变形监测技术要求

变形监测技术要求
变形监测技术要求

针对目前变形监测项目应符合以下规范要求

基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。

变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。

1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

将水准仪置平在二支水准标尺的中间,仪器距标尺约30米或40米,前后大约等距离,读取标尺上的读数得到二点的高差值。搬迁仪器至二支标尺的一内侧或外侧均可,此时,仪器至标尺的距离分别为近距离的标尺只是几米,而远距离的标尺已是几十米。同样,测量这二点的高差值,如果二次测得的高差相等,说明仪器i角为零。高差不等就说明仪器存在着i角的误差。

如:仪器在中间,读取A尺的读数a1=0962,B尺的读数b1=1062

仪器在一侧,读取A尺的读数a2=0835,B尺的读数b2=0933

h1=-1062+0962=-0100

h2=-0933+0835=-0098

h=-0098+0100=+2mm

按小角公式计算i角;

i=Δ·ρ/s=2mm×206265”/60000mm=41/6”=7”

理论上不应在日出后或日落前约半小时、太阳中天前后、风力大于四级、气温突变时以及标尺分划线的成像跳动而难以照准时进行观测。观测前半小时,应将仪器至于露天阴影下,使仪器与外界气温趋于一致。使用数字水准仪时还应进行预热。当测站观测限差超限时,应立即重测;当迁站后发现超限时,应从稳固可靠的固定点开始重测。

2、各级别水平位移观测的平面基准点(含方位定向点)不应少于3个,基准点与工作基点应方便检核效验。大型的工程项目,水平位移基准点应采用具有强制对中装置的观测墩。基准网布设可用测角精度±1”级;测距精度±2mm+2ppm*D级全站仪,(±2mm是仪器固定误差,2代表仪器本身和大气折光所引起的比例误差,ppm相当于百万分之几也就是10^-6,D代表全站仪实际所测距离,如实际所测距离为1公里,误差就是2mm)宜采用独立坐标系统,必要时可与国家坐标系统联测。二等水平位移监测变形观测点的点位中误差±3mm,平均边长150m,最弱边相对中误差≤1/70000。工作中可采用极坐标法,必要时可双测站。监测主体上的水平位移监测点可用棱镜反射,距离短时也可用反射片。监

测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大位移时可加密监测频率;连续一个月位移趋势趋于稳定状态(无位移差,纯属仪器误差)的情况下,可要求减少监测频率。

变形监测作业开始前,应收集相关水文地质,岩土勘察工程和设计图纸,并根据各类因素进行方案设计。方案设计中应包括:监测目的,精度等级,监测方法,监测基准网布设,监测周期,项目预警值,和使用的仪器设备等内容。

每期监测结束后,应及时处理监测数据。提交每次的监测数据报表;根据施工情况提交阶段性报告(体现随时间变化的变形曲线);项目结束后提交最终报告。当数据变化量达到预警值或接近允许值时;出现变化异常时须立即通知建设单位和施工单位采取相应措施。

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

水库大坝表面变形自动化监测新技术

水库大坝表面变形自动化监测新技术 徐忠阳 (索佳公司北京代表处,北京 100004) 一、引言 有关资料标明,我国河川年径流量总量约2780Gm3,水能资源十分丰富,其中理论蕴藏量为676GW,可开发为378GW,为世界第一位。为了充分利用这些水利和水能资源,新中国刚成立时,政府就十分注意兴修水利,造福人类,到目前已建水库堤坝约8.7万座,其中绝大部分(约8万座)建于20世纪50~70年代。但是,由于历史原因,有相当部分水库堤坝未按基本程序办事,是靠群众运动建造的,因此存在工程质量差、安全隐患多的问题。经过几十年的运行,已经到了病险高发期。 水利工程即可以造福人类,如管理不善也会给社会带来惨重灾难和巨大的经济损失。历史上因水库溃坝给下游造成的毁灭性灾难并不鲜见。因此加强水库大坝的安全管理必不可少,其中大坝变形监测就是大坝安全管理的重要内容之一。 二、目前水库大坝变形监测的主要技术手段 目前,在大坝安全监测技术规范中,主要有《土石坝安全监测技术规范》和《混泥土坝安全监测技术规范》。 1、土石坝安全监测技术简介 在《土石坝安全监测技术规范》中,把大坝的变形监测内容分为:表面变形、内部变形、裂缝及接缝、混泥土面板变形及岸坡位移。 大坝表面变形监测主要分为竖向位移监测和水平位移监测。 (1)竖向位移监测的方法主要是精密水准法,或连通管(静力水准)法; (2)水平位移又分为横向(垂直坝轴线)位移和纵向(平行于坝轴线)位移。 a. 横向位移的监测方法主要是视准线法(活动标法、小角法、大气激光准直法等);有必要且有条件时,可用三角网前方交会法观测增设工作基点(或位移测点)的横向水平位移。 b. 纵向水平位移观测,一般用因钢尺测量,或用普通钢尺加改正系数,有条件时可用光电测距仪测量。 (3)混泥土面板变形及岸坡位移监测的技术方法与大坝表面变形监测基本相同。 2、混泥土坝安全监测技术简介 《混泥土坝安全监测技术规范》规定:变形监测项目主要有坝体变形、裂缝、接缝以及坝基变形、滑坡体及高边坡的位移等。 (1)坝体、坝基、滑坡体及高边坡的水平位移监测 a. 重力坝或支墩坝坝体和坝基水平位移一般采用引张线法、真空激光准直法和垂线法监测。对于短坝,条件有利时也可用视准线法或大气激光准直法。

变形监测技术与应用

1.什么是变形? .什么是变形监测?变形监测的目的是什么?变形监测的意义? 变形监测的主要内容有哪些? 答:变形是物体在外来因素作用下产生的形状和尺寸的改变。 变形监测是对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。 目的:1、分析和评价建筑物的安全状态。2、验证设计参数。3、反馈设计施工质量。4、研究正常的变形规律和预报变形的方法。 意义:1、对于机械技术设备:则保证设备安全、可靠、高效地运行:为改善产品质量和新产品的设计提供技术数据。 2、对于滑坡:通过监测其随时间的的变化过程:可进一步研究引起滑坡的成因:预报大的滑坡灾害。 3、通过对矿山由于矿藏开挖引起的实际变形的观测:可以控制开挖量和加固等方法:避免危险性变形的发生:同时可以改进变形预报模型。 4、在地壳构造运动监测方面:主要是大地测量学的任务。但对于近期地壳垂直和水平运动等地球动力学现象、粒子加速器、铁路工程也具有重要的工程意义。 内容:现场巡视、环境量监测、位移监测、渗流监测、应力、应变监测、周边监测。 2.变形监测技术的发展趋势。 答:由于变形监测的特殊要求:一般不允许监测系统中断监测:就要求监测系统能精确、安全、可靠长期而又实时地采集数据:而传统的设备难以满足要求:因此:科研人员在现有自动化监测技术的基础上:有针对性的研发精度高、稳定性好自动化监测仪器和设备。这方面成果有:自动化监测技术、光纤传感检测技术、CT技术的应用、GPS 在变形监测中应用、激光技术的应用、测量机器人技术、渗流热监测技术、安全监控专家系统 3. 变形监测工作有何特点:常用变形监测技术方法有哪些? 答:特点:1、周期性重复观测2、精度要求高3、多种观测技术的综合运用4、监测网着重于研究点位的变化。 测量技术:1、常规大地测量方法。如:三角测量、交会测量、水准测量。2、专门的测量方法。如:视准线、引张线测量方法。3、自动化监测方法。4、摄影测量方法。5、GPS等新技术的应用。 4. GPS用于变形测量有何优点? 答:速度快、全天候观测、测点间无需通视、自动化程度高:能进行同步变形监测:并实现了数据采集、传输、处理、分析、显示、存储等:测量精度可达到亚毫米级。6.变形观测中观测精度是如何确定的? 变形观测中确定观测周期的原则: 答:如果观测的目的是为了使变形值不超过某一允许的数值而确保建筑物的安全:则其观测的中误差应小于允许变形值的十分之一~二十分之一:如果观测的目的是为了研究其变形的过程:则其中误差应比这个数小得多。当存在多个变形监测精度要求时:应根据其最高精度选择相应的精度等级:当要求精度低于规范最低精度要求时:宜采用规范中规定的最低精度。变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则:根据单位时间内变形量的大小及外界影响因素确定。 7.为什么要对变形监测资料进行检核?检核的方法有哪些? 答:资料分析工作必须以准确可靠的的监测资料为基础:在计算分析之前:必须对实测资料进行校核检验:对监测系统和原始资料进行考证。这样才能得到正确的分析成果:发挥监测资料应有的作用。 校核方法:任意观测元素:如高差、方向值、偏离值。倾斜值等/:在野外观测中均具有本身的观测校核方法:可参考有关的规范要求。进一步校核是在室内所进行的工作:具体有:1、校核各项原始记录检查各次变形值的计算是否有误。可通过不同方法的验算、不同人员的重复计算来消除监测资料中可能带有的错误。2、原始资料的统计分析。可采用统计方法进行粗差检验。3、原始实测值的逻辑分析。根据监测点的内在物理意义来分析原始实测值的可靠性。 8.如何用一元线性回归分析法对变形资料进行检核? 答:1、利用式求得变量y和x的相关系数:查阅相关系数的临界值表:判断y和x线性相关是否密切。2、利用式na+[x]b-[y]=0[x]a+[xx]b-[xy]=0 (n:观测值的个数、[]:求和计算:求回归方程=a+bx的回归系数a,b,建立回归方程。3、在回归直线两侧根据2s画两条平行线:检查新的变形值是否出现在这两条直线所夹的区间内:当观测值超出这一区间时:应作专门分析。 9.变形观测资料整理的主要内容包括哪些?成果表达的形式有哪些? 答:内容:1、收集资料:如工程或观测对象的资料、考证资料、观测资料及有关文件等。2、审核资料:如检查收集的资料是否齐全:审查数据是否有误或精度是否符合要求:对间接资料进行转换计算:对各种需要修正的资料进行计算修正:审查平时分析的结论性意见是否合理等。3、填表和绘图:将审核过的数据资料分类填入成果统计表:绘制各种过程线、相关线、等值线图等:按一定顺序进行编排。 4、编写整理成果说明:如工程或其他观测对象情况、观测工作情况、观测成果说明等。 成果:文字、表格、图形:也可采用现代科技如多媒体技术、仿真技术、虚拟现实技术进行表达。变形监测、分析、预报的技术报告和总结是最重要的成果。 13.工程建筑物变形的原因是什么?工程建筑物变形监测的内容及意义是什么? 答:原因:建筑的自重、使用中的动载荷、振动或风力因素引起的附加载荷、地下水位的升降、地质勘探不充分、设计错误、施工质量差、施工方法不当等。 内容:1、垂直位移监测2、水平位移监测3、倾斜观测4、裂缝观测5、挠度观测6、摆动和转动观测 意义:1、掌握建筑物的稳定性:为安全运行诊断提供必要的信息:以便及时发现问题并采取措施。2、理解变形的

现代变形监测重点内容与思考题答案

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

变形监测技术要求

针对目前变形监测项目应符合以下规范要求 基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。 变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。 1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

变形监测的若干新技术

变形监测的若干新技术 秦滔 摘要:主要介绍了光纤监测技术、卫星合成孔径雷达差分干涉测量技术及GPS 伪卫星组合定位技术在变形监测中的应用,同时分析了使用这些新技术的优势和应用前景。 关键词:变形监测 GPS伪卫星组合定位 光纤监测合成孔径雷达差分干涉测量 Abstract:Mainly introduce the fiber-optic monitoring technology, D-InSAR and integration of GPS and Pseudolite positioning technology in the application of deformation monitoring, and analysis of the use of the advantages of these new technologies and applications. Keywords: deformation monitoring integration of GPS and Pseudolite positioning fiber-optic monitoring D-InSAR 1 引言 我国的变形监测工作起步于20世纪50年代,经过半个世纪的发展,形成了完成的理论体系和技术方法。尤其近20年来,许多大型工程开工建设,各种先进的仪器设备飞速发展,变形监测工作也取得了很大的进步。 早期的变形监测,主要采用精密的光学测量仪器进行观测,例如精密水准测量、经纬仪、垂线及视准线等。随着电子仪器的发展,应变计、无应力计、测缝计、钢筋计、测压计、渗压计等广泛应用于变形监测中。另外,用于监测环境量的电子温度计、水位计等也开始使用。电子计算机的广泛应用和发展,促使变形监测工作提高效率,走向自动化、智能化之路,尤其是全站仪、GPS等先进仪器出现,计算机技术不断发展,数据处理技术不断优化,变形监测工作走上了数据采集、传输、存储、处理自动化的道路。 近年来,变形监测工作中又出现了若干新的技术方法,这些新技术拥有广阔的应用前景,本文主要介绍以光纤传感器为基础的光纤监测技术、以卫星合成孔径雷达为基础的差分干涉测量技术(D-InSAR)及以GPS伪卫星组合定位技术在变形监测中的应用。 2 光纤监测技术 光纤技术是一种集光学、电子学为一体的新兴技术,其核心技术是光纤传感

边坡挡墙变形监测新技术研究

边坡挡墙变形监测新技术研究 2 摘要:三维激光扫描技术的出现,为边坡挡墙变形监测提供了新的监测手段,本文选用在测量领域中使用较广的脉冲式扫描仪,以监测某立交桥的边坡挡墙变形为实例,进行了点云数据采集。根据边坡挡墙变形监测的特点及数据处理的要求,使用机带软件RIEGLVZ-1000进行了点云数据预处理之后,再引入第三方点云处理软件GeomagicStudio和GeomagicQualify,进行了数据处理及变形分析。通过研究,提出了基于三维激光扫描技术的边坡挡墙变形监测新方法。 关键词:三维激光扫描;挡墙;变形监测;点云数据 Abstract: The emergence of three - dimensional laser scanning technology provides a new means to monitor deformation of slope and retaining wall. The paper uses the pulsed scanner which is widely used in measurement, we scan a slope and retaining wall of a bridge which is taking as an example and collect the point cloud data. According to the characteristics and requirements of the slope and retaining wall data processing, we use the RIEGL VZ - 1000 which comes with the machine to finish point cloud data preprocessing, use the third - party point cloud processing software Geomagic Studio and Geomagic Qualify to process data and analysis deformation. After the research, we presented a new method to monitor deformation of slope and retaining wall based on 3D laser scanning technology. Key words:3D laser scanning; slope and retaining wall; deformation monitoring; point cloud data 引言 我国是世界上自然灾害频发的国家之一,而滑坡灾害在我国的自然灾害中占

现代变形监测重点内容与思考题答案

第1章变形监测概述一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。 (二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。 2.当实际观测中发现异常情况时,则应及时相应地增加观测次数。 八、简述变形监测的主要技术和数据处理分析的主要内容。

变形监测技术在桥梁监测中的应用

测绘第35卷第1期2012年2月 13 变形监测技术在桥梁监测中的应用 董学智1 李胜1 李爱民2 (1.四川省第三测绘工程院,四川 成都 610500 ;2.广州博瑞测绘技术有限公司,广东 广州 510430) [摘要] 变形监测是工程测量的重要研究内容,它可以分析和评价建筑物或工程设施的安全状态,研究变形规 律及预报变形,是一种重要的测量监测手段。本文通过对某高速公路的桥梁沉降监测和承台水平位移监测,探 究了在桥梁监测中变形监测的实施方法及数据分析与处理模式,分析了桥梁变形的规律,为桥梁养护提供准确 的监测意见及报告。 [关键词] 变形监测;桥梁监测;数据处理 [中图分类号] P258 [文献标识码] A [文章编号] 1674-5019(2012)01-0013-03 Deformation Monitoring on the Application of Bridge Monitor DONG Xue-zhi1 LI Sheng1 LI Ai-min2 Abstract: Deformation monitoring is an important content of project surveying. It can analysis and evaluate the safe status of buildings or engineering facilities, and find the deformation law for the forecast, which is an important measurement for monitoring. This article through monitoring the subsidence and horizontal displacement of bridges along the other Expressway, to explore the method of deformation monitoring, data analysis with special model, analysis the deformation law of bridges, for bridge maintenance based on the accurate monitoring reports. Key words: Deformation monitoring; Bridge monitor; Data processing 1 引言 近年来,随着我国桥梁建设事业的迅猛发展,桥梁结构和形势日趋复杂,规模也越来越大,桥梁的施工正朝着超大化的方向发展,对其进行变形监测也就显得尤为重要。 变形监测是对被监测的对象或物体进行测量,以确定其空间位置及内部形态随时间的变化特征。其主要意义是分析和评价建筑物的安全状态、验证设计参数、反馈设计施工质量、研究正常的变形规律和预报变形[1]。桥梁的变形监测是对桥梁整体性能的监测,其基于工程测量的原理、技术和精密测量仪器,对桥梁在垂直方向和水平方向的位移变形进行定期或实时监测,并通过绘制相应的位移变形影响线或影响面来监测桥梁各部位位移的变形状态,预测其变形规律,为桥梁的维修、养护和管理决策提供依据和指导。 本应用研究通过对广深高速公路的桥梁沉降和水平位移监测,探讨变形监测理论在实际工程问题中的应用,通过合适的数据处理方法,分析和总结桥梁变形的规律,为桥梁的养护、管理和决策提供依据和指导。 2 桥梁变形监测实施原理 变形监测的主要目的是确切地反映建筑物、构筑物的实际变形程度或变形趋势,并以此作为确定作业方法和检验成果质量的基本要求。在桥梁变形监测中,主要包括桥梁沉降监测及承台水平位移监测。地面沉降是一种普遍而又日趋显著的地质现象,是区域性地面高程下降的一种环境地质变化[2],反映在桥梁监测中主要是桥梁沉降监测。同时,还需要考虑承台在水平方向上的位移,以此来整体把握桥梁的变形方向及程度。 根据不同的测量要求和规范,桥梁变形测量的等级及精度要求也各不相同。在实际的工程监测中,需要根据不同的规范要求实施监测。 2.1 桥面沉降监测 桥面沉降监测主要是监测桥梁在垂直方向上的变形。在沉降观测中,需要始终遵循“五定原则”,即基准点、工作基点、观测点点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测环境条件要一致;观测路线、镜位、程序和方法要固定[3]。 桥面沉降监测的主要内容包括:沉降观测点布设及网的测量、沉降监测、跨河桥沉降观测等。沉降观测网一般采用闭合水准路线或附合水准路线,用高精度数字水准以进行观测。而对于跨河桥沉降观测,由于桥墩在河中时,观测采用闭合水准测量。

隧道变形监测方案-新

隧道变形监测方案 1、目的 为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。 2、适用范围 2.1适用于津滨轻轨隧道变形观测的相关工作; 2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。 3、职责分工 隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。 4、参考依据 《建筑变形测量规程》 《地下铁道、轨道交通工程测量规范》 《地下铁道工程施工及验收规范》 5、变形观测工作内容 5.1隧道沉降观测 监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。 5.1.1监测基准网 监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。基准网的高程值由国家水准点引入,每季度校核一

次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。 图1 监测基准网示意图 5.1.2沉降监测点 津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。具体布置见图2。 图2 明挖段沉降监测点布置示意图 为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。具体布置见图3。

变形监测试题库

一、名词解释 1.变形:变形是指变形体在各种载荷的作用下,其形状大小及位置在时空域中的变化 2 变形监测:从基准点出发,定期地测量观测点相对于基准点的变化量,从历次观测结果比 较中了解变形随时间发展的情况。 3 测量机器人:是一种能代替人进行自动搜索跟踪辨识和精确照准目标并获取角度距离三维 坐标以及影响等信息的智能型电子全站仪。 4 基坑回弹观测:深埋大型基础在基坑开挖后,由于基坑上面的荷重卸除,基坑底面隆起, 测定基坑开挖后的回弹量。 5 连续变形:当地表移动过程在时间和空间上具有连续渐变的性质,且不出现台阶状大裂缝, 漏斗塌陷坑等突变现象 6 边界角:在主断面上,地表盆地边界点和采区边界的连线与水平线在煤柱一侧所夹的锐角 7 下沉系数:反映充分采动条件下地表最大下沉值与采厚关系的一个量度 8 测点观测:观测点相对工作基点的变形观测 9 变形网:由基点和工作基点组成的网 10 垂直位移:变形体在垂直方向上的变形(沉降沉陷) 11 观测点:在变形体上具有代表性的点。 12 变形分析:对野外观测所得到的数据进行科学的整理分析,找出真正变形信息和规律的 过程。 13 水平位移:变形体在水平面上的位移,是不同时间内平面方向与距离方向,建筑物的 水平位移是指建筑物的整体平面移动。产生水平位移的原因主要是建筑物及其基础受到水平应力的影响而产生的地基的水平移动 14.基点观测:工作基点相对于基点的变形观测。3.基准点:通常埋设在稳固的基岩上或 变形区域以外 15.挠度:建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂直 方向的线位移称为挠度。 16.变形观测周期:变形监测的时间间隔称为观测周期,即在一定的时间内完成一个 周期的测量工作 17、液体静力水准:利用相互连通的且静力平衡时的液面进行高程传递的测量方法 18、奇异值:与前面变形规律不同,但不一定是错误的观测值,所以接受 19、回归分析:从数理统计的理论出发,对建筑物的变形量与各种作用因素的关系,在进行 了大量的实验和观测后,仍然有可能寻找出它们之间的一定的规律性,这种处理变形监测资料的方法即叫回归分析 三、简答题 1、简述灾害的表现形式有哪些? 全球性的地极移动、地壳的板块运动及区域性的地震、城市地表下沉、矿区采空区的地表沉陷、山体、河岸及矿坑边帮的滑坡、建筑物基础下沉、倾斜、建筑物墙体的裂缝及构件挠曲等都是变形的表现形式。 2、简述变形监测技术的未来方向包括哪几个方面?

基坑变形监测技术方案

基坑变形监测方案2007-11 基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。 本工程基坑总面积约29300m2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1.《建筑变形测量规程》(JGJ/T8-97) 2.《工程测量规范》(GB50026-93) 3.《建筑基坑支护技术规程》JGJ120-99 4.《国家一、二等水准测量规范》(GB12897-93) 5.《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

变形监测新技术探讨_胡安枨

2013年 江西测绘 变形监测新技术探讨 胡安枨 (厦门闽矿测绘院福建厦门361004) 摘要本文针对新兴的变形监测技术,客观地分析了GPS一机多天线技术、伪卫星增强技术、GPS与Insar融合技术、Lidar、三维激光扫描与RTK融合技术和摄影测量技术在变形监测领域的应用特点。提出了多元数据融合、多技术手段融合是以后变形监测的发展趋势。变形监测逐步实现实时、快速、自动监测。 关键词变形监测;GPS;伪卫星增强;Insar 1引言 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形性态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。随着科学技术的不断发展,测量仪器不断更新监测手段也更加多样化。新的技术手段逐渐取代传统的测量方式。现代变形监测正逐步实现多元数据融合、自动化、快速、实时的立体监测体系。 2变形监测新技术 2.1GPS一机多天线 在一般的变形监测中,我们在需要监测的目标上安装GPS接收机。如果有很多监测目标的话,显然监测成本会提高,针对这一问题,河海大学何秀凤(2002)研发了GPS一机多天线系统[1]。它的设计思路为,将多根天线同时连接在一台GPS接收机上,这样就可以在每个监测点上只安装GPS天线,不安装接收机,实现多个监测目标共用一台接收机(图1)。GPS一机多天线系统的核心部件是一机多天线控制器,让它保证系统能够互不干扰地接收来自若干个不同监测目标的传输信号,最后通过后处理软件获取高精度的定位信息。 图1GPS多天线控制器原理框图 GPS多天线控制器由硬件和软件两部分组成, 把计算机实时控制技术和无线电通讯中的微波开关技术有机地结合在一起,实现只用一个接收机即可互不干扰地接收多个GPS天线传输来的信号。硬件是由8个GPS天线和具有8通道的微波开关、对应的微波控制开关及一台GPS接收机组成。利用软件实现8个GPS天线分时工作。系统的软件部分功能是实时控制微波开关中各个通道的断通,保证信号正常的接收到。一机多天线系统最大的优点在于保证了定位精度,降低了监测系统成本,实际定位精度可达3-4mm,通过后期的滤波技术可实现更高的定位精度。 2.2伪卫星增强 当GPS的可视卫星个数和几何图形条件受到遮挡影响时,GPS定位精度会大大降低,甚至无法定位。在这种条件下,利用GPS/伪卫星组合定位技术,可增强卫星的几何强度[2],提高定位精度。伪卫星(Pseudo-Satellite或Pseudolite,缩写为PL),是布设在地面上或空中的发射器,能发射与GPS相似的信号。通常提及的伪卫星大部分都是针对GPS设计的。利用它作为一种无线电信号的发送设备,能够实现增强GPS星座的效果,和真实卫星一样,它也能和其他传感器或卫星一起形成独立的导航定位系统。伪卫星的精密载波相位测量有非常广泛的应用,例如高楼林立城市中的监测和山区复杂条件下的变形监测等[3][4]。尽管伪卫星是一颗地面卫星,但它会因为平台位置的不同会导致定位结果不同。所以利用地面无线电发射机和飞艇作为伪卫星平台,结果是不同的。伪卫星具有能够改善信号和几何图形的可用性,但是如果和用户距离太近就会在捕获信号过程中产生远近效应、多路径等误差。实验表明,系统误差去除后的基线向量X、Y、Z三个方向的标准差 14· ·

变形监测考试参考

变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置几内部形态随时间的变化特征。 变形监测的目的 1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工4)研究正常的变形监测规律和预报变形的方法 变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 变形监测的特点 1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化 变形监测的主要内容 现场巡视;环境监测;位移监测;渗流监测;应力、应变监测;周边监测 变形监测的精度和周期如何确定,有何依据 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的目的是为了研究其变形的过程,则其中误差应比这个数小的多。 周期:变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 变形监测系统设计的原则 1)针对性2)完整性3)先进性4)可靠性5)经济性 变形监测系统设计主要内容 1)技术设计书2)有关建筑物自然条件和工艺生产过程的概述3)观测的原则方案4)控制点及监测点的布置方案5)测量的必要精度论证6)测量的方法及仪器7)成果的整理方法及其它要求或建议8)观测进度计划表9)观测人员的编制及预算 变形监测点的分类及每类要求 1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。变行监测技术在哪几方面取得了 较好的发展? ①自动化监测技术②光纤传感检 测技术③CT(计算机层析成像)技 术的应用④GPS在变形监中的应 用⑤激光技术的应用⑥测量机器 人技术⑦渗流热监测技术⑧安全 监控专家系统 什么是垂直位移和沉降?建筑物 沉降与哪些因素有关? 从词面来说,垂直位移能同时表示 建筑物的下沉或上升,而沉降只能 表示建筑物的下沉,对大多数建筑 物来说特别是施工阶段,由于垂直 方向上的变形特征和变形过程主 要表现为沉降变化,因此实际应用 中通常采用沉降一词。 影响建筑物沉降的因素有:(1)建 筑物基础的设计(2)建筑的上部 结构(3)施工中地下水的升降 监测方法与技术要求有哪些 视线长度、前后视距差和视线高 度;水准测量主要限差;沉降监测 点的精度要求。 精密水准测量的误差来源有哪 些?如何减弱i角误差对沉降观 测结果的影响? 误差来源:1)仪器误差:水准仪i 角误差;水准尺长与名义尺长不符 2)外界环境引起的误差:高压输 电线和变电站等强磁场的影响;温 度和大气折光影响3)人为引起的 误差 方法:减小i角误差的影响,必 须严格控制前后视距差和前后视 距累计差,又由于i角误差会受温 度等影响,减弱其影响的有效方法 是减少仪器受辐射热的影响;若i 角误差与时间成比例地均匀变化, 则可以采用改变观测程序(奇数站 —后前前后;偶数站—前后后前) 的方法减小i角误差影响。 精密水准测量监测方法与技术要 求有哪些 方法:采用精密水准测量方法进行 沉降监测时,从工作基点开始经过 若干监测点,形成一个或多个闭合 或附合路线,其中以闭合路线为 佳,特别困难的监测点可以采用支 水准路线往返测量。 要求:视线长度、前后视距差和视 线高度;水准测量主要限差;沉降 监测点的精度要求。 测点布设原则与方法 建筑物水平位移监测的测点宜按 两个层次布设,即由控制点组成控 制网,由观测点及所联测的控制点 组成扩展网;对单个建筑物上部或 构件的位移监测,可将控制点连同 观测点按单一层次布设。 水平位移监测常用的观测方法有 1)大地测量法2)基准线法3)专 用测量法4)GPS测量法 交会观测方法有几种及什么情况 用哪种方法 1)测角交会法:采用测角交会法 时,交会角最好接近90°若条件 限制,也可设计在60°~120°, 工作基点到测点的距离不宜大于 300m。2)侧边交会法:r角通常 应保持60°~120°,测距仔细, 交会边长度a和b应力求相等,一 般不大于600m;3)后方交会法 精密导线测量方法 1)边角导线法 2)弦矢导线法 数据处理和分析主要内容 1)粗差检查及处理2)点温度条 件检查3)数据可靠性检查。 挠度及挠度观测及方法 定义:测定建筑物受力后挠曲程 度的工作称为挠度观测。建筑物在 应力的作用下产生弯曲和扭曲,弯 曲变形时横截面形心沿与轴线垂 直方向的线位移称为挠度。 方法:1)高层建筑—前方交会法 2)内部有竖直通道的建筑物—垂 直观测法3)电子传感设备 对于以产生的裂缝应进行哪些内 容的监测工作? 对建筑物的裂缝应进行位置、长 度、宽度、深度和错距等的定期观 测。对建筑物表面及内部可能产生 裂缝的部位应预埋设备,进行定期 观测或临时采用适宜方法进行探 测。 裂缝监测的方法 1)测微器法2)测缝针3)超声波 检测 变形监测数学模型指什么?有哪 些? 表示建筑物的变形与产生变形的 各因素之间的关系的函数,称为变 形监测数学模型。 统计分析模型、确定性模型、混合 模型、灰色系统分析模型、时间序 列分析模型、神经网络模型 变形监测数学模型的分类。 第一类是基于数学统计的数学模 型,有回归、时间序列、灰色系统; 第二类是基于力学理论的数学模 型,有数值数学模型;第三类是人 工智能数学模型,有神经网络模 型。 现代GPS监测技术有哪些(论述 题) 1)GPS实时监测技术;基本思想: 在基准站上安置一台GPS接收机, 对所有可见GPS卫星进行连续观 测,并将其观测数据通过无线电传 输设备发送给流动站,流动站接收 基准站传输的观测数据,然后根据 相对定位原理,实时地计算并显示 用户站的三维坐标及其精度。2) GPS一机多天线监测技术;系统设 计原则:先进性、可靠性、自动化、 易维护、经济性;基本思想:在不 改变己有GPS接收机结构的基础 上,通过一个附加的GPS差分信号 分时器连接开关将多个天线阵列 与同一台接收机连接,通过GPS 数据处理后可获得变形体的变形 规律。组成:控制中心,数据通信, GPS多天线控制系,野外供电系 统。 GPS在变形监测中的应用优势 1)各监测站之间无需通视,是相 互独立的观测值2)GPS可以实现 全天候定位,可以在暴风雨中进行 监测3)GPS测定位移自动化程度 高。所测三维坐标可直接存入监控 中心服务器,并进行安全性分析。 4)GPS定位速度快,精度高。 监测资料的编整的一般规定 监测资料整编包括平时资料整理 和定期资料编印。 平时资料整理包括:适时检查各 观测项目原始观测资料和巡视检 查记录的正确性、准确性和完整 性;及时进行各观测物理量的计 算,填写数据记录表格;随时点绘 观测物理量的过程线图考察和判 断侧枝的变化趋势;随时整理巡视 检查记录,补充和修正,确保资料 的衔接与连续性。 定期资料编印包括:汇集工程监 测的相关资料、报告、文件;对各 项观测物理量进行统计和校对;绘 制各观测物理量的分布特征图,有 关因素的相关图;分析各观测量的 变化,提出意见;对资料进行全面 复核,汇编并说明,刊印成册,建 档保存。 整编资料的审查包括完整性审查, 连续性审查,合理性审查,争辩说 明的审查。 监测资料的定期编印应包含哪些 内容? ①汇集工程基本概况/监测系统布 置和各项考证资料/以及各次巡检 资料和有关报告、数据等 ②在平时资料整理的基础上,对整 编时段内的各项观测物理量按时 序进行列表统计和校对,此时如发 现可疑数据,一半不宣删改,应加 注说明提醒读者注意 ③绘制能表示各观测物理量在时 间上和空间上的分布特征网,以及 有关因素的相关关系图 ④分析与观测物理量及其对工程 安全的影响,并对影响工程安全的 问题提出运行和处理意见 ⑤对上述资料进行全面复核,汇 编,并附以整编说明后,刊印成册, 建档保存,采用计算机数据系统进 行资料存储和整编,整编软件应具 有数据导入,修改,查询,以及整 编图表的输出打印功能,还应复制 软盘备份 如何对检测资料分析(论述题) 常用的分析方法有作图分析,统计 分析,对比分析和建模分析 监测资料的分析一般分为定期分 析和不定期分析。1.定期分析: 1)施工期资料分析2)运营初期 资料分析3)运行期资料分析 2.不定期分析:有特殊需要时才 专门进行的分析,如遇洪水,地震 等。 监测数据的预处理内容及为什么 要进行预处理 内容:监测物理量的转换、监测 数据的粗差检查、以及系统误差的 检验等。 原因:1)监测数据可能不是我们 想要的格式,必须将其转换成我们 需要的数据格式2)对任何一个监 测系统,其观测数据中或多或少会 存在粗差,在变形分析的开始有必 要先对观测数据进行预处理,将粗 差剔除。 建筑物沉降监测的主要方法有那 些?监测项目的内容有哪些?步 骤有哪些?数据分析处理包括? 方法:精密水准法、沉降仪量测 法、三角高程。 内容:1)基础沉降2)水平位移 3)滑坡监测4)裂缝监测5)内部 监测。 步骤:1)沉降监测方案研究与技 术设计2)沉降监测仪器检验3) 沉降监测点位布设4)沉降监测数 据采集5)沉降监测数据处理6) 沉降量计算与分析7)沉降量报表 8)沉降量过程曲线绘制9)沉降 监测报告编写。 数据分析处理:1)进准网数据处 理,当基准网独立监测时,基准为 可以独立平差计算2)各周期数据 处理,各周期监测后进行数据平差 计算。 建筑物内部监测包括的内容 ①位移监测②应力/应变监测③温 度监测④地下水位及渗流监测⑤ 挠度监测⑥裂缝监测等 建筑物基础沉降数据处理包括哪 些内容? 1)基准网数据处理; 2)各周期数据处理。 建筑物沉降监测项目: 1)基础沉降2)水平位移3)滑坡 监测4)裂缝监测5)内部监测。方 法:1)沉降监测方案研究与技术 设计2)沉降监测仪器检验3)沉 降监测点位布设4)沉降监测数据 采集5)沉降监测数据处理6)沉 降量计算与分析7)沉降量报表8) 沉降量过程曲线绘制9)沉降监测 报告编写。 建筑物倾斜监测的方法有哪些? 纵横距投影法:当测定偏距e的 精度要求不高时,可以采用纵横距 投影法; 角度前方交会法:当测定偏距e 的精度要求较高时,可以采用角度 交会法; 任意点置镜方向交会法:当建筑 物属于非刚体变形,建筑物在施工 阶段其楼体上变形点无法置镜时 采用; 激光垂准法:当需要计算建筑物 某轴线的倾斜度时采用。 工业与民用建筑物变形监测的监 测方案及技术设计有哪些。 精度设计:按《建筑物沉降监测规 范》规定,一般建筑物应反映1mm 的沉降量,这就要求监测精度要高 于±1mm,一般按二等水准测量技 术规定执行。对于研究性的监测, 应采用一等水准测量技术指标。在 实施监测时,某些技术要求要高于 相应等级。②仪器选择:根据规范 的要求,一般采用S1级精密水准 仪(光学或电子)。对于非常重要 建筑或沉降量较大地区的沉降监 测、高速公路等,也可采用三等水 准测量技术指标实施监测。 变形监测实例的内容、方法、数据 分析、处理要求。 工业与民用建筑物变形监测的主 要监测项目: 1.沉降监测 2.水平位移监测 3.倾斜监测 4.裂缝监测 5.振动频率监测。 桥梁变形监测的主要内容:桥梁 墩台变形观测;塔柱变形观测;桥 面挠度观测;桥面水平位移观测。 方法:1)垂直位移监测2)水平 位移监测3)挠度观测。 基坑工程监测内容及方法? 内容:包括围护结构和周围环境 两大部分。围护结构包括维护撞 墙、水平支撑、围檀、和围梁、立 柱、坑底土层和坑内地下水等,周 围环境包括周围土层、地下管线、 周围建筑和坑外地下水等。 方法:水平位移监测:极坐标法、 前方交会法、视准线法等;沉降监 测:精密水准测量、精密三角高程 测量、液体静力水准测量。 基坑工程监测的项目有哪些? 桩墙顶部水平位移和沉降;深沉水 平位移;基坑回弹;土体分层沉降; 结构内力;坑外地下水;周围环境。 基坑监测的数据处理有哪些? 监测前应设计各种不同的外业记 录表格,表格中的数据不得随意更 改;外业监测数据应尽快计算处 理,并提交日报表或技术报告,必 要时还需要提交各种监测图;工程 结束应提交完整的监测技术总结 报告。 基坑施工监测周期和预警值一般 怎样确定? 基坑监测贯穿基坑开挖和地下结 构施工的全过程,即从基坑开挖第 一批土到地下结构施工至标高,基 坑越大,施工时间越长,监测期限 就越长 确定预警值时应注意下列基本原 则:1满足现行相关规范和规程的 要求2满足工程设计的要求3考虑 与主管部门对所辖保护对象的要 求4考虑工程质量,施工进度,技 术措施和经济等因素 盾构隧道施工监测的项目? 1)土体介质的监测:地表的沉降 监测,土地分层沉降和深层位移监 测,土体回弹测量,土体应力和孔 隙水压力测量(2)周围环境的监 测:相邻房屋和重要结构物的变形 监测,相邻地下管线的变形监测 (3)隧道变形的监测:隧道沉降 和水平位移监测,隧道断面收敛位 移监测,隧道应变和预制管片凹凸 接缝处法向应力测量 数据整理:1)校核各项原始记录, 检测各次变形监测值的计算是否 有误2)变形值计算3)绘制各种 变形过程线、建筑物变形分布图。 分析:1)成因分析2)统计分析3) 变形预报和安全判断。 水工建筑物变形监测 主要项目: ①水文:水位,降水,波浪,冲淤, 气温,水温; ②变形:地基,裂缝,接缝,边坡 ③渗流:坝体,坝基,绕渗,渗流 量,地下水,水质 ④应力:应力土壤,混凝土,钢筋, 钢板,接触面,温度 ⑤水流:压强,流压,掺气,消能 ⑥地震:振动 监测方法:1)水平位移监测,2) 垂直位移监测 边坡工程主要项目内容有哪些? 外部变形监测周期和预警值一般 怎样确定? 内容:1)地表位移裂缝2)地下 位移裂缝3)地声4)应变5)地 下水位,孔隙水压力,河库水位, 泉流量6)降雨量,地温,地震。 确定方法:施工阶段的边坡监测 贯穿边坡施工的全过程不同的边 坡工程:由于边坡的类型,规模, 所处阶段,以及边坡变形速率等不 同,其监测期限和频率不同,监测 周期根据边坡类型、规模、所处阶 段以及边坡变形速率影响。预警值 的确定要参照现行规范和规程的 规定值、设计预估值和经验类比 值,从变形总量和变形速率两方面 加以控制。 模型建立思想、过程、优势、依 据 统计分析模型思想:虽然建筑物 变形和各变形因素之间的关系复 杂,但从数理统计的理论出发,对 建筑物的变形量与各种作用因素 的关系,在进行了大量的试验和观 测后,仍有可能找出它们之间的一 定的规律性。这种方法称为回归分 析法,建立起来的数学模型称为统 计分析模型。 逐步回归过程步骤:1)首先根据 经验或对变形值与外界作用因子 间的初步分析,确定回归方程的初 选模型及各个因子2)经回归计算 建立回归方程,在此方程中找出系 数|ai|为最小者,并将其剔除回归 方程后,重新进行回归计算,建立 新的回归方程。3)计算第一次回 归方程的残差平方和Q2以及新的 回归方程之残差平方和Q’2。求 出△Q2=Q2-Q’2,组成统计检验量 并进行f检验。若检验表明该因子 作用不显著,则正式剔除回归方 程,否则应保留在方程内。然后再 对第二个系数|ai|较小的因子进 行显著性检验,一直到全部因子检 验结束为止。4)对最后所建立的 回归方程作回归效果显著性检验。 如不理想,加入一些备选因子并对 新加入的因子逐个进行显著检验。 直到各个因子作用都显著且回归 效果也很理想,就可以得到所需最 佳回归方程。 优势:可以描述随机变量与其他 变量之间的相关关系,是对随机变 量的静态描述。 灰色系统分析模型:优势:首先 是它把离散数据视为连续变量在 其变化过程中所取的离散值,从而 可利用微分方程式处理数据;而不 直接使用原始数据而是由它产生 累加生成数,对生成数列使用微分 方程模型。这样,可以抵消大部分 随机误差,显示出规律性。 灰色关联分析:1)构造灰色关联 因子集2)灰色关联度计算公式3) 灰色关联序 时间序列分析模型:基本思想: 对于平稳、正态、零均值的时间序 列{xt},若xt的取值不仅与其前 N步的各个取值x(t-1),x (t-2),…x(t-n)有关,而且还 与前M步的各个干扰a(t-1),a (t-2),…a(t-m)有关,则按多元 线性回归的思想,可得到最一般的 ARMA模型。 建模步骤:1)数据获取与预处理 2)模型结构选择3)模型结构调 整4)模型参数估计5)模型适用 性检验6)适用模型 优势:是动态模型,是对随机过 程的动态描述。 统计模型的建立及三大类的不同 特点。(综合题) 根据数理统计,对建筑物的变形量 与各种作用因素的关系,在进行了 大量的试验和观测后,仍然有可能 寻找出它们之间的规律性,这种处 理方法称为回归分析法。建立起来 的数学模型称为统计分析模型。 统计分析模型包括:一元线性回归 模型、多元线性回归模型、逐步回 归分析模型。

相关文档
最新文档