超声波焊接接头结构设计

超声波焊接接头结构设计
超声波焊接接头结构设计

SEE- IN ULTRASONIC SDN. BHD.

( Company No. : 750998 – H )

Lot 25-4-10, Plaza Prima,

Batu 4 1/2, Jalan Klang Lama,

58200 Kuala Lumpur, Malaysia.

Tel : 03-7982 6466 Fax: 03–7982 6468

Joint Designs for Ultrasonic Welding

Perhaps the most critical facet of ultrasonic welding is joint design

(the configuration of two mating surfaces). It should be considered when the parts to be welded are still in the design stage, and incorporated into the molded parts. There are a variety of joint designs, each with specific features and advantages. Their selection is determined by such factors as type of plastic, part geometry, weld requirements, machining and molding capabilities, and cosmetic appearance.

Butt Joint with Energy Director

The butt joint with energy director is the most common joint design used in ultrasonic welding, and the easiest to mold into a part. The main feature of this joint is a small 90" or 60" triangular shaped ridge molded into one of the mating surfaces. This energy director limits initial contact to a very small area, and focuses the ultrasonic energy at the apex of the triangle. During the welding cycle, the concentrated ultrasonic energy causes the ridge to melt and the plastic to flow throughout the joint area, bonding the parts together.

For easy-to-weld resins (amorphous polymers such as ABS, SAN, acrylic and polystyrene) the size of the energy director is dependent on the area to be joined. Practical considerations suggest a minimum height between .008 and .025 inch (.2 and .6 mm).

Crystalline polymers, such as nylon, thermoplastic polyesters, octal, polyethylene, polypropylene, and polyphenylene sulfide, as well as high melt temperature amorphous resins, such as polycarbonate and polysulfide are more difficult to weld. For these resins, energy directors with a minimum height between .015 and, 020 inch (.4 and .5 mm) with a 60" included angle are generally recommended.

The 90" included angle energy director height should be at least 10% of the joint width, and the width of the energy director should be at least 20% of the joint width. Image 1 (to the right) shows a butt joint with a 90" included angle energy director. With thick-walled joints, two or more energy directors should be used, and the sum of their heights should equal 10% of the joint width.

To achieve hermetic seals when welding poly-carbonate components, it is recommended that a 60" included angle energy director should be designed into the part. The energy director width should be 25% to 30% of the wall thickness. Image 2 (to the right) shows a butt joint with a 60" included angle energy director. Image 3 (to the right) shows how the ports should be dimensioned to allow for the flow of molten material from the energy director throughout the joint area.

With assemblies whose components are mode of identical thermoplastics, the energy director can be designed into either half of the assembly. However, when designing energy directors into assemblies consisting of a part mode of copolymers or terpolymers, such as ABS, and another part made of a photopolymer such as acrylic, the energy director should always be incorporated into the photopolymer half of the assembly. Thermoplastic Assembly Solutions for Every

Application:

Step Joint with Energy Director

The step joint with energy directory is illustrated in Image 4 (to the right). This joint molds readily, and provides a strong, well aligned joint with a minimum of effort. This joint is usually stronger than a butt joint due to the fact that material flows into the vertical

clearance. The step joint provides good strength in shear as well as tension, and is often recommended where good cosmetic

appearance is required. When working with crystalline materials a 60° included angle energy director should be used instead of the 90° included angle energy director.

Image 5 (below) shows variations of the basic step joint

design.

Tongue and Groove Joint with Energy Directory

The tongue and groove joint with energy director is illustrated in Image 6 (to the right). This joint is used primarily for scan welding, self location of parts, and prevention of flash both internally and externally. It provides the greatest bond strength of the three joints discussed so far. Shear Joint

The shear joint of interference joint shown in figure 7 is generally recommended for high-strengths hermetic seals of parts with square corners or rectangular designs, especially with crystalline resins.

Initial contact is limited to a small area which is usually a recess or step in either of the parts. The contacting surfaces melt first. As the parts telescope together, they continue to melt along the vertical walls. The smearing action of these two melt surfaces eliminates leaks and voids, making this the best joint for strong hermetic seals. Several important aspects of the shear joint should be considered 1) the top part should be as shallow as possible, 2) the outer walls should be well supported by a holding fixture, 3) the design should allow for a clearance fit, and 4) a lead-in (A) should be incorporated.

The shear joint requires weld times in the range of 3-4 times that of other joint designs because larger amounts of resin are being welded. In addition, a certain amount of flash will be visible on the surface after welding.

Image: 4

Image: 6

Image: 7

Scarf Joint

The scarf joint, illustrated in Image 11, is generally recommended to high-strength hermetic seals on parts with circular or oval

designs, especially with crystalline resins.

Image: 11

The scarf joint requires that the angles of the two parts be between 30' and 60' and be within one and one half degrees. If the wall

thickness is .025" (0.63mm) or less, an angle of 60' should be used. If the wall thickness is .060" (1.52mm) or more, an angle of 30' should be used. Intermediate angles are recommended for wall thickness between .025" and .060" (.063 and 1.52mm).

A minimum wall thickness of .030" (0.76mm) at the outer edge of the scarf is recommended to prevent "blowout," or melting clear through the wall, during welding.

The scarf joint is not commonly used due to the difficulties encountered in maintaining component concentricity and

dimensional tolerances. However, this joint is highly recommended when limited wall thickness preclude the use of a shear or modified shear joint.

A modified scarf joint is illustrated in Image 12.

As shown in Figure 13, a flash well can be incorporated in the scarf joint to contain the excess molten material generated when the parts are welded. The length of the well should be at least equal to the cross sectional thickness of the part being welded.

Image: 8

Image: 9

Image: 12

管道对接焊接接头超声波探伤漏检

95管道对接焊接接头超声波探伤漏检 朱春芳 (贵州电力建设第二工程公司金属焊接检验中心,贵州贵阳 550002) 摘要:火电站安装过程中,超声波探伤常应用于壁厚大于20mm对接焊接接头的无损检测,在保 证探伤系统灵敏度的前提下,由于探头选择的不恰当,管道外表面和内表面不能使声束按预计路径 传播,造成焊接缺陷漏检,给设备安全运行带平隐患,希望能引起重视。 关键词:超声波探伤;焊接缺陷;漏检;检测面 超声波探伤对面状缺陷敏感,对焊接接头中的裂纹、未焊透和未熔合等缺陷的检出率高,探测距离大,超声波探伤仪体积小、重量轻、检测速度快,检测中只消耗耦合剂和磨损探头,检测费用低,所以在火电厂安装过程中,大于20mm 的管道对接焊接接头都用超声波探伤。中厚壁压力管道焊接采用氩弧焊打底,电焊填充盖面的焊接方法,对接焊接接头不允许存在裂纹、未焊透和未熔合等面状缺。在保证探伤系统灵敏度满足规定要求的前提下,由于检测面等客观因素和探伤人员判断的主观因素影响,造成焊接缺陷漏检,给设备安全运行带来隐患。 1 探头的影响 1.1 K值选择 1.1.1 探头K值的选择应从以下三个方面考虑(1)使声束能扫查到整个焊接接头截面;(2)使声束中心线尽量与主要危险性缺陷垂直; (3)保证有足够的探伤灵敏度。 用一、二次波单面双侧探测焊接接头截面时,d1=(a+l0)/T,d2=b/K,其中一次波只能扫查到d1以下的部分(受余高限制),二次波只能扫查到d2以上的部分(受根部成形限制)。为保证能扫查整个焊接接头截面,必须满足d1+d2≤T,从而得到:式①K≥(a+b+l0)/T,式中a—上焊接接头宽度的一半;b—下焊接接头宽度的一半;l0—探头的前沿距离;T—管壁厚度;K—探头的K值。 采用单面焊双面成型焊接工艺时,b值很小,可以忽略不计,则K≥(a+l0)/T。从式①中可看出,随着管壁厚度T增大,探头K值减小,也就是说如果管壁越厚,一、二次波探伤,用较小K 值的探头就能保证扫查到整个焊接接头截面,管壁越薄需要使用的探头K值越大。 当选择的探头K<(a+l0)/T时,用一、二次波单面双侧扫查焊接接头截面,从图2中可看出一次波扫查不到焊接接头截面,两侧二次声束都扫查不到E区域,造成该区域漏检。 K值发生变化,探头使用过程中,有机玻璃耦合面被磨损,由于探头前后受力不均,前后磨损程度不一样,引起K值发生变化,如探头前面磨损严重,K值变小,如果K值小于(a+l0)/T,则会造成如图2所示的E区域漏检。如探头后面磨损较大,则K值变大。无论K值变大还是变小都会因为K值变化而引起缺陷定位不准,这会影响对缺陷的分析和判定。 1.2 探头晶片尺寸 探头晶片尺寸的大小会影响近场区的长度和声能传播远近,但会不会影响对接焊接接头超声波探伤呢?对接焊接接头一般用横波超声波探伤,设有机玻璃中入射点至晶片的距离为12mm,钢中声速为3230ms,由公式N’=Fscosβ/πλs2cosα-L1tgα/tgβ,计算出不同探头在钢中的近场长度,见表1。 2008年第12期2008年12月 化学工程与装备 Chemical Engineering & Equipment

超声波焊接件的工艺设计

超声波焊接件的工艺设计 作者:欣宇机械来源:本站原创日期:2014-5-5 17:32:38 点击:6943 属于:行业新闻超声波焊接件的工艺设计-东莞市欣宇超声波机械有限公司 在超声波焊接行业中,很多客户都不知道塑料件焊接,焊接产品优良不只是跟材质,超声波选择机型功率有关系,最容易被忽略的一点是:超声波焊接件的工艺设计,塑料焊接件需要设计有超声线,焊接出来的产品才是比较完美的。那么,超声波焊接件的工艺设计是怎么样的呢?要怎么设计呢?很多客户初步使用超声波焊接,都会对个问题不了解,今天,欣宇小陈为大家讲解:超声波焊接件的工艺设计,希望对朋友有所帮助! 超声波塑料件的结构设计必须首先考虑如下几点: 1.是否需要水密、气密。 2.是否需要完美的外观。 3.是否适合焊头加工要求。 4.焊缝的大小(即要考虑所需强度)。 5.避免塑料熔化或合成物的溢出。 超声波焊接质量获得原因: 1.材质 2.上下表面的位置和松紧度 3.焊头与塑料件的妆触面 4.顺畅的焊接路径 5.塑料件的结构 6.焊接线的位置和设计 7.焊接面的大小 8.底模的支持 为了获得完美的、可重复的超声波熔焊方式,必须遵循三个主要设计方向: 1.围绕着连接界面的焊接面必须是统一而且相联系互紧密接触的。如果可能的话,接触面尽量在同一个平面上,这样可使能量转换时保持一致。 2.最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。 3.找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。 下面就对超声波塑料件设计中的要点进行分类举例说明: 超声波整体塑料件的结构 1.1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为 2-6kgf/cm2 。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑

焊缝超声波探伤

焊缝手动超声波探伤 锅炉压力容器和各种钢结构主要采用焊接方法制造。射线探伤和超声波探 伤是对焊缝进行无损检测的主要方法。 对于焊缝中的裂纹、 未熔合等面状危害性 缺陷,超声波比射线有更高的检出率。 随着现代科技快速发展, 技术进步。 超声 仪器数字化, 探头品种类型增加, 使得超声波检测工艺可以更加完善, 检测技术 更为成熟。但众所周知: 超声波探伤中人为因素对检测结果影响甚大; 工艺性强; 故此对超声波检测人员的素质要求高。 检测人员不仅要具备熟练的超声波探伤技 术,还应了解有关的焊接基本知识; 如焊接接头形式、 坡口形式、 焊接方法和可 能产生的缺陷方向、 性质等。 针对不同的检测对象制定相应的探伤工艺, 选用合 适的探伤方法,从而获得正确的检测结果。 射线检测局限性: 辐射影响,在检测场地附近,防护不当会对人体造成伤害。 受穿透力等局限影响,对厚截面及厚度变化大的被检物检测效果不 好。 5. 需接近被检物体的两面。 6. 检测周期长,结果反馈慢。设备较超声笨重。成本高。 常规超声波检测不存在对人体的危害,它能提供缺陷的深度信息和检出射 线照相容易疏漏的垂直于射线入射方向的面积型缺陷。 能即时出结果; 与射线检 测互补。 超声检测局限性: 1. 由于操作者操作误差导致检测结果的差异。 2. 对操作者的主观因素(能力、经验、状态)要求很高。 3. 定性困难。 4. 无直接见证记录(有些自动化扫查装置可作永久性记录) 5. 对小的(但有可能超标的缺陷)不连续性重复检测结果的可能性小。 6. 对粗糙、形状不规则、小而薄及不均质的零件难以检查。 7. 需使用耦合剂使波能量在换能器和被检工件之间有效传播。 1. 2. 3. 面状缺陷受方向影响检出率低。 4. 不能提供缺陷的深度信息。

焊接件结构设计的几点体会

现代技能开发 !""#?$月号 %&’ 焊接件材料的选择 焊接件的材料与结构设计有着密切的关系。焊接结构件因用途不同,要求不同。现在广泛使用的材料有铁碳合金,有色金属及其合金等。我们在设计焊接结构时,首先要根据焊接结构件的受力情况、工作条件、设计要求等,选择焊接结构件的材料。选择材料时,应考虑以下几点。 尽量选用同种材料 焊接结构件是多个零件或构件焊接在 一起而形成的。考虑到焊接过程的特点,各零件的材料应尽可能地选择一致。这样购料、焊接方法的选择、焊接工艺的制订、焊条的选用等比较简单容易。但有时为减少使用贵重金属材料(如:不锈钢),也可以使用不同材料。 尽量选用焊接性能好的材料 在选择焊接结构件材料时,应 考虑材料的强度及焊接结构件的工作条件要求(如耐腐蚀、抗冲击、交变载荷等)。当多种材料能同时满足使用要求时,这些材料当中,有的焊接性能较好,而有的焊接性能较差。有的适用这种焊接方法,有的适应另一种焊接方法。所以,选择材料时,应选择焊接方法普通、焊接性能好的材料。 尽量选用价格低的材料 在选择焊接结构件材料时,除满足 了各方面的要求以外,还应考虑经济性。焊接结构件应选用价格低、资源丰富的材料,这样才符合勤俭节约、降低成本、提高产品竞争力的基本原则。 焊接件的结构设计 焊接结构件随着焊接技术的发展,开始得到越来越广泛的应用。与其他制造金属结构的工艺,如锻造、铸造、铆接相比,焊接结构的占有率是在不断上升的。工业发达国家中一般焊接结构件占钢产量的()*以上。焊接结构件已经运用于工业、 交通、能源、农业、国防等几乎国民经济的一切部门,如用于建造冶金、建筑、石油化工设备、各种锻压机械、起重运输机械、工业与民用钢结构等。焊接结构的设计是焊接件的关键,结构设计是否合理,关系到焊接结构件的强度、寿命以及能否取得合格、优质的焊接结构的问题。焊接件结构设计关系到方方面面,下面仅从以下几个方面谈一下个人的体会。 尽量减少焊缝的数量 焊接结构件一般由多个零件组装焊 接而成。在焊接结构件设计时,要尽量减少零件数量,减少焊缝数量。只有这样才能减少焊接工作量,减少焊接件的变形,同时也减少了焊接应力,提高了焊接件的强度。图+(,)焊接件中有四条焊缝,若改为图+(-) 结构,则焊缝变为两条。焊缝尽可能布置在应力较小处 焊接结构件在承受载荷时, 其材料内部必然产生内应力。由于零件的形状不同、受力特点不同,所以零件的不同截面、不同部位可能产生的应力大小也不同。如果我们把焊缝布置在产生应力较小的地方,这样就减小了焊接缺陷、应力集中等对零件破坏的影响,提高了焊接结构件的强度和可靠性。如图!悬臂梁的截面设计,焊缝在上下两面就不如改在左右两侧面。 选择合适的接头形式 焊接结构件的焊接接头性能、质量好 坏直接与焊接结构件的性能、安全性和可靠性有关。多年来焊接工作者对焊接接头进行了广泛的试验研究,这对于提高焊接结构件的性能和可靠性,扩大焊接结构件的应用范围起了很大作用。熔焊的焊缝主要有对接焊缝和角焊缝,以这两种焊缝为主体构成的焊接接头有对接接头、角接接头、.形(十字)接头、搭接接头和塞焊接头等。焊接结构应该优先采用接头形式简单、应力集中小、不破坏结构连续性的焊接接头形式。对接接头应力集中最小、形式最简单、力的传递也较少转折,故是最合理的、典型的焊接接头形式。 尽量减小焊缝的截面尺寸 焊接变形与熔敷金属的数量有 很大关系,所以应尽量减小焊缝截面尺寸。在条件许可的情况下,用双/形坡口和双0形坡口来代替0形坡口, 熔敷金属减少,且焊缝在厚度方向对称,收缩一致,可减少焊接变形。角焊缝引起的焊接变形较大,所以要尽量减小角焊缝的焊脚尺寸。当钢板较厚时,开坡口的焊缝比角焊缝的熔敷金属量小,板厚不同时,坡口应开在薄板上。如图#所示,显然图#(1)比图#(,)、(-) 的焊缝尺寸焊接件结构设计的几点体会 !李银生 白建军!河南 训练技法 !""

钢结构焊接方案

丰台区成寿寺B5地块定向安置房项目钢结构焊接方案 北京建谊建筑工程有限公司 二0一六年五月

编制人:审核人:审批人:编制时间:

目录 一、编制依据 (3) 二、工程概况 (4) 三、施工准备 (5) 四、施工方法 (6) 五、质量检验及控制 (16) 六、注意事项 (18) 一、编制依据 本施工方案主要编制依据如下: 1.1业主提供本项目相关的图纸

1.2现行有关技术规范、标准 相关规范规程 二、工程概况

建筑面积30379m2建筑高度49.05米 结构形式 钢管混凝土框架- 组合钢板剪力墙结构 抗震强度8度抗震建筑层数地下三层,地上9层、12层、16层、9层 使用功能住宅+配套服务质量标准合格 文明施工目 标 北京市绿色安全 文明工地 开工日期2016年2月18日地下总工期510日历天竣工日期2017年6月30日 三、施工准备 3.1主要机具设备 CO2焊机普通焊机角磨机 3.2 材料准备 焊材选用见下表: 序号焊接方法 母材和焊接材料 Q345B(母材) 1手工焊E5015 2CO2气保焊ER50-6

CO2焊丝 3.3焊接管理 (1)焊工管理 1)所有焊工须持有所需有效焊工证、上岗证才能上岗。 2)局部返修两次或一次返修量较多的焊工,暂停施焊工作,经重新培训、考核后方可上岗。 3)焊前对焊工进行工艺交底,使焊工掌握具体焊接工艺,如焊材选用、焊接规范、焊接顺序等。工艺确定后,焊工要严格执行。 (2)焊材管理 1) 焊材入库 重要钢结构采用的焊接材料应进行抽样复验,复验结果应符合现行国家产品标准和设计要求。焊材有齐全的材质证明,并经检查确认合格后入库。 2) 焊材发放 焊材由专人发放,并作好发放记录。记录中包括焊材生产批号,施焊焊缝部位等。 3.4作业条件 (1)焊接缝焊接区域两侧需要将油污、杂物、铁锈等清除干净。 (2)手工电弧焊现场风速大于8m/s时,采取有效的防风措施后方施焊。雨、雪天气或相对湿度大于90%时,采取有效防护措施后方

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

超声波焊接接头结构设计

SEE- IN ULTRASONIC SDN. BHD. ( Company No. : 750998 – H ) Lot 25-4-10, Plaza Prima, Batu 4 1/2, Jalan Klang Lama, 58200 Kuala Lumpur, Malaysia. Tel : 03-7982 6466 Fax: 03–7982 6468 Joint Designs for Ultrasonic Welding Perhaps the most critical facet of ultrasonic welding is joint design (the configuration of two mating surfaces). It should be considered when the parts to be welded are still in the design stage, and incorporated into the molded parts. There are a variety of joint designs, each with specific features and advantages. Their selection is determined by such factors as type of plastic, part geometry, weld requirements, machining and molding capabilities, and cosmetic appearance. Butt Joint with Energy Director The butt joint with energy director is the most common joint design used in ultrasonic welding, and the easiest to mold into a part. The main feature of this joint is a small 90" or 60" triangular shaped ridge molded into one of the mating surfaces. This energy director limits initial contact to a very small area, and focuses the ultrasonic energy at the apex of the triangle. During the welding cycle, the concentrated ultrasonic energy causes the ridge to melt and the plastic to flow throughout the joint area, bonding the parts together. For easy-to-weld resins (amorphous polymers such as ABS, SAN, acrylic and polystyrene) the size of the energy director is dependent on the area to be joined. Practical considerations suggest a minimum height between .008 and .025 inch (.2 and .6 mm). Crystalline polymers, such as nylon, thermoplastic polyesters, octal, polyethylene, polypropylene, and polyphenylene sulfide, as well as high melt temperature amorphous resins, such as polycarbonate and polysulfide are more difficult to weld. For these resins, energy directors with a minimum height between .015 and, 020 inch (.4 and .5 mm) with a 60" included angle are generally recommended. The 90" included angle energy director height should be at least 10% of the joint width, and the width of the energy director should be at least 20% of the joint width. Image 1 (to the right) shows a butt joint with a 90" included angle energy director. With thick-walled joints, two or more energy directors should be used, and the sum of their heights should equal 10% of the joint width. To achieve hermetic seals when welding poly-carbonate components, it is recommended that a 60" included angle energy director should be designed into the part. The energy director width should be 25% to 30% of the wall thickness. Image 2 (to the right) shows a butt joint with a 60" included angle energy director. Image 3 (to the right) shows how the ports should be dimensioned to allow for the flow of molten material from the energy director throughout the joint area. With assemblies whose components are mode of identical thermoplastics, the energy director can be designed into either half of the assembly. However, when designing energy directors into assemblies consisting of a part mode of copolymers or terpolymers, such as ABS, and another part made of a photopolymer such as acrylic, the energy director should always be incorporated into the photopolymer half of the assembly. Thermoplastic Assembly Solutions for Every Application:

超声波焊接的塑件设计规范方案

超声波焊接的塑件设计规范 一.超声波设计准则: 1.两熔接面的最初接触面积必须减少以减少溢胶发生. 2.提供一种能使两接触面相互对位的方式,可采用插针,插 孔,阶梯或沟槽. 3.整个熔接面必须均匀一致与紧密接触,尽可能保持在同一 平面. 4.美工线:设计特性使熔接完毕后接口四周将出现0.25至 0.64mm之空隙,因为工件与工件之间的变形不易被发现. 5.避免直角转角设计,为了增加熔接强度建议咬花面设计. 二.熔接面有熔接线和剪切两种主要设计类型. 导熔线: 是在两熔接面之一上形成一条三角形凸出的材料,导 熔线的基本作用是聚集能量并且迅速把要熔接的一 面熔解,导熔线能够快速溶解到最高的熔接强度.导 熔线必须愈尖愈好,当熔接低温度熔解的塑料,导熔 线高度不可低于0.25mm,若熔接半结晶型或高熔解温 度的塑料时,导熔线高度不可低于0.5mm.

(一)基本导熔线设计观念可以运用在平头熔接面以外的熔 接面设计上去以取得额外的优点. 1.阶梯式导熔线:主要用语外观件上需要精确对位与不溢胶 上的设计.注意这种设计的壁厚要求最小尺寸为2mm. 2.沟槽式导熔线:主要是能从里外两面防止溢胶并且可能提 供对位功能,提升高度的熔合使熔接面积增加而提升熔接强度的设计,注意这况设计的壁厚要求最小尺寸为2mm.

3.十字交叉式导熔线:是一导熔线使它们相互呈垂直交叉, 能缩短熔接时间及降低熔接时所消耗的功率,且并不影响熔接强度,但是会产生高低断差以及溢胶. 4.连续沟齿状导熔线:若取得完全密合的熔接效果,建议一 方的导熔线设计采用连续沟齿状.此款设计将产生大量的溢胶.

超声波焊接线的设计与超声波焊接机的调试

超声波焊接线的设计与超声波焊接机的调试 2009-04-23 09:39 1.强度无法达到欲求标准。当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢?※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论:1.相同熔点的塑料材质熔接强度愈强。2.塑料材质熔点差距愈大,熔接强度愈小。3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。 2.制品表面产生伤痕或裂痕。在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。 解決方法:1.降低压力。2.减少延迟时间(提早发振))。3.减少熔接时间。4.引用介质覆盖(如PE袋)。5.模治具表面处理(硬化或镀铬)。6.机台段数降低或减少上模扩大比。7.易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。8.易断裂产品于直角处加R角。 3.制品产生扭曲变形。发生这种变形我们规纳其原因有三:1.本体与欲熔接物或盖因角度或弧度无法相互吻合. 2.产品肉厚薄(2m/m以内)且长度超出60m/m以上. 3.产品因射出成型压力等条件导致变形扭曲.所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg以下的压力是无法改变塑料的轫性与惯性。所以不要尝试用强大的压力,去改变熔接前的变形(熔接机最高压力为6kg),包含用模治具的强迫挤压。或许我们也会陷入一个盲点,那就是从表面探讨变形原因,即未熔接前肉眼看不出,但是经完成超音波熔接后,就很明显的发现变形。其原因乃产品在熔接前,会因导熔线的存在,而较难发现产品本身各种角度、弧度与余料的累积误差,而在完成超音波熔接后,却显现成肉眼可看到的变形。解決方法:1.降低压力(压力最好在2kg 以下)。2.减少超音波熔接时间(降低强度标准)。3.增加硬化时间(至少0.8 秒以上)。 4.分析超音波上下模是否可局部调整(非必要时)。 5.分析产品变形主因,予以改善。 4.制品内部零件破坏※超音波熔接后发生产品破坏原因如下:1.超音波熔接机功率输出太

小径管对接焊接接头的相控阵超声检测

小径管对接焊接接头的相控阵超声检测 摘要:对小径管对接焊接接头中的裂缝、密集气孔、未焊透等缺陷进行相控阵超声波检测和射线检测,通过将两者的检测结果进行分析和比较,对两者的检测效果进行评价。本文主要是对相控阵超声波检测手段的优势和其在小管径检测中的应用进行了一定的分析,旨在推动相控阵超声波检测技术的广泛应用。 关键词:小径管对接焊接;接头;相控阵超声检测 引言 相控阵超声检测可以获取实时的检测结果,能够对工件的缺陷进行多种方式的扫描,是一种可以记录的无损检测方式。相控阵超声检测的主要优势就是声束角度和聚焦深度精确可控,声束可达性强,检测精度高,缺陷显示直观,检测速度快,是具有较高可靠性的检测技术,在工业领域有着颇为广泛的应用。笔者对小径管对接焊接接头中的缺陷进行了相控阵超声波检测,并且与射线检测结果进行了一定的比较分析。 一、相控阵超声检测技术 (一)相控阵超声检测技术的原理 相控阵超声检测方法主要是通过对换能器阵列中的单个阵元进行分别控制,以特定的时序法则进行激发和接收,进而实现声束在工件中的偏转和聚焦。采用自聚焦传感器能进一步增强聚焦能力和分辨力,有效的改善了小径管中波型畸变和杂波干扰的情况。 (二)试样管的焊制 小径管的试样管采用的是与广东省某电厂机组锅炉受热面管同规格同材质的管件,其中对接接头存在着一定的裂纹、未熔合、密集气孔有缺陷等问题,具体的示意图可以如下图1所示,焊接的方法主要是钨极氩弧焊。 图1 焊接接头简图 (三)相控阵检测系统 1、相控阵检测仪器 本次研究主要采用的仪器是phascan 32/128相控阵检测仪,Cobra16阵元自聚焦传感器,一次性激发16阵元。 2、相控阵检测探头和楔块 对于相控阵超声探头来说,它主要是阵列探头,在进行现场检测的时候要根据小径管的尺寸来对探头和楔块的型号和大小进行选择。一般来说,探头在进行使用的过程中,因为小径管的曲率过大,要将其和探头之间的耦合损失降低,就需要使用能够与小径管进行紧密切合的楔块,选择曲率相近的曲面。 (四)声束覆盖范围设置 在对小径管焊缝进行相控阵超声扇形扫查的时候,要对探头前沿到焊缝中心线的距离进行正确的选择,要保证在进行扇形扫查的时候大角度声束能够对焊缝的下面部分进行覆盖,小角度声束可以覆盖到焊缝的上面部分,进而达到对焊接接头的全面检测,避免出现遗漏。在对小径管对接接头进行检测的时候,还可以通过使用专业的软件来对声束覆盖范围进行模拟,然后对的不同角度的波束覆盖情况的进行模拟现实,通过这样的模拟结果可以找到适当的探头前沿距离和波束角度范围等等。 (五)相控阵检测校准设置

超声波塑料件的焊接线十大设计方法

超声波塑料件的焊接线十大设计方法 塑料件的设计 代注塑方式能有效提供比较完美的焊接用塑胶件。光我们决定用超声波焊接技术完成熔合时,塑料件的结构设计必须首先考虑如下几点: 1 焊缝的大小(即要考虑所需强度) 2 是否需要水密、气密 3 是否需要完美的外观 4 避免塑料熔化或合成物的溢出 5 是否适合焊头加工要求 焊接质量可能通过下几点的控制来获得: 1 材质 2 塑料件的结构 3 焊接线的位置和设计 4 焊接面的大小 5 上下表面的位置和松紧度 6 焊头与塑料件的妆触面 7 顺畅的焊接路径 8 底模的支持 为了获得完美的、可重复的熔焊方式,必须遵循三个主要设计方向: 1 最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。 2 找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或企口之类。 3 围绕着连接界面的焊接面必须是统一而且相联系互紧密接触的。如果可能的话,接触面尽量在同一个平面上,这样可使能量转换时保持一致。 下面就对塑料件设计中的要点进行分类举例说明: 整体塑料件的结构 1.1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接

时是需要加压的,一般气压为2-6kgf/cm2 。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑 ○1 加厚塑料件 ○2 增加加强筋 ○3 焊头中间位置避空 1.3尖角 如果一个注塑出来的零件出现应力非常集中的情况,比如尖角位,在超声波的作用下会产生折裂、融化。这种情况可考虑在尖角位加R角。如图2所示。 1.4塑料件的附属物 注塑件内部或外部表面附带的突出或细小件会因超声波振动产生影响而断裂或脱落,例如固定梢等(如图3所示)。通过以下设计可尽可能减小或消除这种问题:○1 在附属物与主体相交的地方加一个大的R角,或加加强筋。 ○2 增加附属物的厚度或直径。

焊接接头超声波检测通用工艺

1 主题内容和适用范围 1.1 本通用工艺规定承压设备对接焊接接头超声波探伤的仪器、探伤人员、试块、操作及验收标准等。 1.2 本通用工艺适用于母材厚度为8~120mm的全熔化焊对接焊接接头的B级超声波探伤。 1.3 本通用工艺不适用于铸钢,奥氏体钢焊缝及外径小于159mm的钢管环向对接焊接接头、内径小于或等于200mm 的管座角焊缝,也不适用于外径小于250mm和内半径与外半径之比小于80%的纵向对接焊接接头超声波探伤。 2 引用标准 JB/T9214-1999 A型脉冲反射式超声探伤系统工作性能测试方法 JB/T10061-1999 A型脉冲反射式超声探伤仪通用技术条件 JB/T10062-1999 超声探伤用探头性能测试方法 JB/T 4730.3-2005 承压设备无损检测 3 检测人员 3.1 从事检测的检验人员必须掌握超声波检测的基础技术,具有足够的焊缝超声波检测经验,并掌握一定的材料、焊接基础知识。 3.2 检测人员必须经过特种设备安全监察部门考试合格后,方可操作,签发报告者必须持有超声波Ⅱ级及以上资格证书。 4 超声仪器及探头 4.1 超声仪器 使用A型显示脉冲反射式探伤仪 4.2 探头 探头推荐按表1选用 表2 采用的斜探头规格 探头型号换能器尺寸(mm)频率(MHZ) 2.5P13×13 13×13 2.5 2.5P9×9 9×9 2.5 5P8×12 8×12 5 4.3 系统性能 4.3.1 检验前应校准探伤系统。 4.3.2 灵敏度余量 系统有效灵敏度余量应大于或等于10dB 5 试块 5.1 试块采用CSK-ⅠA、CSK-ⅡA、CSK-ⅢA试块。 5.2 板厚为8~120mm时,选用CSK-ⅠA、CSK-ⅡA、CSK-ⅢA组合;板厚大于120mm时,选用CSK-ⅣA试块,CSK-ⅣA试块尺寸见表7。 5.2.1 检验曲面工件时,如探伤面曲率半径R小于等于W2/4时,(W为探头接触面宽度,环缝检测时为探头宽度,

工字梁焊接结构的焊接工艺设计与制造

学生实验报告书 实验课程名称 综合实验(二) 典型焊接结构的焊接工艺设计与制造 开课学院材料科学与工程 指导教师姓名 学生姓名 学生专业班级 2011--2012学年第1学期 实验教学管理基本规范 实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。

1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况 参照执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实 验报告外,其他实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占 一定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容和评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情 况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所 有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。 附表:实验考核参考内容及标准

实验课程名称:综合实验(二)

超声波焊接线尺寸设计

超声波焊接线的设计 00 焊接热塑性制件的最普通的方法是超声焊接.这种方法是采用低振幅,高频率(超声)振动能量使表面和分子摩擦产生焊接相连垫塑性制件所需的热量.(正弦超声振动) 超声焊接在20-50kHz的频率范围内发生,其一般振幅范围为15-60um.在低达15kHz(较高振幅)的声频有时用于较大制件或较软材料.焊接过程通常在0.5-1.5s内发生.焊接工艺娈量包括焊接时间,焊

.

*剪切接头当焊接半结晶聚合物(或其它难以焊接的聚合物)和需要密封接头号时,一般推荐使用剪切接。需要高强度,高质量接碚的环形和矩形制件都用剪切接头。剪切接头号具有搭接制件壁部分,当接头被焊接和相互依次嵌入时,搭接部分产生公差和局部剪切。为了促进制件找平,接头包含了调节部分。为了集中熔融能量,一边上的阻碍物的顶角在初始接触面上降低。因为融化材料的温度在整个接触面上保持一致,制件被焊接时,两表面熔融均匀。深度为1.0-2.0mm的使用0.13-0.5mm范围内的公差值。为了防止在焊接过程中由于公差而产生的外部侧壁翘曲,垂直的制件应尽可能浅,但在一边用剪切制件改进的槽舌接头可与较深的拉伸制件一起使用,提供中壁接头,它使由于公差而产生的侧壁翘曲最小。如图5所示。

执着用典型的斜坡接合设计 (a)斜坡接合;改进的斜坡接合(附加公差) 1-溢料槽;2-夹具 斜坡接合具有30°-60°的角且应该在±1°内装配。为附加的熔区材料厚度增加的0.10-0.25mm 如图7所示接头制超声焊接制件通常需要密 超声焊接设备也可 在不需

*超声焊接的材料因素超声焊接操作适合于多数热塑性材料。 ●1无定形聚合物,特别是室温下外于玻璃态的无定形物,通常是焊接工艺的好的候选材料。 玻璃态无定形聚合物具有良好的透射性能,允许用看近场和远场焊接技术成功焊接。当材料较软时,开定形材料的超声焊接就成问题。如:焊接高冲击ps将比焊接通用ps一般需要更多能量和附加振幅。 ●2半结晶聚合物一般更难用超声能量焊接.增加由焊接体系发射的能量值(即增加振幅);缩 短焊头/制件接触面与接头接口间的距离;使用近场超声焊接技术;使用振幅高达 0.05-0.15mm的焊头.这些高焊接振幅需要使用钛焊头.当需要高强度、密封组装时,剪切 接头和斜坡接合对半结晶聚合物都适用。 ●3焊接吸湿性聚合物:模塑后马上焊接制件(在它们仍是干燥时);焊接前干燥制件;焊接前 把制件存放在干燥器内。

超声波焊接

超声波焊接机的工作原理! 超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz的电能高频电能,供应给转换器。转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。 焊头是将机械振动能直接传输至需压合产品的一种声学装置!! 振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!! 三、超声波焊接的应用领域 目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结! 四、超声波焊接的工艺 焊接: 指的是广义的将两个热塑性塑料产品熔接的过程。当超音停止振动时, 固体材料熔化,完成焊接。其接合点强度接近一整块的连生材料, 只要产品的接合面设计得匹配, 完全密封是绝对没有什么问题的, 碟合: 熔化机械锁形成一个材质不同的塑料螺栓的过程。 嵌入: 将一个金属元件嵌入塑料产品的预留孔内。 具有强度高,成型周期短安装快速的优点!! 类似于模具设计中的嵌件! 弯曲/生成 音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。这种方式的优势在于处理的快速,较小的内压,良好的外观及对材料本性的克服。 点悍 点焊是对没有预留也或能源控制的两个热塑塑料组件的局部焊接。点焊也能产生一个强有力的粘合构造,尤其适合一些大型配件、有突起的塑料片或浇注的热塑塑料以及那些结构复杂、难以进入接合面的产品。 剪切 切和封口一些有序与无序的热塑材料的超音波工艺。用这种方法密封的边缘不开裂,且没有毛边、卷边现象。 纺织品/胶片的密封纺织品品及一些胶片的密封也可用到超音波。它可对胶片实行紧压合,还可对纺织品进行整洁的局部剪切与密封。缝合的同时也起到了装饰的作用。

超声波焊

超声波焊是一种快捷,干净,有效的装配工艺,用来装配处理热塑性朔料配件,及一些合成构件的方法。目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结! 它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果 一、超声波的优点: 1,节能 2,无需装备散烟散热的通风装置 3,成本低,效率高 4,容易实现自动化生产! 目前工厂常用的超声波焊接机 二、超声波焊接机的工作原理! 超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz的电能高频电能,供应给转换器。转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。 焊头是将机械振动能直接传输至需压合产品的一种声学装置!! 振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!! 三、超声波焊接的应用领域 目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结! 四、超声波焊接的工艺 焊接: 指的是广义的将两个热塑性塑料产品熔接的过程。当超音停止振动时, 固体材料熔化,完成焊接。其接合点强度接近一整块的连生材料, 只要产品的接合面设计得匹配, 完全密封是绝对没有什么问题的, 碟合: 熔化机械锁形成一个材质不同的塑料螺栓的过程。 嵌入: 将一个金属元件嵌入塑料产品的预留孔内。 具有强度高,成型周期短安装快速的优点!! 类似于模具设计中的嵌件! 弯曲/生成 音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。这种方式的优势在于处理的快速,较小的内压,良好的外观及对材料本性的克服。

相关文档
最新文档