函数性质——单调性与周期性

函数性质——单调性与周期性
函数性质——单调性与周期性

函数的单调性与周期性

第4讲 函数的单调性与周期性

一、函数的单调性

我们在初中研究了一次函数、二次函数的图象,研究了)0(≠+=a b ax y 与

)0(2≠++=a c bx ax y 函数在某个区间内的增大或减小的性质这节课我们探讨一般函数的单调性。

[问题1] 分别作出函数

2(1) 3(2) 21

y x y x x ==?+的图象,并观察说出在定义域),(+∞?∞内函数值的增减变

化情况。

(1)()3f x x =的图象在定义域),(+∞?∞内,自左至右是上升的,即:函数值)(x f 随自变量x

的增大而增大。

(2)2()21g x x x =?+的图象在对称轴左方的区间)1,(?∞是下降的,在对称轴右方的区间

),1(+∞ 是上升的,既:在区间)1,(?∞内,)(x g 随自变量x 的增大而减小,在区间)

,1(+∞内,)(x g 随自变量x 的增大而增大。

定义1:设函数))((A x x f y ∈=,对于区间,),(A b a ?

1、如果任意1212,(,)x x a b x x ∈<,时,都有),()(21x f x f <那么就说,函数)(x f y =在区间

),(b a 内是增函数(increasing function )。

2、如果任意1212,(,)x x a b x x ∈<,时,都有),()(21x f x f >那么就说,函数)(x f y =在区

间),(b a 内是减函数(decreasing function)。

定义2、若函数)(x f y =在某个区间内是增函数或减函数,则称)(x f 在这一区间内具有单调性,该

区间叫做)(x f 的单调区间。

[问题2] 思考函数的单调性与函数的图象之间的关系。

1、)(x f 是增(减)函数?图象自左到右上升(下降)

2、图象的峰(谷)?函数增(减)变减(增)点? 函数的极大(小)值点

定义3:设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(()f x M ≥) (2)存在0x I ∈,使得0()f x M =

那么,我们称M 是函数()y f x =的最大值(maximum value )。(最小值minimum value )

[问题3] 如图是定义在闭区间[-5,5] 上的函数)(x f 的图象。

(1)说出单调区间以及在每一单调区间上)(x f 是增函数,还是减函数。

(2)利用定义证明函数1()f x x x

=+

在区间(0,1)内是减函数。

通过以上的探索、实践,归纳如下三点说明:

[说明1]函数的单调性与定义的区间有关,它是函数的局部性质。

[说明2]因函数的单调性是对区间而言,单独点没有增减变化,所以考虑区间的单调性时,可以

不包括端点。

[说明3]初等函数均可分段单调。

[问题4 ] 已知:函数1()f x x x

=+

,(1)讨论()f x 的单调性;(2)试作出()f x 的图象.

例题1.判定函数2()((1,1))1

ax

f x x x =

∈??的单调性.

例题2.讨论函数2

()23f x x x =??,2

()23f x x x =??的单调区间.

例题3.已知函数()x f 为R 上的减函数,则满足()11f x f

?

????的实数x 的取值范围是( )

A .()1,1?

B .()1,0

C .()()1,00,1∪?

D .()()+∞?∞?,11,∪

例题4.设函数定义在R 上,对于任意实数m , n 恒有()()()f m n f m f n +=,当0x >时,0()1f x <<

(1)求证:(0)1f =且当0x <时,()1f x >; (2)求证:()f x 在R 上单调递减;

(3)设集合{

}

22

(,)()()(1)A x y f x f y f ==,{}

(,)(2)1,B x y f ax y a R =?+=∈,

若A B φ=∩,求a 的取值范围。

例题5.设()()y f u u =∈ R 是增函数,()()u x x ?=∈R 是减函数,求复合函数(())f x ?在R 的单

调性。

二、函数的周期性

定义:设()()y f x x A =∈ ,若对任意x A ∈,均有()()f x T f x +=(0T ≠是常数),则称()f x 为周期

函数,T 是()f x 的周期 说明:(1)周期函数的定义域至少一端无限。 (2)周期性是函数的整体性质。

(3)若T 是()f x 的周期,则kT 也是()f x 的周期(k ∈N *)

(4)若T 存在最小正周期值,则特指周期。 注意:(1)如果函数()f x 在定义域内对任意的x 满足()()f x T f x T +=?那么()f x 是周期为2T 的周期函数。

(2)如果()f x 在定义域内对任意的x 满足()()f x T f x +=?,那么()f x 是周期为2T 的周期函数。

(3)如果()f x 是奇函数且满足是对任意x 有()()f a x f a x +=?(0a ≠)恒成立,那么()f x 是

周期为4a 的周期函数。

例6.已知,定义在R 上的函数()f x 是以2为周期的函数,且当x [0∈,2]时,()1f x x =?,求x ∈R

时,()f x 的解析式。

课后练习题

判定下列函数的单调性

1.2()23f x x x =?+? 2.(1)y x x =?? 3.3612y x x =+?

参考答案

一、函数的单调性 问题3

(1)()55, , 1, 22????????是减函数,()5, 1, 2, 52???????是增函数 (2)证明:12 , (0, 1)x x ?∈ 令12x x <

1212121212211212121212

12121111()()()1 ()()1(1)

()f x f x x x x x x x x x x x x x x x x x x x x x x x x x ????

???=+?+=?+???????

??????

??

?=?+=????

???=?? 由12x x <得,120x x ?<

又12 , (0, 1)x x ∈

12 (0, 1)x x ∴?∈ 1210x x ∴??<

则121212

(1)

()0x x x x x x ???

> 12()()f x f x ∴>

()f x ∴在(0, 1)单调递减

问题4 见视频

例1 1212 , (1, 1)x x x x ?∈?<且

2222

12211221121212222222121212(1)(1)()()()()11(1)(1)(1)(1)

a x x x x a x x x x x x ax ax f x f x x x x x x x ???????????????=?==?????? []

122121211222

22

12

12

()()()(1)

(1)(1)(1)(1)a x x x x x x a x x x x x x x x ?+??+=

=

???? 由12x x < 210x x ∴?> 12 , (1, 1)x x ∈?

[][]22

12 0, 1 0, 1x x ∴∈∈

22

12 10 10x x ∴?

又12 (1, 1)x x ?∈? 12 10x x ∴?+>

(1)0a >时,

211222

12()(1)

0(1)(1)

a x x x x x x ?+>?? 即12()()f x f x > ()f x ∴在()1, 1?单调递减

(2)当0a <时,211222

12()(1)

0(1)(1)a x x x x x x ?+

211222

12()(1)

0(1)(1)

a x x x x x x ?+=?? 12()()f x f x = ()f x ∴在()1, 1?是常值

例2

解:22

23 0

() ()23 0x x x f x g x x x x ???≥==?+?

222 3 31

()(23) 1<3x x x x f x x x x ???≥≤?=?????

或 (, 1), (1, 3)?∞?减 (1, 1), (3, )?+∞增

例3 C

例4

(1)证明:取5, 0m n == 而(5)(0, 1)f ∈ (5

0)(5)(0)f f f ∴+=? (0)1f ∴= 又设0x < 0 ()(0, 1)x f x ∴?>∴?∈ (0)()()f f x f x =??

于是1

()1()

f x f x =

>? (2)证明:1212 , x x x x ?∈

则[]1212221222()()()()()()()f x f x f x x x f x f x x f x f x ?=?+?=???

[]212()()1f x f x x =??

2 x ∈R ∵由(1)及题设2()0f x > 又12x x < 120x x ∴?<

由(1)12()1f x x ?>

12()10f x x ∴??>

则[]212()()10f x f x x ??>

12()()f x f x ∴>

()f x ∴在R 上是减函数

(3)()(){}(){}2

2

2

2

,

(1), 1A x y f x y f x y x y =

+==+= (){}(){},(2)(0),20B x y f ax y f x y ax y =?+==?+= 221

20

x y A B ax y φ?+==∴?

?+=?∵∩ 无解

2222(2) 1 (1)430x ax a x ax ++=∴+++=无实根

{}

222 1643(1)0 30 33a a a a a ∴Δ=?×+

例5

解:1212 , x x x x ?∈

()u x ?=∵在R 上的单调递减 12()()x x ??∴> 即12u u >

又 ()y f u =∵在R 上是增函数

12()()f u f u ∴>

12 y y ∴>

则12x x <时12y y > (())f x ?∴在R 上单调递减

二、函数的周期性 例6

【解析】利用图象:(图象见视频)

解: 1 12

() 1 01x x f x x x ?≤≤?=?

?+≤

设[]2, 22 x k k k z ∈+∈

[] 20, 2x k ∴?∈

()(2)21f x f x k x k ∴=?=??

课后练习题

1.22

2

23 0

()232 3 0x x x f x x x x x x ??+?≥=?+?=????

(, 1), (0, 1)?∞?增

(1, 0), (1, )?+∞减

2.(1) 0

(1)(1) 0x x x y x x x x x ?≥?=??=?

?

10, 2??

????增 ()1, 0, , 2?

??∞+∞?

???

减 3.3612y x x =+? (2,

2)?增 ()(), 2, 2,

?∞?+∞减

函数对称性与周期性关系

函数 对称性与周期性关系 【知识梳理】 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。 如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即 点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,

4 对数函数及其性质(1)

高中数学教学设计大赛 获奖作品汇编 4、对数函数及其性质(1) 一、教材分析 本小节主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计

函数的性质——奇偶性、单调性、周期性知识点及题型归纳

函数的性质——奇偶性、单调性、周期性知识点及题型归纳 知识点精讲 函数奇偶性 定义 设D D x x f y (),(∈=为关于原点对称的区间),如果对于任意的D x ∈,都有)()(x f x f =-,则称函数 )(x f y =为偶函数;如果对于任意的D x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数. 性质 (1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)奇偶函数的图象特征. 函数)(x f 是偶函数?函数)(x f 的图象关于y 轴对称; 函数)(x f 是奇函数?函数)(x f 的图象关于原点中心对称. (3)若奇函数)(x f y =在0=x 处有意义,则有0)0(=f ; 偶函数)(x f y =必满足|)(|)(x f x f =. (4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同. (5)若函数)(x f 的定义域关于原点对称,则函数)(x f 能表示成一个偶函数与一个奇函数的和的形式.记 )]()([21)(x f x f x g -+=,)]()([2 1 )(x f x f x h --=,则)()()(x h x g x f +=. (6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如)()(),()(),()(),()(x g x f x g x f x g x f x g x f ÷?-+. 对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶; 奇)(÷?奇=偶;奇)(÷?偶=奇;偶)(÷?偶=偶. (7)复合函数)]([x g f y =的奇偶性原来:内偶则偶,两奇为奇. 函数的单调性 定义 一般地,设函数)(x f 的定义域为D ,区间D M ?,若对于任意的M x x ∈21,,当21x x <时,都有 )()(21x f x f <(或)()(21x f x f >),则称函数)(x f 在区间M 上是单调递增(或单调递减)的,区间M 为函数)(x f 的一个增(减)区间. 注:定义域中的M x x ∈21,具有任意性,证明时应特别指出“对于任意的M x x ∈21,”. 单调性是针对定义域内的某个区间讨论的.

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数的周期性与对称性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x +=为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

2013届高考数学考点讲解:考点05 函数的性质(单调性、奇偶性、周期性)(新课标解析版)

考点05 函数的性质(单调性、奇偶性、周期性) 【高考再现】 热点一 函数的单调性 1.(2012年高考(天津文))下列函数中,既是偶函数,又在 区间(1,2)内是增函数的为( ) A .cos 2y x = B .2log ||y x = C .2x x e e y --= D .31y x =+ 2.(2012年高考(陕西文))下列函数中,既是奇函数又 是增函数的为 A .1y x =+ B .2y x =- C .1y x = D .||y x x = 【答案】D 【解析】该题主要考察函数的奇偶性和单调性,理解和掌握 基本函数的性质是关键.A 是增函数,不是奇函数;B 和C 都 不是定义域内的增函数,排除,只有D 正确,因此选D. 3.(2012年高考(安徽文))若函数()|2|f x x a =+的单调递增区 间是[3,)+∞,则_____a =

【方法总结】 1.对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)可以结合定义(基本步骤为取值、作差或作商、变形、判断)求解. (2)可导函数则可以利用导数解之.但是,对于抽象函数单调性的证明,一般采用定义法进行. 2.求函数的单调区间与确定单调性的方法一致. (1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义确定单调区间.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间. 3.函数单调性的应用:f(x)在定义域上(或某一单调区间上)具有单调性,则f(x1)

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

对数函数及其性质

对数函数及其性质 Prepared on 22 November 2020

对数函数及其性质(一) 教学目标 (一) 教学知识点 1.对数函数的概念; 2.对数函数的图象与性质. (二) 能力训练要求 1.理解对数函数的概念; 2.掌握对数函数的图象、性质; 3.培养学生数形结合的意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题; 3.了解对数函数在生产生活中的简单应用. 教学重点 对数函数的图象、性质. 教学难点 对数函数的图象与指数函数的关系. 教学过程 一、复习引入: 1、指对数互化关系: b N N a a b =?=log 2、 )10(≠>=a a a y x 且的图象和性质.

3、 我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个 数y 是分裂次数x 的函数,这个函数可以用指数函数y =x 2表示. 现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数x 就是要得到的细胞个数y 的函数.根据对数的定义,这个函数可以写成对数的形式就是y x 2log =. 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log =. 引出新课--对数函数. 二、新授内容: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 例1. 求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=. 分析:此题主要利用对数函数x y a log =的定义域(0,+∞)求解. 解:(1)由2 x >0得0≠x ,∴函数2log x y a =的定义域是{}0|≠x x ; (2)由04>-x 得4-x 得-33<

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x =的图象,进而画出 y cos x =的图象;会用“五点法”画y sin x =和y cos x =在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数[]x 0,2 蝡的图象,用“五点法”画y sin x =和 y cos x =在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性 【知识梳理】 1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期; 2. 周期函数的其它形式 ()()f x a f x b +=+? ;()()f x a f x +=-? ;()()1f x a f x +=? ; ()()1f x a f x +=-? ;)(1)(1)(x f x f a x f +-=+? ,)(1)(1)(x f x f a x f -+=+? )()()2(x f a x f a x f -+=+? 1 )(1)(+-=+x f a x f ? , 3. 函数图像的对称性 1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性 1)函数()()0ax b f x c cx d +=≠+的图像关于点 对称; 2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】 题型一 根据解析式判断函数图像的对称性 1. 函数()2331 x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称; 4. 函数()3sin 23f x x π??=- ?? ?的图像关于直线 对称;关于点 对称; 题型二 平移变换后,函数图像的对称性 1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( ) 2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称; 3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

函数的性质4周期性.

函数的周期性 张磊 一函数周期性的定义 1 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称y=f(x)为周期函数,T为一个周期. 2 周期的一个性质 若T是y=f(x)的周期,则kT(k∈Z,k≠0)也是它的周期. 二周期函数的常见结论 1 f(x+a)=?f(x)? f(x)是周期函数,周期T=2a 证明:用x+a替换f(x+a)=?f(x)中的x可得f(x+2a)=?f(x+a) ,又因为f(x+a)=?f(x),所以f(x+2a)= f(x).即f(x)是周期函数,周期T=2a 2 f(x+a)=± (b为常数)? f(x)是周期函数,周期T=2a 证明:仿照上述方法. (略) 3 周期性与对称性的关系(注意,奇偶性是特殊的对称性) 由双对称性可推导出函数的周期性.(联系三角函数对称性与周期性的关系,很自然的推导出函数的周期性) 例⑴若函数f(x)既关于x=a对称,又关于x=b对称,则函数f(x)是周期函数,其周期T=2. 证:依题∴ ,用x?2b替代x可得) ,∴函数f(x)是周期函数,其周期T=2. 读者仿照该例自己下面结论 ⑵若函数f(x)既关于x=a对称,又关于点(b ,0)对称,则函数f(x)是周期函数,其周期T=4. ⑶若函数f(x)既关于点(a ,0)对称,又关于点(b ,0)对称,则函数f(x)是周期函数,其周期T=2. ⑷若函数f(x)偶函数,且关于x=a对称, 则函数f(x)是周期函数,其周期T=2a ⑸若函数f(x)奇函数,且关于x=a对称, 则函数f(x)是周期函数,其周期T=4a 说明:⑷是⑴的特殊情况.因为偶函数关于y轴对称,即关于x=0对称,所以函数f(x)既关于x=a对称,又关于x=0对称,则函数f(x)是周期函数,其周期T=2 ⑸是⑵的特殊情况.因为奇函数关于原点对称,即关于(0 ,0)对称,所以函数f(x)既关于x=a对称,又关于点(0 ,0)对称,则函数f(x)是周期函数,其周期T=4.

函数的周期性与对称性

函数的周期性与对称性 1、函数的周期性 若a 是非零常数,若对于函数y =f(x)定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x)是周期函数,且2|a|是它的一个周期。 ①f(x+a)=f(x -a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=-1/f(x) 2、函数的对称性与周期性 性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b| 性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b| 性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 3.函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 1、)()(x b f x a f -=+ ?)(x f y =图象关于直线2 2)()(b a x b x a x += -++= 对称 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 2、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 ( c b a +对称 推论1、 b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 例题分析: 1.设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则 )5.47(f 等于 ( ) (A )0.5 (B )5.0- (C )1.5 (D )5.1- 2、(山东)已知定义在R 上的奇函数)(x f 满足(2)()f x f x +=-,则(6)f 的值为( ) A .-1 B .0 C .1 D .2 3.设)(x f 是定义在R 上的奇函数,(1)2,(1)(6),f f x f x =+=+求(10).f 4.函数)(x f 对于任意实数x 满足条件1 (2)() f x f x += ,若(1)5f =-,则[(5)]f f =___

高三数学一轮复习 函数的周期性教案

浙江省衢州市仲尼中学高三数学一轮复习教案:函数的周期性 教材分析:函数的奇偶性、周期性是函数的一个重要的性质,为高考中的必考知识点;常用 函数的概念、图像、单调性、周期性、对称性等综合考核。 学情分析:大多数学生了解函数的奇偶性、周期性的概念,但对判断函数奇偶性的判断和应 用,对函数的周期的求法还没有掌握。 教学目标:结合具体函数,了解函数奇偶性和周期性的含义;会运用函数图像判断函数奇偶 性和周期,利用图像研究函数的奇偶性和周期。 教学重点、难点:函数奇偶性和周期的判断,结合图像解决函数的奇偶性和周期性问题。 教学流程: 一、回顾上节课内容(问答式) C1.奇偶函数的判断基本步骤: (1)先求定义域,定义域不对称则函数为非奇非偶函数; (2)定义域对称则利用定义判断函数奇偶性。 C2.奇偶函数的图像特征:奇函数图像关于原点(0,0)对称;偶函数关于y 轴对称。 二、函数的周期 C 1.周期的概念 对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)叫做周期函数,非零常数T 叫f(x)的周期,如果所以的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)最小正周期。 C 判断:最小正周期相同的两个函数的和,其最小正周期是不变。 答:错,不一定不变 2.周期函数的性质 C (1)周期函数不一定有最小正周期,若T ≠0是f(x)的周期,则kT(k ∈Z,k ≠0)也是的周期,周期函数的定义域无上、下届。 (2)如何判断函数的周期性: ⑴定义; ⑵图象; ⑶利用下列补充性质:设a>0, C-①函数y=f(x),x ∈R,若f(x+a)=f(x-a),则函数的周期为2a 。 B-②函数y=f(x),x ∈R,若f(x+a)=-f(x),则函数的周期为 2a 。 B-③函数y=f(x),x ∈R,若 ,则函数的周期为 2a 。 B-④函数f(x)时关于直线 x=a 与x=b 对称,那么函数f(x)的周期为||2a b - 了解证明过程: 证明:由已知得: )(1)(x f a x f -=+) ()(,)()(x b f x b f x a f x a f -=+-=+[][] )2()(2x a b b f x a b f +-+=+-∴[])2(x a b b f +--=) 2(x a f -=

《对数函数及其性质》教材梳理

疱丁巧解牛 知识·巧学·升华 一、对数函数及其性质 1.对数函数 一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞). 因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的. 只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数.像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数.对数函数同指数函数一样都是基本初等函数,它来自于实践. 2.对数函数的图象和性质 (1)下面先画指数函数y=log 2x 及y=log 1/2x 图象 描点即可完成y=log 2x ,y=x 21log 的图象,如下图. 0 1 2 4 8 x -1 -2 y=log 1/2x -3s 由表及图可以发现: 我们可以通过函数y=log 2x 的图象得到函数y=log 0.5x 的图象.利用换底公式可以得到:y=log 0.5x=-log 2x ,点(x,y)与点(x,-y)关于x 轴对称,所以y=log 2x 的图象上任意一点(x,y)关于x 轴对称点(x,-y)在y=log 0.5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象. 方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法.”②函数y=log a x 与y=x a 1log 的图象关于x 轴对称.

函数性质——单调性与周期性

函数的单调性与周期性

第4讲 函数的单调性与周期性 一、函数的单调性 我们在初中研究了一次函数、二次函数的图象,研究了)0(≠+=a b ax y 与 )0(2≠++=a c bx ax y 函数在某个区间内的增大或减小的性质这节课我们探讨一般函数的单调性。 [问题1] 分别作出函数 2(1) 3(2) 21 y x y x x ==?+的图象,并观察说出在定义域),(+∞?∞内函数值的增减变 化情况。 (1)()3f x x =的图象在定义域),(+∞?∞内,自左至右是上升的,即:函数值)(x f 随自变量x 的增大而增大。 (2)2()21g x x x =?+的图象在对称轴左方的区间)1,(?∞是下降的,在对称轴右方的区间 ),1(+∞ 是上升的,既:在区间)1,(?∞内,)(x g 随自变量x 的增大而减小,在区间) ,1(+∞内,)(x g 随自变量x 的增大而增大。 定义1:设函数))((A x x f y ∈=,对于区间,),(A b a ? 1、如果任意1212,(,)x x a b x x ∈<,时,都有),()(21x f x f <那么就说,函数)(x f y =在区间 ),(b a 内是增函数(increasing function )。 2、如果任意1212,(,)x x a b x x ∈<,时,都有),()(21x f x f >那么就说,函数)(x f y =在区 间),(b a 内是减函数(decreasing function)。 定义2、若函数)(x f y =在某个区间内是增函数或减函数,则称)(x f 在这一区间内具有单调性,该 区间叫做)(x f 的单调区间。 [问题2] 思考函数的单调性与函数的图象之间的关系。 1、)(x f 是增(减)函数?图象自左到右上升(下降) 2、图象的峰(谷)?函数增(减)变减(增)点? 函数的极大(小)值点

函数的周期性和对称性(解析版)

专题二:函数的周期性和对称性 【高考地位】 函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。 【方法点评】 一、函数的周期性求法 使用情景:几类特殊函数类型 解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件) (1 )2(x f x f = +,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .5 1- 【答案】D 考点:函数的周期性. (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2 ,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【答案】A 试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此 ()()()()20164416412f f f =-=-=--=-,故选A . 考点:1、函数的奇偶性;2、函数的解析式及单调性. 【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B

相关文档
最新文档