数字信号处理课后习题答案完整版

数字信号处理课后习题答案完整版
数字信号处理课后习题答案完整版

数字信号处理课后习题

答案

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

数字信号处理(姚天任江太辉)第三版

课后习题答案

第二章

判断下列序列是否是周期序列。若是,请确定它的最小周期。

(1)x(n)=Acos(685π

π+n )

(2)x(n)=)8(π-n

e j

(3)x(n)=Asin(343π

π+n )

解 (1)对照正弦型序列的一般公式x(n)=Acos(?ω+n ),得出=

ω8

。因此5162=

ωπ

是有理数,所以是周期序列。最小周期等于N=)5(165

16

取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出8

1

=ω。因此

πω

π

162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(?ω+n ),又x(n)=Asin(3

43ππ+n )=Acos(

-2π343ππ-n )=Acos(6143-n π),得出=ω43π。因此3

8

2=ωπ是有理数,所以是周期序列。最小周期等于N=)3(83

8

取k k =

在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。 解 利用线性卷积公式

y(n)=

∑∞

-∞

=-k k n h k x )()(

按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。 (a) y(0)=x(O)h(0)=1

y(l)=x(O)h(1)+x(1)h(O)=3

y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)

h(n)=-δ(n)+2δ(n-1)+ δ(n-2)

y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=

∑∞

-∞

=--k k

n k n u k u a

)()(=

∑∞

-∞

=-k k

n a

=a

a n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)

解:(1) y(n)=

∑∞

-∞=-k k n u k u )()(

=

∑∞

=-0

)()(k k n u k u =(n+1),n ≥0

即y(n)=(n+1)u(n) (2) y(n)=∑∞

-∞

=-k k k n u k u )()(λ

=∑∞

=-0

)()(k k

k n u k u λ

λ--+111

n ,n ≥0

y(n)=

λ

λ--+111

n u(n)

图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =

∑∞

-∞

=k k u )([δ(n-k)-δ(n-k-4)]

=u(n)-u(n-4)

y(n)=ω(n)*h 2(n) =

∑∞

-∞=k k

k u a )([u(n-k)-u(n-k-4)]

=

∑∞

-=3

n k k

a

,n ≥3

已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0

试证明线性卷积满足交换率、结合率和加法分配率。 证明 (1)交换律

X(n) * y(n) =

∑∞

-∞

=-k k n y k x )()(

令k=n-t,所以t=n-k,又-∞

变成 `

x(n) * y(n) =∑∞

-∞

=---t t n n y t n x )]([)(

=∑∞

-∞

=-t t y t n x )()(=y(n) * x(n)

交换律得证. (2)结合律 [x(n) * y(n)] * z(n)

=[

∑∞

-∞=-k k n y k x )()(] * z(n)

=∑∞

-∞=t [

∑∞

-∞

=-k k t y k x )()(]z(n-t)

=

∑∞

-∞=k x(k) ∑∞

-∞

=t y(t-k)z(n-t)

=

∑∞

-∞

=k x(k) ∑m

y(m)z(n-k-m)

=∑

-∞

=k x(k)[y(n-k) * z(n-k)]

=x(n) * [y(n) * z(n)] 结合律得证. (3)加法分配律 x(n) * [y(n) + z(n)]

=

-∞=k x(k)[y(n - k) +z(n - k)]

=

-∞

=k x(k)y(n-k)+

-∞

=k x(k)z(n - k)

=x(n) * y(n) + x(n) *z(n)

加法分配律得证.

判断下列系统是否为线性系统、非线性系统、稳定系统、因果系统。并加以证明

(1)y(n)= 2x(n)+3 (2)y(n)= x(n)sin[32πn+6π

]

(3)y(n)=

∑∞-∞

=k k x )( (4)y(n)= ∑=n

n k k x 0

)(

(5)y(n)= x(n)g(n)

解 (1)设y 1(n)=2x 1(n)+3,y 2(n)=2x 2(n)+3,由于

y(n)=2[x 1(n)+x 2(n)]+3 ≠y 1(n)+ y 2(n) =2[x 1(n)+x 2(n)]+6

故系统不是线性系统。

由于y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而

y(n-k) = T[x(n-k)]

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(3)设 y 1(n)=

∑-∞

=n k k x )(1

,y 2(n)=∑-∞

=n

k k x )(2

,由于

y(n)=T[ax 1(n)+ bx 2(n)]=

∑-∞

=+n

k k k )](bx )(ax [2

1

=a

∑-∞

=n

k k x )(1

+ b ∑-∞

=n

k k x )(2

=ay 1(n)+by 2

(n)

故该系统是线性系统。

因 y(n-k)=

∑--∞

=t n k k x )(= ∑-∞

=-n

m t m x )(

=T[x(n-t)]

所以该系统是非移变系统。

设 x(n)=M<∞ y(n)=

∑-∞

=n

k M =∞,所以该系统是不稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统

是因果系统。

(4)设 y 1(n)=∑=n

n k k x 0

1)( ,y 2(n)=∑=n

n k k x 0

2)(,由于

y(n)=T[ax 1(n)+ bx 2(n)]= ∑=+n

n k k k 0

21)](bx )(ax [

= a ∑=n n k k x 0

1)(+b ∑=n

n k k x 0

2)(=ay 1(n)+by 2(n)

故该系统是线性系统。

因 y(n-k)= ∑-=t

n n k k x 0)(=

∑+=-n

t

n m t m x 0)(

≠T[x(n-t)]= ∑=-n

n k t m x 0

)(

所以该系统是移变系统。

设x(n)=M,则lim n →∞

y(n)= lim n →∞

(n-n 0)M=∞,所以该系统不是稳定系统。

显而易见,若n ≥n 0。则该系统是因果系统;若n

(5)设y 1(n)=x 1(n)g(n),y 2(n)=x 2(n)g(n),由于 y(n)=T[ax 1(n)+bx 2(n)]=(ax 1(n)+bx 2(n))g(n) =ax 1(n)g(n)+b 2(n)=ay 1(n)+by 2(n) 故系统是线性系统。

因y(n-k)=x(n-k),而

T[x(n-k)]=x(n-k)g(n)≠y(n-k) 所以系统是移变系统。 设|x(n)|≤M<∞,则有

|y(n)|=|x(n)g(n)|=M|g(n)| 所以当g(n)有限时该系统是稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于本来的输入,故该系统是因果系统。

讨论下列各线性非移变系统的因果性和稳定性

(1)h(n)=2n u(-n) (4) h(n)=(1

2)n u(n)

(2) h(n)=-a n u(-n-1) (5) h(n)=1

n u(n)

(3) h(n)=δ(n+n 0), n 0≥0 (6) h(n)= 2n R n u(n) 解 (1)因为在n<0时,h(n)= 2n ≠0,故该系统不是因果系统。 因为S=

n ∞

=-∞

|h(n)|= 0

n ∞

=∑|2n |=1<∞,故该系统是稳定系统。

(2) 因为在n

n ∞

=-∞

|h(n)|=

1

n -=-∞

| a n

|=n ∞

=∞

∑a n -,故该系统只有在|a|>1时才是

稳定系统。

(3) 因为在n

因为S=

n ∞

=-∞

∑|h(n)|=

n ∞

=-∞

|δ(n+n 0)|=1<∞,故该系统是稳定系统。

(4) 因为在n

n ∞

=-∞

|h(n)|= 0

n ∞

=∑|(

12

)n

|<∞,故该系统是稳定系统。 (5) 因为在n

n

u(n)=0,故该系统是因果系统 。 因为S=

n ∞

=-∞

|h(n)|=

n ∞

=-∞

|1n u(n)|= 0

n ∞

=∑1n =∞,故该系统不是稳定系统。

(6) 因为在n

因为S=

n ∞

=-∞

|h(n)|= 1

N n -=∑|2n |=2N -1<∞,故该系统是稳定系统。

已知y(n)-2cos βy(n-1)+y(n-2)=0,且y(0)=0,y(1)=1,求证y(n)=

sin()

sin n ββ

证明题给齐次差分方程的特征方程为

α2-2cosβ·α+1=0 由特征方程求得特征根

α

1=cosβ+jsinβ=e jβ,α

2

=cosβ-jsinβ= e jβ-

齐次差分方程的通解为

y(n)=c

1

n+c

2

α

2

n=c

1

e j nβ+c

2

e j nβ

-

代入初始条件得

y(0)=c

1+c

2

=0

y(1)= c

1e j nβ+c

2

e j nβ

-=1

由上两式得到

c 1=

1

j n j n

e e

ββ

-

-

=

1

2sinβ

,c

2

=- c

1

=-

1

2sinβ

将c

1和c

2

代入通解公式,最后得到

y(n) =c

1

e j nβ+c

2

e j nβ

-=

1

2sinβ

( e j nβ+ e j nβ-)=

sin()

sin

n

β

β

已知y(n)+2αy(n-1)+β(n-2)=0,且y(0)=0,y(1)=3,y(2)=6,y(3)=36,求y(n) 解首先由初始条件求出方程中得系数a和b

(2)2(1)(0)660

(3)2(2)(1)361230 y ay by a

y ay by a b ++=+=

?

?

++=++=?

可求出a=-1,b=-8 于是原方程为

y(n)-2y(n-1)-iy(n-2)=0

由特征方程α2-2α-8=0求得特征根

α

1=4 ,α

2

=-2

齐次差分方程得通解为

y(n)=c

1

n+c

2

α

2

n= c

1

4n+c

2

(-2n)

代入初始条件得

y(n)= c

1

+c

2

α

2

= 4α

1

+2α

2

=3

由上二式得到

c 1=

1

2

,c

2

=-

1

2

将c

1和c

2

代入通解公式,最后得到

y(n)=c

1

n+c

2

α

2

n=

1

2

[4n-(-2) n]

用特征根法和递推法求解下列差分方程:

y(n)-y(n-1)-y(n-2)=0,且y(0)=1,y(1)=1 解由特征方程α2-α-1=0求得特征根

α

1

1

2

+

,α

2

1

2

-

通解为y(n)=c

1

n+c

2

α

2

n=c

1

)n+c

2

)n

代入初始条件得

求出c

1

,c

2

最后得到通解

y(n)= c

1

)n+ c

2

n

)1n+

)1n+]

一系统的框图如图所示,试求该系统的单位取样响应h(n)和单位阶跃响应解由图可知

?

y(n)=x(n)+ βy(n-1)

为求单位取样响应,令x(n)=δ(n),于是有

h(n)= δ(n)+ βh(n-1)

由此得到

h(n)=

()

1

n

D

δ

β

-

=βn u(n)

阶跃响应为

y(n)=h(n)*u(n)=0n

k =∑βk y(k)u(n-k)

=111n ββ

+--u(n) 设序列x(n)的傅立叶变换为X(e jw ),求下列各序列的傅立叶变换

解 (1)F[ax 1(n)+bx 2(n)]=aX 1(e jw )+bX 2(e jw ) (2)F[x(n-k)]=e jwk -X(e jw ) (3)F[e 0jw n x(n)]=X[e 0()j w w -] (4)F[x(-n)]=X(e jw -) (5)F[x *(n)]=X *(e jw -) (6)F[x *(-n)]= X *(e jw ) (7)

(8)jIm[x(n)]=1

2

[X(e jw )-X *(e jw -)]

(9)12πX(e j θ)*X(e jw )

(10)j ()jw dx e dw

设一个因果的线性非移变系统由下列差分方程描述

y(n)-12y(n-1)=x(n)+ 1

2

x(n-1)

(1) 求该系统的单位取样响应h(n) (2) 用(1)得到的结果求输入为x(n)=e jwn 时系统的响应 (3) 求系统的频率响应 (4)

求系统对输入x(n)=cos(

2πn+4

π

)的响应 解 (1)令X (n )=δ(n),得到

h(n)-h(n-1)/2=δ(n)+ δ(n-1)/2

由于是因果的线性非移变系统,故由上式得出 h(n)=h(n-1)/2+δ(n)+ δ(n-1)/2 ,n ≥0

递推计算出

h(-1)=0

h(0)=h(-1)/2+δ(0)=1 h(1)=h(0)/2+1/2=1

h(2)=h(1)/2=1/2 h(3)=2

1h(2)=(2

1)2 h(4)= 2

1h(2)=(2

1)3

. .

h(n)=δ(n)+ (2

1

)n-1u(n-1) 或 h(n)= (2

1)n [u(n)-u(n-1)]

也可将差分方程用单位延迟算子表示成

(1-D)h(n)=(1+D)δ(n)

由此得到

h(n)=[(1+2

1D)/(1-2

1D)]δ(n) =[1+D+2

1D 2+ (2

1)2 D 3+…+(2

1)k-1 D 3+…] δ(n)

=δ(n)+ δ(n-1)+ 2

1δ(n-2)+2

1δ(n-3)+... +(2

1)k-1δ(n-1)+…

=δ(n)+ (2

1)n u(n-1)

2)将jwn e n X =)(代入)(*)()(n h n x n y =得到

(3)由(2)得出 (4)由(3)可知

故:

()()()

[]

?

?

?

?

?

?

?

?

?

?

?

-

+

=

??

?

??

?

+

+

=

2

1

arctan

2

4

2

cos

arg

4

2

cos

π

π

π

π

n

e

H

n

e

H

n

y jw

jw

某一因果线性非移变系统由下列差分方程描述

y(n)-ay(n-1)=x(n)-bx(n-1)

试确定能使系统成为全通系统的b值(b≠a),所谓全通系统是指其频率响应的模为与频率ω无关的常数的系统。

解:令

x(n)= (n),则

h(n)=ah(n-1)=(n)-b8(n-1)或

h(n)=ah(n-1)+

(n)- (n-1),n≥0

由于是线性的非移变系统,故对上式递推计算得出: h(-1)=0

h(0)=1

h(1)=ah(0)-b(0)=a-b

h(2)=ah(1)=-ab

h(3)=ah(2)=-b

h(n)=ah(n-1)=

-b,n≥0

h(n)=

u(n)-bu(n-1)

或系统的频率特性为

H(

)=

=

=

=

振幅的特性平方

=

=

=

=

若选取a =*1b 或b =*1a ,则有|H(e jw )|2=|b|2

,即幅度响应等于与频率响应无关的

常数,故该系统为全通系统。

(1)一个线性非移变系统的单位冲激响应为h(n)=a n u(n),其中a 为实数,且0

β n u(n), β为实数,且0<β<1.试利用线性卷积计算系统的输出y(n),并将结果写成下列形式

y(n)=(k 1a n +k 2βn )u(n)

(2)分别计算x(n)、h(n)和(1)中求得的y(n)的傅立叶变换X(e jw )、H(e jw )、Y(e jw ),并证明

Y(e jw )=H(e jw )X(e jw )

解 (1)y(n)=

∑∞

-∞=-k k n x k h )

()(

=

∑∞

-∞

=--k k

k n u k u a

)()(1β

=∑∞

-∞

=--k k

a )(11

ββ=1

1111]

)(1[-+----αβαββn =-1111+---n ααββ+1

1

11----βαβ

β,n ≥0 y(n)=(

n αβα-1-n ββ

β

-1)u(n)

(2)X(iw

e )=ωγβi n e -∞

=∑0=-ω

βj e

--11

H(e

ω

j )=ωγαi n e -∞

=∑0

=

ω

αj e --11

Y(e

ω

j )=∑∞

=---

-0

)(

n j n n e ωββ

αβαβ

αα

=

βα-1(ω

ααj e --1-n

j e

ββαβω--) 由于

βα-1(ωαα

j e --1-ω

ββj e --1) =

)

1)(1(1ωωβαj j e

e ----=X(e ωj )H(e ω

j ) 故得出 Y(e jw )=H(e jw )X(e jw )

令x(n)和X(e jw )分别表示一个序号及其傅立叶变换,证明:

此式是帕塞瓦尔(Parseval )定理的一种形式。 证明:证法一

当需要对带限模拟信号滤波时,经常采用数字滤波器,如图所示,图中T 表示取样周期,假设T 很小,足以防止混叠失真,把从x α(t)到y α(t)的整个系统等效成一个模拟滤波器。

(1)如果数字滤波器h (n )的截止频率ω等于

8πrad ,1

T

=10kHz ,求整个系统的截止频率ac f ,并求出理想低通滤波器的截止频率c f

(2)对1

T

=20kHz ,重复(1)的计算 解 理想低通滤波器的截止频率T π

(弧度/秒)折合成数字域频率为π(弧度),它

比数字滤波器h (n )的截止频率8

π

(弧度)要大,故整个系统的截止频率由数字滤

波器h(n)的截止频率8π(弧度)来决定。将其换算成实际频率,即将s f =1

T =

10000Hz 带入

28

ac s f f ππ

=,便得到 ac f =625 Hz

理想低通滤波器的截止频率T π(弧度/秒)换算成实际频率使得到c f ,即由T

π

=2πc f ,得到

ac f =

12T =10000

2

=500 Hz 求下列序列的Z 变换和收敛域

(1)δ(n -m )

(2)1

()()2n u n

(3)a n u(-n-1)

(4)1

()[()(10)]2n u n u n --

(5)cos(0n ω)u(n)

解:(1)X(z)=∑∞

z m n )(-δn =z -nm

当m>0时,x(n)是因果序列,收敛域为0<|z |≤∞,无零点,极点为0(m 阶); 当m<0时,x(n)是逆因果序列,收敛域为0≤|z |≤∞,零点为0(m 阶),无极点; 当m=0, X(z)=1,收敛域为0≤|z |≤∞,既无零点,也无极点 (2)X(z)=∑

=-n n

??? ??21u(n)z -n

=∑∞

=0

n n

z ???

??-121=1

2

111--z X(n)是右边序列,它的Z 变换的收敛域是半径为R -x 的圆的外部区域,这里 R -x =lim

→n )

()

1(n x n x +=21 τ(n )还是因果序列,可以有|z |=∞,故收敛域为

2

1

<|z |≤∞。零点为0,极点为2

1

X(n)还是因果序列,可以有|z |=∞,故收敛域为

2

1

<|z |≤∞。零点为0,极点为21。(3)x(z)=n

n n z u u a -∞

=--∑

)1(=

n n az )(11∑

-∞

-=- =

n

n z a

)(1

1

∑-∞

-=-=n

n az

)(1

1∑∞

=-=z a z a 11

1---=111---az

X(n)是左边序列,它的Z 变换的收敛域是半径围x R +的圆的内部区域,这里

x

R +=|))1(()(|lim +--∞

→n x n x n =

||)

1(lim +--∞

→n n

n a

a

=||a

)(n x 还是逆因果序列,可以有0||=z ,故收敛域为||||0a z ≤≤零点为0,极点

为a 。

(4)X(z)=∑∞

=-n n

??

? ??21[]10)-u(n -u(n)z -n =∑

=9

0n n

??

? ??21 z -n =110

)2(1)2(1----z z X(n)是有限长序列,且它的Z 变换只有负幂项,故收敛域为0<|z |≤∞.零点为0和21(10阶),极点为2

1

(5)z z e e z n u n w z X n n

jw n jw n

n ∑∑∞

=--∞

-∞

=+==

00)()cos()(0

=n jw n z e )(21100-∞

=∑+)(2

11

00--∞=∑z e

jw n

)1111(211100----+-z

e z e jw jw =2010

1cos 21cos 1---+--z

w z w z

)(n x 是右边序列,它的Z 变换的收敛域是半径为-x R 的圆的外部区域,这里

-x

R =|)()

1(|lim n x n x n +→∞

=|)cos()]1(cos[|00lim n w n w n +→∞=1 )(n x 还是因果序列,可以有

∞=||z ,故收敛域为∞≤≤||1z ,零点为0

和0cos w ,极点为0

jw e

jw e

-。

求下列序列的Z 变换和收敛域和零极点分布图 (1) x(n)=a ||n ,0

(3) x(n)=Ar n cos(0ω?+)u(n),0

1

!

n u(n) (5) x(n)=sin(0ω?+)u(n)

(1)X(z)=

n

n

n a z

-=-∞

=

1

n n n n n n a z a z -∞

---=-∞

=+∑

=1

1

1

11n n n n n n ax a z a z ax ax ∞

--=-=+=+

--∑

=

2(1)

(1)()z a az z a ---

X(n)是双边序列,可看成是由一个因果序列(收敛域a z <≤∞)和一个因果序列(收敛域1

0z a

≤<

)相加组成,故X(z)的收敛域是这两个收敛域的重叠部分,即圆环区域1a z a <<

。零点为0和∞,极点为a 和1a

。 (2) 0()

()()()j j n n

n n X z e

u n z e z ?θω?ω?

++=-∞

==

=∑

=

11

1j e

z

?

θω+--

X(n)是右边序列,它的Z 变换的收敛域是半径为x R -的圆的外部区域,这

X(n)还是右边序列,可以有

z =∞,故收敛域为e z θ<≤∞。零点为

0,极点为0

j e θω+。

(3)

X(n)是右边序列,它的Z 变换的收敛域是半径为3R -的圆的 外部区域,这里

()x n 还是因果序列,可以有 z =∞ ,故收敛域为 r z <≤∞ 。

零点为0和 0cos()cos r ω??

- ,极点为 0j re ω 和 0

j re ω-

(4)

1()()!!

0n Z n X z u n Z n n n n -∞∞-∑==∑

=-∞=

数字信号处理习题及答案1

数字信号处理习题及答案1 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出 y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n ) 的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换 DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即 可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理 想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)

数字信号处理答案解析

1-1画出下列序列的示意图 (1) (2) (3) (1) (2)

(3) 1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。 图1.41信号x(n)的波形 (1)(2)

(3) (4) (5)(6) (修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期 (1) 解:非周期序列; (2) 解:为周期序列,基本周期N=5; (3)

解:,,取 为周期序列,基本周期。 (4) 解: 其中,为常数 ,取,,取 则为周期序列,基本周期N=40。 1-4判断下列系统是否为线性的?是否为移不变的? (1)非线性移不变系统 (2) 非线性移变系统(修正:线性移变系统) (3) 非线性移不变系统 (4) 线性移不变系统 (5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的? (1) ,其中因果非稳定系统 (2) 非因果稳定系统 (3) 非因果稳定系统 (4) 非因果非稳定系统

(5) 因果稳定系统 1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图 (1) (2) (3) 解:(1) (2) (3)

1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真? (1) (2) (3) 解: (1)采样不失真 (2)采样不失真 (3) ,采样失真 1-8已知,采样信号的采样周期为。 (1) 的截止模拟角频率是多少? (2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何? (3)若,求的数字截止角频率。 解: (1) (2) (3)

(完整版)数字信号处理课后答案_史林版_科学出版社

第一章 作业题 答案 ############################################################################### 1.2一个采样周期为T 的采样器,开关导通时间为()0T ττ<<,若采样器的输入信号为 ()a x t ,求采样器的输出信号()()()a a x t x t p t ∧ =的频谱结构。式中 ()() 01,()0,n p t r t n t r t ττ∞ =-∞ = -≤≤?=? ?∑其他 解:实际的采样脉冲信号为: ()()n p t r t n τ∞ =-∞ = -∑ 其傅里叶级数表达式为: ()000 ()jk t n p t Sa k T e T ωωτ ω∞ =-∞ = ∑ 采样后的信号可以表示为: ()()()?a a x t x t p t δ= 因此,对采样后的信号频谱有如下推导: ()()()()()()()()()()() ()()000000000 00 00??sin 1j t a a jk t j t a n jk t j t a k j k t a k a k a k X j x t e dt x t Sa k T e e dt T Sa k T x t e e dt T Sa k T x t e dt T Sa k T X j jk T k T X j jk T k ωωωωωωωωτ ωωτ ωωτ ωωτ ωωωωωω∞--∞ ∞ ∞ --∞=-∞ ∞ ∞ --∞=-∞∞ ∞ ---∞ =-∞∞ =-∞ ∞=-∞Ω===== -=-?∑? ∑ ?∑? ∑∑ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.5有一个理想采样系统,对连续时间信号()a x t 进行等间隔T 采样,采样频率8s πΩ=rad/s ,

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理课后答案

1.4 习题与上机题解答 1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。 题1图 解:x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n -1)+2δ(n -2)+4δ(n -3)+0.5δ(n -4)+2δ(n -6) 2. 给定信号: ?? ? ??≤≤-≤≤-+=其它04 061 452)(n n n n x (1) 画出x(n)序列的波形, 标上各序列值; (2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列; (3) 令x 1(n)=2x(n -2),试画出x 1(n)波形; (4) 令x 2(n)=2x(n+2),试画出x 2(n)波形; (5) 令x 3(n)=x(2-n),试画出x 3(n)波形。 解:(1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n)+6δ(n -1)+6δ(n -2)+6δ(n -3)+6δ(n -4) (3)x 1(n)的波形是x(n)的波形右移2位,再乘以2,画出图形如题2解图(二)所示。 (4) x 2(n)的波形是x(n)的波形左移2位,再乘以2,画出图形如题2解图(三)所示。 (5) 画x 3(n)时,先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°),然后再右移

2位, x 3(n)波形如题2解图(四)所示。 3.判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)是常数 A n A n x 8π73 cos )(??? ??-=π (2))8 1 (j e )(π-= n n x 解:(1) 因为ω=7 3 π, 所以314 π 2= ω , 这是有理数,因此是周期序列,周期T=14。 (2) 因为ω=81 , 所以ωπ2=16π, 这是无理数, 因此是非周期序列。 4. 对题1图给出的x(n)要求: (1) 画出x(-n)的波形; (2) 计算x e (n)=1/2[x(n)+x(-n)], 并画出x e (n)波形; (3) 计算x o (n)=1/2[x(n)-x(-n)], 并画出x o (n)波形; (4) 令x 1(n)=x e (n)+x o (n), 将x 1(n)与x(n)进行比较, 你能得到什么结论? 解:(1)x(-n)的波形如题4解图(一)所示。 (2) 将x(n)与x(-n)的波形对应相加,再除以2,得到x e (n)。毫无疑问,这是一个偶对称序列。x e (n)的波形如题4解图(二)所示。 (3) 画出x o (n)的波形如题4解图(三)所示。 (4) 很容易证明:x(n)=x 1(n)=x e (n)+x o (n) 上面等式说明实序列可以分解成偶对称序列和奇对称序列。偶对称序列可以用题中(2)的公式计算,奇对称序列可以用题中(3)的公式计算。 5.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理试题和答案 (1)

一. 填空题 1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m (n)表示,其数学表达式为 x m (n)= x((n-m)) N R N (n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

数字信号处理习题解答1

第一章 第二章 11-=--m/2 m=-m -/2 12 m=--/2 -/21 2 m=-m=-()121.7DTFT[x(2n)]=(2n)e m=2n DTFT[x(2n)]=(m)e =[()(1) ()]e [()e e ()e ] [()()] j n n j m j m j m j m j m j j x x x m x m x m x m X e X e ωωωωπ ωωωπ∞ ∞∞ ∞∞ ∞∞ ∞ ∞ ∞-+-=+ =+∑∑ ∑∑∑,为偶数 求下列序列的傅里叶变换()x(2n) 令,于是 -n 1 1 121 z (1) 2u(n)()2 ()2 1,|(2)|11(2),||n n n n n n X z u n z z z z z z z +∞ --=-∞+∞ --=-∞ --=== <-=>-∑∑14.求出下列序列的变换及收敛域 3.3(1).()cos(),781() 8 (2).()5.25n 640() (5)()x n A n A j n x n e x n y n e πππω=--==判断下面的序列是否周期的是常数 试判断系统是否为线性时不变的()y(n)=x (n)(7) y(n)=x(n)sin() .试判断系统是否为因果稳定系统()y(n)=x(n-n )

-1 -1-2 -1 -1112 1-317.X(z)=,2-5+2105< | z | < 2x(n)(2) | z | > 2x(n) 11 X(z)= -1-z 1-2z 05< | z | < 2(n)=2(-n-1)+()(n) | z | > 2(n)=()(n)-2(n)n n n n z z z u u u u 已知分别求:()收敛域.对应的原序列收敛域对应的原序列解:收敛域.时: x 收敛域时: x -1-1 -1 -1-1 -1 21.(n)=0.9y(n-1)+x(n)+0.9x(n-1)(1)h(n)(2)H(e )1+0.9(1)H(z)=,|z|>0.91-0.91+0.9F(z)=H(z)z =z 1-0.9n 1z=0.9(n j n n z z z z h ω≥已知线性因果网络用下面差分方程表示: y 求网络的系统函数及单位脉冲响应写出网络频率响应函数的表达式,并定性画出其幅频特性曲线解: 令当时,有极点-1-1=0.9-112-1-1-1-1=0=0.9-1-1)=Res[F(z),0.9]1+0.9=z (z-0.9)|1-0.9=20.9(n)=0,n<0 n=0z =0,=0.9(n)=Res[F(z),0]+Res[F(z),0.9]1+0.91+0.9=z z|+z (z-0.9)|1-0.91-0.9=-1+2=1 h(n)=n z n z z z z z h z z z z ?∴因为系统是因果系统,所以有h 当时,有极点00000000=0n-m =0n -m =0 n n 20.9(n-1)+(n)+0.9 (2)H(e )=-0.9 (3)y(n)=h(n)*x(n) =(m)x(n-m) =(m)e =(m)e e =e H(e )+0.9=e -0.9 n j j j m j m j j m j j j j j u e e h h h e e ωω ω ωωωωωωωωδ∞ ∞ ∞ ?∑∑∑( )

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)

《数字信号处理》第三版课后答案(完整版)

西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。 解: x( n)(n 4) 2 (n 2) ( n 1) 2 (n)(n 1) 2 (n 2) 4 ( n 3) 0.5 (n 4) 2 (n 6) 2n 5, 4 n 1 2. 给定信号: x( n) 6,0 n 4 0, 其它 (1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列; (3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形; (4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形; (5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。 解: ( 1) x(n) 的波形如 题 2 解图(一) 所示。 ( 2) x(n)3 ( n 4) (n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1) 6 ( n 2) 6 (n 3) 6 (n 4) ( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。 ( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。 ( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移 2 位, x 3 ( n) 波形如 题 2 解图(四) 所 示。 3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1) x( n) Acos( 3 n ) ,A 是常数; 7 8 (2) x(n) j ( 1 n ) e 8 。 解:

数字信号处理课后习题答案完整版

数字信号处理课后习题 答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

数字信号处理(姚天任江太辉)第三版 课后习题答案

第二章 判断下列序列是否是周期序列。若是,请确定它的最小周期。 (1)x(n)=Acos(685π π+n ) (2)x(n)=)8(π-n e j (3)x(n)=Asin(343π π+n ) 解 (1)对照正弦型序列的一般公式x(n)=Acos(?ω+n ),得出= ω8 5π 。因此5162= ωπ 是有理数,所以是周期序列。最小周期等于N=)5(165 16 取k k =。 (2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出8 1 =ω。因此 πω π 162=是无理数,所以不是周期序列。 (3)对照正弦型序列的一般公式x(n)=Acos(?ω+n ),又x(n)=Asin(3 43ππ+n )=Acos( -2π343ππ-n )=Acos(6143-n π),得出=ω43π。因此3 8 2=ωπ是有理数,所以是周期序列。最小周期等于N=)3(83 8 取k k = 在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。 解 利用线性卷积公式 y(n)= ∑∞ -∞ =-k k n h k x )()( 按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。 (a) y(0)=x(O)h(0)=1 y(l)=x(O)h(1)+x(1)h(O)=3 y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1) h(n)=-δ(n)+2δ(n-1)+ δ(n-2) y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)= ∑∞ -∞ =--k k n k n u k u a )()(= ∑∞ -∞ =-k k n a =a a n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理习题及答案

三、计算题 1、已知10),()(<<=a n u a n x n ,求)(n x 的Z 变换及收敛域。 (10分) 解:∑∑∞ =-∞ -∞=-= = )()(n n n n n n z a z n u a z X 1 111 )(-∞=--== ∑ az z a n n ||||a z > 2、设)()(n u a n x n = )1()()(1--=-n u ab n u b n h n n 求 )()()(n h n x n y *=。(10分) 解:[]a z z n x z X -=? =)()(, ||||a z > []b z a z b z a b z z n h z H --=---= ?=)()(, ||||b z > b z z z H z X z Y -= =)()()( , |||| b z > 其z 反变换为 [])()()()()(1n u b z Y n h n x n y n =?=*=- 3、写出图中流图的系统函数。(10分) 解:2 1)(--++=cz bz a z H 2 1124132)(----++= z z z z H 4、利用共轭对称性,可以用一次DFT 运算来计算两个实数序列的DFT ,因而可以减少计算量。设都是N 点实数序列,试用一次DFT 来计算它们各自的DFT : [])()(11k X n x DFT = []) ()(22k X n x DFT =(10分)。 解:先利用这两个序列构成一个复序列,即 )()()(21n jx n x n w +=

即 [][])()()()(21n jx n x DFT k W n w DFT +== []()[]n x jDFT n x DFT 21)(+= )()(21k jX k X += 又[])(Re )(1n w n x = 得 [])(})({Re )(1k W n w DFT k X ep == [] )())(()(2 1*k R k N W k W N N -+= 同样 [])(1 })({Im )(2k W j n w DFT k X op == [] )())(()(21*k R k N W k W j N N --= 所以用DFT 求出)(k W 后,再按以上公式即可求得)(1k X 与)(2k X 。 5、已知滤波器的单位脉冲响应为)(9.0)(5n R n h n =求出系统函数,并画出其直接型 结构。(10分) 解: x(n) 1-z 1-z 1-z 1-z 1 9.0 2 9.0 3 9.0 4 9.0 y(n) 6、略。 7、设模拟滤波器的系统函数为 31 11342)(2+-+=++=s s s s s H a 试利用冲激响应不变法,设计IIR 数字滤波器。(10分) 解 T T e z T e z T z H 31111)(-------=

数字信号处理试题及参考答案

数字信号处理期末复习题 一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分) 1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。 (Ⅰ)原信号为带限 (Ⅱ)抽样频率大于两倍信号谱的最高频率 (Ⅲ)抽样信号通过理想低通滤波器 ①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ 2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。 ①Ωs②.Ωc ③.Ωc/2④.Ωs/2 3.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。 ①.R3(n) ②.R2(n) ③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1) 4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。 ①.有限长序列②.右边序列 ③.左边序列④.双边序列 5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。 ①当|a|<1时,系统呈低通特性 ②.当|a|>1时,系统呈低通特性 ③.当0

6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。 ①.2 ②.3 ③.4 ④.5 7.下列关于FFT的说法中错误的是( ① )。 ①.FFT是一种新的变换 ②.FFT是DFT的快速算法 ③.FFT基本上可以分成时间抽取法和频率抽取法两类 ④.基2 FFT要求序列的点数为2L(其中L为整数) 8.下列结构中不属于FIR滤波器基本结构的是( ③ )。 ①.横截型②.级联型 ③.并联型④.频率抽样型 9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ④ )。 ①.h[n]=-h[M-n] ②.h[n]=h[M+n] ③.h[n]=-h[M-n+1] ④.h[n]=h[M-n+1] 10.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是( ④ )。 ①.数字频率与模拟频率之间呈线性关系 ②.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器 ③.容易出现频率混叠效应 ④.可以用于设计高通和带阻滤波器 11.利用矩形窗函数法设计FIR滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于( ① )。 ①.窗函数幅度函数的主瓣宽度 ②.窗函数幅度函数的主瓣宽度的一半

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试 成功!! 电子科技大学微电子与固体电子学钢教授著 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+- 1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+ 故该系统是线性系统。

数字信号处理习题及答案

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ) 5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n πππ π -

②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1) A是常数 8ππn 73Acos x(n)???? ? ?-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω=73π, 所以3 14 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω=81, 所以ω π 2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0 ?+=是周期序列的条件是是有理数2π/w 0 。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

数字信号处理第三版课后习题答案

数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+- (3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题

2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。 3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1)3()cos()7 8x n A n π π=-,A 是常数; (2)1 ()8 ()j n x n e π-=。 解: (1)3214 , 73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w w π π==,这是无理数,因此是非周期序列。 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+- 1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+-

相关文档
最新文档