免, 该过程引入的不确定度可通过加标回收进行评估。6次加标回收测定, 结果如表3所示:

表3 加标回收测得结果

原样品质量/L g

0. 56

加标量/L g

0. 50. 51. 51. 52. 02. 0

加标后测得/L g

1. 081. 04

2. 802. 864. 04

3. 92

回收率%10496. 085. 389. 310094. 0

以吸光度A 为纵坐标, 以氰化物质量L g 为横坐标, 用最小二乘法计算线性回归方程, 得数学模型为:A =0. 1235c +0. 0071, 式中斜率b =0. 1235, 截距a =0. 0071, 相关系数r =0. 9992. 样品溶液测试6次, 平均浓度为c q =1. 105L g(55. 25L g/L , 线性回归方程引入的标准不确定度u(c q 按(3 计算

r

u(c q =

b

式中:

++(c q - p m S xx (3

0. 561. 52

S r =

=1

[A

1. 52

j

-(a +bc j ]n -2

2

=0. 00704

2. 042. 04

S xx =

j =1

E (c

n

j

-c 2=24. 48

平均回收率R =94. 8%标准偏差S (r =6. 84%, 则标准不确定度u(R 和相对标准不确定度

u(R /R 分别为:

u(R =S (r /6=6. 84%/

6=2. 79%;

[4]

p 测试样品的次数为6次m 测试标准溶液的次数共24次

c j 各标准溶液的浓度值

c q 被测样品的平均浓度1. 105L g (55. 25L g /L c 系列氰化物标准溶液浓度的平均值1. 962L g

u(R /R =2. 79%/94. 8%=0. 0294 同时对平均回收率进行显著性检验, 以确定

#400#化学世界 2011年

平均回收率是否与1显著性差异, 回收率校准因子(1/R ec 是否在计算式中采用, 显著性检验采用t 检验方法:t =(1-R /u(R =(1-94. 8% /2. 79%=1. 86. 本实验t 值为1. 86, 小于临界值t 95. 5=2. 37说明平均回收率与1差异不显著, 在计算公式中不必采用校准因子。

3. 5 样品重复测试引入的相对标准不确定度

对本批样品重复测试6次(n =6 所得结果分别为:1. 105L g (55. 25L g/L , 1. 100L g (55. 00L g/L , 1. 106L g (55. 30L g/L , 1. 109L g (55. 45L g/L , 1. 102(55. 10L g /L , 1.

108(55. 40L g /L 则平均值为x =1. 105L g (55. 25L g /L , 标准偏差S x =0. 00346L g , 相对标准不确定度为:

=x ==0. 00128x X 61. 10564 各相对标准不确定度分量

表4 各相对标准不确定度分量一览表

符号u(m /m

名称

回归方程拟合引入的相对标准不确定度

相对标准不确定度0. 0351

. 0351+0. 00377+0. 0294+0. 00128=

0. 0460

故有:u(M =0. 0460@M =0. 0460@55. 25L g/L=2. 54L g/L

式中:M =55. 25L g /L 是被测样品的氰化物含量。

6 扩展不确定度

取包含因子k =2(置信概率为95% , 则扩展不确定度为:

U =2. 54L g /L @2=5. 08L g /L 7 本批样品测量结果可表示为

c =55. 2? 5. 1(L g/L , k =2(置信概率为95% 8 讨论

采用分光光度法测定本批样品中的总氰化物, 其含量为(55. 2? 5. 1 L g /L, k =2, 对其测量结果的不确定度进行了评定, 其测量结果的不确定度由多个分量组成, 这些分量基本上考虑了测量过程中的系统效应和随机效应所导致的测量不确定度, 因为合成不确定度的数值几乎完全取决于主要的不确定度分量。由以上评定可看出, 本

方法测量结果的不确定度主要来源于回归方程拟合引入的不确定度, 其次是样品加标回收引入的不确定度。为了尽可能降低其产生的不确定度值应做到:在检测过程

中严格按照实验室操作规范, 实验中使用的各种仪器和量器合格有效(经检定/校验

合格并在有效期内 , 使用的各种试剂应符合方法规定要求。综上述, 对测量结果的

不确定度进行评定, 反映了测量结果的科学性, 有利于实验室的质量控制。参考文献:

u(V /V 未知样品的配制稀释引入的相对标准不确定度0. 00377u (R /R u(x /x

u(M /M

样品加标回收引入的相对标准不确定度样品重复测试引入的相对标准不确定度被测样品溶液

0. 02940. 001280. 0460

图1 各相对标准不确定度分量直方图[1] 中国实验室国家认可委员会编. 化学分析中不确定度

的评估指南[M ], 北京:中国计量出版社, 2002:4-6. [2] JJF 1059-1999测量不确定度评定与表示[S], 北京:中

国计量出版社.

[3] 丁文. 化学分析计量[J], 2005, 14(3 :7-9. [4] 但德宗. 四川环境[J], 2007,

26(2 :42-48.

[5] 李继文, 王川. 化学分析计量[J], 2006, 15(5 :7-9.

5 合成不确定度

由于以上各不确定度分量互不相关, 则合成上述不

度+

分R

得:x

M

==

+m V

+

(上接第426页

[8] Cristo l S J. No rr is W P. Journal o f the Amer ican Chemica l Society [J], 1953, 75:632-636.

[9] 陈颖. 河北化工[J], 2007, 30(8 :35-36.

[10] 邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学(第三版[M ]. 北京:高等教育出版社, 2005. 257-291.

长度不确定度评定示例

用外径千分尺检验某主轴直径φ700 -0.019mm 的 测量不确定度评定报告 1.概述 1.1 测量依据:产品图纸(或生产工艺)编号□□□□# 1.2 环境条件:温度 (20±10)oC ; 相对湿度<70% RH 1.3 测量设备:一级50~75mm 外径千分尺,示值误差为±4μm。 1.4 被测对象:主轴的直径φ700-0.019mm ;材料为球墨铸铁α1= 10.4×10-6/℃ 1.5 测量方法:用外径千分尺直接测量 2.数学模型: 由于主轴直径值可在外径千分尺上直接读得,故: L=L S -L S (δα·Δt +αs ·δt) L — 被测主轴的直径。 L S — 外径千分尺对主轴直径的测量值。 δα—被测主轴线膨胀系数与外径千分尺线膨胀系数之差。 Δt — 被测主轴温度对参考温度20℃的偏差,本例为±10℃。 αs — 外径千分尺线膨胀系数,本例为11.5×10-6/℃。 δt — 被测主轴温度与外径千分尺温度之差,本例为±1℃。 3.灵敏系数 显然该数学模型是透明箱模型,必须逐一计算灵敏系数: 1)1(≈-?-=??=t s t S Ls f C δαδαL ; t S s L s f C δαα-=??==-70×1㎜℃=-7×104μm ℃; δα S t t L f C -=???=?=-70×1×10-6㎜/℃=-0.07μm/℃ δα δα??=/f C =-Ls Δt=-70×10㎜℃=-7×105μm ℃ t f C t δδ??=/ =-Ls αs=-70×11.5×10 -6 ㎜/℃=-0.805μm /℃ 4.计算各分量标准不确定度 4.1外径千分尺示值误差引入的分量u(L S ) 根据外径千分尺检定规程,示值误差e=±4μm , 在半宽为4μm 区间内,以等概率分布(均匀分布),则:u (L S ) =4/3=2.31μm u(L S )=|C LS |·u (L S )=1×2.31=2.31μm , 其相对不确定度 () () =?S S L u L u 0.1=1/10 , 自由度υ(Ls)=50 4.2被测主轴线膨胀系数不准确引入的分量u(αS ) 由于被测主轴线膨胀系数α1= 10.4×10-6/℃是给定的,是一个常数, 故 u(αS )= 0 , 自由度υ(αS )= ∞ 4.3测量环境偏离标准温度20℃引入的分量u(Δt) 测量环境偏离标准温度20℃的偏差为±10℃,在半宽为10℃范围内,以等概

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

食品中氰化物的测定

食品安全国家标准 食品中氰化物的测定 1范围 本标准规定了食品中氰化物的检测方法三 本标准第一法适用于蒸馏酒及其配制酒二木薯二包装饮用水二矿泉水中氰化物的检测,第二法和第三法适用于蒸馏酒及其配制酒二粮食二木薯二包装饮用水二矿泉水中氰化物的检测三 第一法分光光度法 2原理 木薯粉二包装饮用水和矿泉水中的氰化物在酸性条件下蒸馏出的氰氢酸用氢氧化钠溶液吸收,在p H=7.0条件下,馏出液用氯胺T将氰化物转变为氯化氰,再与异烟酸-吡唑啉酮作用,生成蓝色染料,与标准系列比较定量三 蒸馏酒及其配制酒在碱性条件下加热除去高沸点有机物,然后在p H=7.0条件下,用氯胺T将氰化物转变为氯化氰,再与异烟酸-吡唑啉酮作用,生成蓝色染料,与标准系列比较定量三 3试剂和材料 除非另有说明,本方法所用试剂均为分析纯,水为G B/T6682规定的三级水三 3.1试剂 3.1.1甲基橙(C14H14O3N3S N a):指示剂三 3.1.2酚酞(C20H14O4):指示剂三 3.1.3酒石酸(C4H6O6)三 3.1.4氢氧化钠(N a O H)三 3.1.5磷酸二氢钾(K H2P O4)三 3.1.6磷酸氢二钠(N a2H P O4)三 3.1.7乙酸(C2H4O2)三 3.1.8异烟酸(C6H5O2N)三 3.1.9吡唑啉酮(C10H10N2O)三 3.1.10氯胺T(C7H7S O2N C l N a四3H2O):保存于干燥器中三 3.1.11无水乙醇(C2H6O)三 3.1.12乙酸锌(C4H6O4Z n)三 3.2试剂配制 3.2.1甲基橙指示剂(0.5g/L):称取50m g甲基橙,溶于水中,并稀释至100m L三

二十三水中氰化物的测定

实验二十三水中氰化物的测定 一﹑实验目的 1.练习水样预蒸馏操作。 2.用比色法测定废水中氰化物。 二﹑实验原理 水样加入硝酸锌和酒石酸,在pH≈4的条件下进行预蒸馏,可蒸馏出简单氰和部分络合氰,流出液以1%氢氧化钠吸收。在中性条件下,水样中氰离子与氯胺T反应生成氯化氰,其与异烟酸作用经水解生成戊烯二醛衍生物,再与吡唑啉酮进行缩合反应生成蓝色络合物。比色测氰含量。 三﹑实验仪器 1.分光光度计 2.500mL全玻蒸馏器及连接导管 3.接收瓶(100mL容量瓶) 4.50mL酸式滴定管 5.250mL锥形瓶 6.50mL比色管 四﹑实验试剂 1.15%酒石酸溶液:取15g酒石酸(H 2C 4 H 4 O 6 )溶于100mL水中。 2.0.1% ﹑1%﹑2%氢氧化钠溶液。 3.0.05%甲基橙指示剂。 4.10%硝酸锌溶液:取10g硝酸锌[Zn(NO 3) 2 ·6H 2 O]溶于100mL水中。 5.0.02%试银灵指示剂:称取0.02g试银灵(对二甲氨基亚苄基罗丹宁),溶于100mL丙酮中。 6.铬酸钾指示剂:称取10g铬酸钾溶于少量水中,徐徐加入硝酸银溶液至产生微红色沉淀,放置过夜,过滤。用水稀释至100mL。 7.氯化纳标准溶液:称取0.1169g氯化纳(优级纯,预先经400--500℃灼烧至产生爆裂声后,然后在干燥器内冷却﹑储存)用水溶解,移入100mL容量瓶中定容,摇匀。溶液浓度为0.0200mol/L。 8.硝酸银标准溶液: ⑴AgNO 3 标液的配制:称取0.33g硝酸银溶于水中,稀释至 100mL。储于棕色试剂瓶中,待标定。

⑵AgNO 3标液的标定: ① 吸取10.0mL 氯化纳标准溶液于250mL 锥形瓶中,加入50mL 水,同 时另取一锥形瓶加入60mL 水做空白实验。 ②向溶液中加入4滴铬酸钾指示剂,用待标定的硝酸银溶液进行滴定,不断摇动锥形瓶,直至溶液由黄色变成砖红色为止,记下读数,平行测定两次,取平均值V 1,同样滴定空白溶液,取其平均值V 2。 2 10.10)/(V V C L mol -?= 硝酸银溶液浓度 式中:C —氯化纳标液浓度(0.0200mol/L ); V 1—滴定氯化纳标液所用硝酸银标液体积,mL ; V 2—滴定空白溶液时所用硝酸银标液体积,mL ; 9.磷酸盐缓冲溶液(pH 为7):称取34.0g 磷酸二氢钾和35.5g 磷酸氢二纳于烧杯内,加水溶解并稀释至1L 。 10.1%氯胺T 溶液:称取0.5g 氯胺T 溶于水,稀释至50mL ,摇匀,储于棕色瓶中。使用时配制(如置于冰箱中可保存3—7天)。 11.异烟酸-吡唑啉酮溶液: 异烟酸用液配制:称取1.5g 异烟酸,溶于24mL 2%氢氧化钠溶液中,加热至完全溶解,冷却后用水稀释至100mL 。 吡唑啉酮溶液配制:称取0.25g 吡唑啉酮(3-甲基-1-苯基-5-吡唑啉酮)溶于20mL N-二甲基甲酰胺中。 将异烟酸溶液与吡唑啉酮溶液按5:1(体积比)混合。临用前配制。 12.氰化钾标准溶液: ⑴氰化钾储备液的配制及其标定: 配制:称取0.25g 氰化钾(剧毒物!),用0.1%氢氧化钠溶液溶解并稀释至100mL ,储于聚乙烯瓶中。 标定:吸取10.0mL 氰化钾溶液于锥形瓶中,加入50mL 水和1mL 2%氢氧化钠溶液,再加2—8滴试银灵指示剂,用硝酸银溶液滴定至由黄色刚变为橙色为止,记录消耗硝酸银溶液的毫升数。平行测定两次,取平均值V 1。 同时取60mL 水,操作同上,做空白实验。取平均值V 2。 计算: 204.5)()/,(21?-?=-V V C ml mg CN 氰化钾标准溶液的浓度 式中:C —硝酸银标准溶液的浓度,mol/L ; V 1—滴定氰化钾标液时消耗硝酸银标液的体积,mL ; V 2—滴定空白时消耗硝酸银标液的体积,mL ;

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

海水氰化物的测定

FHZDZHS0041 海水氰化物的测定吡啶巴比土酸分光光度法 F-HZ-DZ-HS-0041 海水—氰化物的测定—吡啶巴比土酸分光光度法 1 范围 本方法适用于大洋、近岸、河口和沿岸排污口水体中氰化物的测定。 检出限:0.3μg/L-CN-。 2 原理 蒸馏出的氰化物在弱酸性(pH4.5)条件下,与氯胺T反应生成氯化氰,后者使吡啶开环,生成戊烯二醛,再与巴比土酸反应,产生红-蓝色染料,在波长579nm处,测定吸光度。 干扰测定的物质主要有氧化剂、硫化物、高浓度的碳酸盐和糖类等。干扰物质的检测与消除干扰方法见第6.1条。脂肪酸不干扰本法的测定。 3 试剂 除非另作说明,本法中所用试剂均为分析纯,水为二次蒸馏水或等效纯水。 3.1 丙酮(CH3COCH3)。 3.2 无水乙醇(CH3CH2OH)。 3.3 氢氧化钠溶液,2g/L 3.4 氢氧化钠溶液,0.01g/L:取5mL氢氧化钠溶液(2g/L)稀释至1000mL。 3.5 磷酸二氢钾缓冲溶液,C(KH2PO4)=1.0mol/L:称取136g磷酸二氢钾(KH2PO4)溶于水,稀释至1000mL(pH 4.4~4.7),盛于棕色试剂瓶中。 3.6 氯胺T溶液,10g/L:称取1g氯胺T (CH3C6H4SO2NClNa·3H2O)加水溶解并稀释至100mL。盛于棕色试剂瓶中,低温避光保存,有效期一周。 注∶须经常检查氯胺T是否失效,检查方法如下: 取配成的氯胺T若干毫升,加入邻甲联苯胺,若呈血红色,则游离氯(Cl2)含量充足,如呈淡黄色,则游离氯(Cl2)不足,应重新配制。 3.7 吡啶-巴比土酸溶液:称取6g巴比土酸于100mL容量瓶中,加入30mL吡啶[C5H5N,ρ0.978g/mL],6mL盐酸(ρ1.19g/mL),剧烈振荡至固体消失,如不溶解,可置于45℃水浴中加热,直至溶解。加水至刻度,摇匀。冰箱中保存,有效期一周。若溶液出现浑浊,须重新配制。 3.8 乙酸锌溶液,100g/L:称取50g乙酸锌[Zn(CH3COO)2]加水溶解并稀释至500mL。 3.9 酒石酸溶液,200 g/L:称取100g酒石酸[HOOC(CHOH)2COOH]加水溶解并稀释至500mL。 3.10 氯化钠标准溶液,0.0192mol/L:取氯化钠(NaCl,优级纯)于瓷坩埚中,于450℃高温炉中灼烧至无爆裂声,置干燥器中冷却至室温。准确称取1.1221g氯化钠,加水溶解,移入1000mL 容量瓶中用水稀释至刻度,摇匀。 3.11 硝酸银标准溶液 称取3.76g硝酸银,溶于水并稀释至1000mL,贮存于棕色试剂瓶中,此溶液每周标定一次。 标定:

分析化验 分析规程 氰化物的测定

氰化物的测定 方法一硝酸银滴定法 1 适用范围 本方法适用于CN-含量在0.25~100mg/L间含氰污水中CN-的测定。 2 分析原理 向水样中加入酒石酸和硝酸锌,在pH=4的条件下加热蒸馏,简单氰化物和部分配合物(如锌氰配合物)均以氰化氢形式被蒸馏出,并用氢氧化钠溶液吸收。用硝酸银标准滴定溶液滴定吸收液中的氰离子,生成可溶性的银氰配离子[Ag(CN)2-]。过量的银离子与试银灵指示液反应,溶液由黄色变为橙红色,指示终点的到来。 3 试剂和仪器 3.1 试剂 3.1.1 硝酸银标准滴定溶液[C(AgNO3) = 0.01mol/L。(临用前配制) 3.1.2 150g/L酒石酸溶液。 称取15g酒石酸,溶于水后,稀释至100 mL。(有效期六个月) 3.1.3 0.5g/L甲基橙指示液。 称取0.05g甲基橙,溶于70℃的水中,冷却,稀释至100mL。(有效期六个月) 3.1.4 100g/L硝酸锌[Zn(NO3)2·6H2O]溶液。 称取10g硝酸锌[Zn(NO3)2·6H2O],溶于水后,稀释至100 mL。(有效期六个月) 3.1.5 20g/L或40g/L NaOH吸收液。 称取20g氢氧化钠(AR),溶于水后,稀释至1000mL,浓度为20g/L NaOH 吸收液。(有效期六个月) 称取40g氢氧化钠(AR),溶于水后,稀释至1000mL,浓度为40g/L NaOH 吸收液。(有效期六个月)

3.1.6 试银灵指示液 称取0.02g试银灵(对二甲氨基亚苄基罗丹宁)溶于100mL 丙酮中,贮于棕色瓶中,置于暗处,有效期一个月。 3.2 仪器 3.2.1 500mL 蒸馏烧瓶。 3.2.2 蛇形或球形冷凝管。 3.2.3 可调电炉(600W或800W)。 3.2.4 250mL 锥形瓶(用作吸收瓶)。 3.2.5 10mL 棕色酸式滴定管。 4 操作步骤 4.1 氰化氢(HCN)的蒸出和吸收 4.1.1 量取过滤后水样200mL,移入500mL 蒸馏烧瓶中(若氰化物含量较高。可酌量少取,加水稀释至200mL),加数粒玻璃珠。 4.1.2 往吸收瓶(250mL 锥形瓶)中加入20mL 20g/L NaOH溶液作为吸收液。 4.1.3 将蒸馏烧瓶、冷凝管、吸收瓶和接引管依次连接,并使接引管下端插入吸收液液面以下。检查各连接部位,使其严密。 4.1.4 从蒸馏烧瓶顶端加入10mL 硝酸锌溶液,7~8滴甲基橙指示剂,迅速加入5mL 酒石酸溶液,立即盖好瓶塞,使瓶内溶液保持红色,打开冷却水,以2~4 mL/min馏出液速度进行加热蒸馏。 4.1.5,当吸收瓶内溶液体积接近100mL 时停止蒸馏。用少量水洗冷凝管和馏出液导管后,取下锥形瓶,用水稀释至100mL 标线处。此即水样的碱性馏出液A。 4.2 空白蒸馏及吸收 按4.1.1~4.1.5操作,用试验用水(200mL)代替样品进行空白试验,得到空白试验流出液B。 4.3 样品测定 4.3.1 于100mL 水样的碱性流出液A中加入0.2mL 试银灵指示剂,摇匀。用硝酸银标准溶液滴定至溶液由黄色变为橙红色时,即为终点,计录用量

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

三种白酒中微量氰化物检测方法的比较

三种白酒中微量氰化物的检测方法的比较 摘要:研究和分析了分光光度法、离子色谱法、自动顶空-气相色谱法三种测定白酒中微量氰化物的方法,比较了三种方法测定的线性相关性、方法稳定性和加标回收率。经过实验研究表明,所建立的自动顶空-气相色谱法方法较稳定,线性相关性较好,操作简单,结果精准,适用于白酒企业大量样品中微量氰化物的日常检测。 氰化物是指带有氰离子(CN-)或氰基(-CN)的化合物,通常为人所了解的氰化物都是无机氰化物,速称山奈或山埃。白酒中的氰化物是由含有氰糖苷的原料在发酵过程中水解产生的,其中氢氰酸(HCN)的毒性较强,最低致死量为0.05g。目前,白酒中氰化物的检测方法较多,主要有滴定法、分光光度法、原子吸收法、荧光法、离子色谱法、高效液相色谱法、气相色谱法等。对于蒸馏酒中氰化物的测定,国家标准分析方法为GB/T 5009.48中的异烟酸-吡唑酮分光光度法,但是,在实际样品测定中出现了较多问题:在加入显色剂后,很多样品出现浑浊现象,甚至某些样品显黄绿色、黄色,引起测定结果不准确或者是无法测定,针对上述情况,我们研究了分光光度法测定白酒中氰化物的改进方法,采用强碱固定白酒中的氰化物,以异烟酸-巴比妥酸为显色剂对白酒中的氰化物进行测定。在采用离子色谱仪测定白酒中氰化物时,发现直接对白酒稀释过滤后进样分析不可行,稀释10倍样品中目标物峰面积与稀释20倍样品中目标物峰面积不成倍数关系,针对离子色谱法中存在的问题,我们研究了碱固定法和硫酸回流法对白酒样品进行前处理。针对白酒中微量氰化物的测定,我们还研究了自动顶空-气相色谱法,并对比分析了所建立的分光光度法、离子色谱法和自动顶空-气相色谱法,通过测定相同白酒样品中的氰化物来考察这些方法的稳定性、准确性、实用性,以为白酒中微量氰化物的测定提供参考。 1 材料与方法 1.1 仪器与试剂 1.1.1仪器 水浴锅;CARY300紫外分光光度计;戴安3000离子色谱仪;安捷伦7890气相色谱仪(带自动顶空进样器);水浴锅;全玻蒸馏器;电炉 1.1.2 标准溶液

固废中氰化物的测定作业指导书

一.方法原理 在中性条件下,处理后的样品中的氰化物与氯胺T反应生成氯化氰,再与异烟酸作用,经水解后生成戊烯二醛,最后与吡唑啉酮缩合生成蓝色染料,在波长638nm处测量吸光度。 二.方法的适用范围 取样100 mL时的方法最低检出限为0.004mg/L,适用于固体废物中氰化物的监测。在本方法选定的仪器及前处理条件下,未发现有干扰测定的物质。 三.仪器 1. 分光光度计或比色计。 2. 恒温水浴装置,控温精度±1℃。 3. 250ml锥形瓶。 4. 25ml具塞比色管。 5. 一般实验室常用仪器。 本标准均使用经检定为A级的玻璃量器。 四.试剂 1. 氢氧化钠溶液ρ(NaOH)=1g/L:称取1g氢氧化钠溶于水中,稀释至1000ml,摇匀,贮于聚乙烯塑料容器中。 2. 氢氧化钠溶液ρ(NaOH)=10g/L:称取10g氢氧化钠溶于水中,稀释至1000ml,摇匀,贮于聚乙烯塑料容器中。 3. 氢氧化钠溶液ρ(NaOH)=20g/L:称取20g氢氧化钠溶于水中,稀释至1000ml,摇匀,贮于聚乙烯塑料容器中。 4. 磷酸盐缓冲溶液(PH=7):称取34.0g无水磷酸二氢钾(KH2PO4)和3 5.5g无水磷酸氢二钠(Na2HPO4)溶于水,稀释定容至1000ml,摇匀。 5. 氯胺T溶液ρ(C7H7ClNNaO2S·3H2O)=10g/L:称取1.0g氯胺T溶于水,稀释定容至100ml,摇匀,贮于棕色瓶中,用时现配。 注:氯胺T发生结块不易溶解,可致显色无法进行,必要时需用碘量法测定有效氯浓度。氯胺T固体试剂应注意保管条件以免迅速分解失效,勿受潮,最好冷藏。 6.异烟酸-吡唑啉酮溶液。 6.1 异烟酸溶液:称取1.5g异烟酸(C6H6NO2,iso-nicotinic acid)溶于25ml 氢氧化钠溶液(3),加水稀释定容至100ml。 6.2 吡唑啉酮溶液:称取0.25g吡唑啉酮(3-甲基-1-苯基-5-吡唑啉酮, C10H10ON2,3-methy-1-phenyl-5-pyrazolone)溶于20mlN,N-二甲基甲酰胺[HCON(CH3)2,N,N-dimethyl formamide]。 6.3 异烟酸-吡唑啉酮溶液。 将吡唑啉酮溶液(6.2)和异烟酸溶液(6.1)按1:5混合,用时现配。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

至今见过的最规范的不确定度评定的例子!

至今见过的最规范的不确定度评定的例子! 不确定度是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。在报告结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。今天,仪器论坛版友六弦琴为大家找来了不确定度评定的范例,供大家参考。如有疑问,请点击阅读原文版友将为大家详细解答 点击图片查看大图不确定度评定中需要注意的几个问题a) 抓住影响测量不确定度主要分量的评估,避免漏项。通常测量重复性分量、标准物质不确定度分量、工作曲线变动性分量等在合成标准不确定度中所占比重较大,须逐一评估。对某些不可能进行多次的测定,无重复性数据,应尽可能采用方法精密度参数或以前在该条件下的测试数据进行评估。b)忽略次要不确定度分量的影响。有些分量量值较小(属微小不确定度),对合成不确定度的贡献不大。例如,一个分量为1.0,另一个分量0.33,二者的合成不确定度为1.05,相差5%,即分量0.33在合成标准不确定度中的贡献可忽略。通常试料称量、相对原子量、物质的摩尔质量等分量相对于测量重复性、工作曲线变动性分量要小得多,一般可忽略。 c)不确定度评估中避免重复评估。如当已评估了测量重复性

分量,不必再评估诸如样品称量、体积测量、仪器读数的重复性分量。 d)不应将一些非输入量的测量条件当作输入量评估。例如,重量法中高温炉灼烧温度的变动性,测定碳、硫时氧气纯度的变动性,光度分析中波长的精度等,它们不是输入量,其对测量结果的影响反映在测量重复性中,不应将其作为分量进行评估。 e)合成标准不确定度和扩展不确定度通常取一位或两位有效数字。计算过程中为避免修约产生的误差可多保留一位有效数字。修约时可采用末位后面的数都进位而不舍去,也可采用一般修约规则。测量结果和扩展不确定度的数位一致。

分光光度法测定水质总氰化物含量的不确定度评定(精)

第7期化学世界 #397# 分光光度法测定水质总氰化物含量的不确定度评定 顾宗理 (上海市轻工业研究所有限公司分析测试中心, 上海200031 摘要:根据5测量不确定度评定与表示6(JJF1059-1999 对水质总氰化物含量测定进行测量不确定度的分析与评定。分别计算各分量的不确定度, 再计算出合成不确定度, 并取k =2(置信概率95% 得出扩展不确定度。建立的不确定度评定方法适合于分光光度法测定水质总氰化物含量的不确定度的分析。 关键词:分光光度法; 不确定度评定; 水质总氰化物含量中图分类号:O 657. 32 文献标志码:A 文章编号:0367-6358(2011 07-0397-04 Evaluation of U ncertainty for the Determination of Content of T otal Cyanide in Water by Spectrophotomet ry GU Zong -li (S hangh ai L ig ht I ndu stry Resear ch Institute Co. , L td A nalytica l Te sting Center , S hangh ai200031, China Abstract:The uncer tainty for the determination o f co ntent o f total cy anide in w ater by spectrophotometry w as studied based on 5Evaluatio n and Expressio n of Uncertainty M easurem ent 6(JJF1059-1999 . T he combined uncertainty w as obtained by combining all standard uncertainty, then the expanded uncertainty w as calculated by using a coverage facto r k =2, giving a level of confidence of approx im ately 95%.This method is appropriate to be used in the uncertainty ev aluation for the determination of content of to tal cyanide in w ater by spectropho to metr y.

总氰化物浓度的测定

总氰化物浓度的测定 标准曲线的绘制 (1)用分析天平准确称取0.2503g分析纯氰化钾溶于100mL水中,则此溶液1mL 相当1mg的CN—标准贮备液。(空烧杯:45.5675g,总重:45.8178g)(2)取标准贮备液2.5mL,用250mL容量瓶定容到100mL,此为标准中间液。 (3)取标准中间液2.5mL,用25mL比色管稀释成25mL溶液,此为标准使用液。 (4)分别取标准适用液0、0.3、1、2、3、4、5mL于25mL比色管中。 (5)加少量蒸馏水,加入1~2滴醋酸酸化,加饱和溴水1~2滴呈现黄色不退,摇匀静置10分钟。 (6)加数滴0.5%硫酸肼至黄色褪去再加过量一滴,摇匀,加3mL吡啶联苯胺溶液,定容至10mL,摇匀,静置15分钟。 (7)于520波长下测定吸光度,根据数据绘制标准曲线。 总氰化物浓度的测定 原理:溶液中的CN与饱和溴水反应生成溴化氰,再与吡啶联苯胺反应生成不同色度的紫红色染料,在520纳米处有最大吸光度。 本方法最低检出浓度为0.05毫克每升。测定上限为10毫克每升。 主要试剂及仪器: 冰醋酸:3:7 溴水:先加入小量溴素,再加入水即可 硫酸肼溶液:0.5% 吡啶联苯胺溶液(显色剂)(60ml配置方法):取0.5克联苯胺容于10ml浓度为2%盐酸中并加热,后取50ML浓度为60%的吡啶溶液 氰根标准溶液:取0.2503g分析纯氰化钾溶于100mL水中,则此溶液1mL相当1mg 的CN-标准溶液。 25mL具塞比色管、721比色分光光度计 步骤: (1)取过滤后水样1~5mL于25mL比色管中,加少量蒸馏水,加入1~2滴醋酸酸化,加饱和溴水1~2滴呈现黄色不退,摇匀静置10分钟。 (2)加数滴0.5%硫酸肼至黄色褪去再加过量一滴,摇匀,加3mL吡啶联苯胺溶液,定容至10mL,摇匀,静置15分钟。

白酒中氰化物测定方法的探讨

白酒中氰化物测定方法的探讨 随着今年出现的白酒中氰化物超标的事件的出现,白酒中氰化物的检测成为各大酒厂和主管部门的当务之急。本文中主要介绍了利用紫外可见分光光度计检测白酒中氰化物的方法的改进和探讨。在本方法的实验中相关性系数=0.9998,回收率93%-110%。 标签:白酒氰化物紫外可见分光光度计 1 概述 食品安全是国家和公众近年来普遍关注的问题,氰化物是严重危害食品安全剧毒化合物。因此氰化物是酒类的一项重要食品安全检测指标。由于白酒中的氰化物主要来自原料,以木薯和木薯类粮食酿造的酒,因它们含有氰苷类在生产过程中会水解生产氢氰酸。虽然大部分氢氰酸在原料蒸煮时可挥发,但有少量部分残留在酒中。因为氰化物剧毒,所以我国在相应的国标GB2757-1981[1]中规定了白酒中的限量。我国规定了以木薯为原料的酒中氰化物的含量≤5mg/l,以代用品为原料的酒中氰化物的含量2mg/l。 国标GB5009.48-2003[2]规定了蒸馏酒与配制酒卫生标准的检测方法,但是该方法中由于对化学试剂的用量和浓度有明确的限制,在调节溶液的PH值只有0.8ml的量,这样在做实验的会很容易超出10ml。同时在实验中样品中加入异烟酸-吡唑啉酮溶液时会出现白色浑浊现象,干扰测定样品中氰化物的浓度。经过查找相关的资料知道干扰物质是醛、高级醇等物质。 2 实验部分 2.1 仪器和试剂 2.2 實验方法 2.2.1 样品的前处理 如果白酒样品浑浊或有色按照文献[2]进行脱色,取2ml的滤出液于10ml的具塞比色管中,加氢氧化钠(2g/l)至5ml,然后放置10分钟。 正常的白酒样品直接吸取1ml于10ml的具塞比色管中,加氢氧化钠(2g/l)至5ml,然后放置10分钟。 2.2.2 氰化物标准样管的制作 用移液枪吸取1.0ml于50ml的容量瓶中,加2g/l的氢氧化钠溶液至100ml,充分混匀。然后分别用移液枪吸取其溶液0ml、0.5ml、1.0ml、1.5ml、2.0ml、2.5ml 于10ml的比色管中,然后加2g/l的氢氧化钠溶液至5ml,充分混匀。 2.2.3 溶液的PH值的调节 于样品管和标准管中分别加入2滴酚酞指示剂,然后加入乙酸(1+6)调至红色褪去,后用氢氧化钠溶液(20g/l)调至进红色。 2.2.4 显色和测定 然后加入2 ml磷酸盐缓冲溶液(如果室温低于20℃即放入25℃-30℃水浴中10min),再用移液枪加入0.2ml氯胺T溶液(10g/l),摇匀放置3min,加入2.0ml异烟酸-吡唑啉酮溶液,加水稀释至刻度,摇匀,在25℃-30℃放置30min,取出(如果样品出现白色的浑浊现象,就利用5ml的一次性针筒注射器和直径13mm孔径0.22μm的一次性针筒过滤器对氰化物的标样和样品全部过滤)后用1cm石英比色皿以空白标准试样调节零点,后于波长638nm处测5中不同浓度的标准溶液与空白溶液的绝对吸光度。仪器将自动绘制标准曲线。最后测量样品

测量不确定度评定实例(完整资料).doc

此文档下载后即可编辑 测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 2 4 D v π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定度21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。 ①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()m m 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量

高度h 的6次测量平均值的标准差: ()m m 0026.0=h s 高度h 的误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围0.005mm ±,按均匀分布,示值的标准不确定度 0.0029 q u == 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3 由示值误差引起的高度测量的不确定度 q h u h V u ??= 3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定 ()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定 当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=?==c ku U 5.体积测量结果报告 () m m .93.88063±=±=U V V 考虑到有效数字的概念,体积测量的结果应为 () m m 48073±=V

不确定度评定规范(计量)

中汽长电股份有限公司 1. 目的 明确测量不确定度评定方法.种类.确保测量设备不确定度的正确评定,合理利用测量结果,满足计量校对要求. 2. 适用范围 为证实产品质量符合要求所需的测量设备和技术合同所提出要求的须给出不确定度的测量设备. 3. 职责 3.1本单位最高标准始建时,报上级计量部门对不确定度认可发证 方可使用,当主标准更换后其不确定度重新评定. 3.2本企业测量设备由计量检定人员按GB/T19022.1-1994给出测量 不确定度. 3.3本企业的试验设备由有关部门(设备设计.设备管理.设备使用) 给出有关信息,由检定人员给出不确定度. 信息指: (1) 设备名称.使用单位及地点. (2) 试验目的和要求. (3) 技术与性能要求. (4) 试验的数据. 4. 不确定度评定方法 4.1 不确定度采用A.B两类方法其选择可根据具体情况确定. 4.2 A类方法用所得观测列按统计方法进行评定. 4.3B类评定方法在实际测量中,有时不能或不需重复测量,须根据 有关信息进行科学判断估计作出. (1) 以前的测量数据(如计量标准数据).

(2) 有关材料及仪器特点.性能的经验或一般知识. (3) 制造说明书. (4) 检定校准证书提供的数据(如证书开出的测量结果). (5) 手册赋予参考数据的不确定度. 4.4测量设备来源不确定度由于须对量值溯源,可由上一级计量标 准的不确定度取得.也可利用所得检定证书或有关规范所给出的数据. 4.5按检定规程经过检定合格,不超过最大允许误差,使用者不必考 虑评定测量不确定度. 4.6测量设备具有相应检定规程一般只给出测量结果,不标明不确 定度数值用户有文件规定时,可给出评估值. 4.7本企业设计自制的试验设备按企业制定的不确定度校准规范进 行评定. 4.8自行设计制造的试验设备由设计部门对其装置提出具体要求, 使用单位编制校准规范,并提供试验数据.由计量中心给出不确定度, 技术部门依据计量中心给出的不确定度结果作出确认. 4.9使用单位按校准规范确定的周期,向计量中心提交试验数据.不 确定度评定按周期进行. 5. 引用文件 GB/T19022.1-1994 ISO10012-1 ISO10012-2 6. 质量记录: 试验设备不确定度登记表

相关文档
最新文档