激光焊接知识集锦讲解

激光焊接知识集锦讲解
激光焊接知识集锦讲解

激光焊接知识集锦

目录

激光焊接基本原理 ....................................................................... - 2

-

激光焊接概述........................................................................... - 4

-

激光传感器焊接技术的介绍与发展 ......................................................... - 6

-

激光焊接技术及其在汽车制造中的应用 ..................................................... - 8

-

激光塑料焊接概述..................................................................... - 13

-

激光焊接基本原理

一、激光基本原理

1、LASER 是什么意思

Light Amplification by Stimulated Emission of Radiation (通过诱导放出实现光能增幅)的英语开头字母

2、激光产生的原理

激光——“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。

为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕(ND )的YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种

光束在微弱的受激发情况下,也能实现连续发振。YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。

3、激光的主要特长

a、单色性一一激光不是已许多不同的光混一合而成的,它是最纯的单色光(波长、频率)

b、方向性激光传播时基本不向外扩散。

c、相干性一一激光的位相(波峰和波谷)很有规律,相干性好。

d、高输出功率一一用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。

二、YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激

光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。

常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。

I、激光焊接加工方法的特征

A、非接触加工,不需对工件加压和进行表面处理。

B、焊点小、能量密度高、适合于高速加工。

C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。

D 、不需要填充金属、不需要真空环境(可在空气中直接进行)、不会像电子束那样在

空气中产生X 射线的危险。

E、与接触焊工艺相比.无电极、工具等的磨损消耗。

F、无加工噪音,对环境无污染。

G、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。

H、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。

I、很容易改变激光输出焦距及焊点位置。

J很容易搭载到自动机、机器人装置上。

K、对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接。

2、脉冲激光焊接的机理

脉冲激光焊接可分为传热溶化焊接和深穿入熔化焊接传热溶化焊接是指当激光束照射到材料的表面上时,材料吸收光能而加热熔化。材料表面层的热以传导方式继续向材料深处传递,直至将两个待焊件的接触面互溶并焊接在一起。

深穿入熔化焊接是指当更大功率密度的激光束照射到材料上时,材料被加工熔化以至气化,产生较大的蒸汽压,在蒸汽的压力的作用下,溶化金属被挤在周围使照射处(熔池)呈现出一个凹坑,随着激光束的继续照射,凹坑越来越深,并穿入到另一个工件中。激光停止照射后,被排挤在凹坑周围的溶化金属重新流回到凹坑里,凝固后将工件焊接在一起。

这两种激光焊接机理,与功率密度、照射时间、材料性质、焊接方式等因素有关。当功率密度较低、照射时间较长而焊件较薄时,通常以传热溶化机理为主进行。反之,则是以深穿入熔化机理为主进行。

激光焊接概述

激光焊接是激光材料加工技术应用的重要方面之一,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功地应用于微、小型零件焊接中。高功率CO 2及高功率YAG 激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔接,在机械、汽车、钢铁等工业部门获得了日益广泛的应用。

与其它焊接技术比较,激光焊接的主要优点是:激光焊接速度快、深度大、变形小。能在室温或特殊的条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1 ,最高可达10:1 。可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。便如,将铜和钽两种性质截然不同的材料焊接在一起,合格率几乎达百分之百。也可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精密定位,可应用于大批量自动化生产的微、小型元件的组焊中,例如,集成电路引线、钟表游丝、显像管电子枪组装等由于采用了激光焊,不仅生产效率大、高,且热影响区小,焊点无污染,大大提高了焊接的质量。

可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。在YAG 激光技术中采用光纤传输技术,使激光焊接技术获得了更为广泛的推广与应用。激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

YAG 激光焊接原理

激光焊接机的工作是应用高能脉冲激光来实现的。

激光电源首先把脉冲氙灯点着,通过激光电源对氙灯脉冲放电,形成一定频率,一定脉宽的光波,该光波经过聚光腔辐射到Nd3+:YAG 激光晶体上,激发Nd 3+:YAG 激光晶体发

光,再经过激光谐振腔谐振之后,发出波长为1064nm 脉冲激光,该脉冲激光经过扩束、反射、(或经光纤传输)聚焦在所要焊接的物体上;在单片机、PLC 或工业PC 机的控制下,移动数控工作台,从而完成焊接。焊接时所需要的脉冲激光的频率、脉宽、占空比、工作台速度、移动方向均可用单片机、PLC 或工业PC 机来控制,通过对激光的频率、脉宽的不同设定可调节控制脉冲激光的能量。

YAG 激光焊接的特点

YAG 激光焊接主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、重叠焊、密封焊等,其特点有:

具有高的深宽比,焊缝宽度小,热影响区小,变形小,焊接速度快。焊缝平整、美观,焊后无需处理或只需简单处理工件表面。

焊缝质量高,无气孔,可减少和优化母材杂质,组织焊后可细化,焊缝强度、韧性至少相当于甚至超过母材金属。

可精确控制,聚焦光斑小,可高精度定位,易实现自动化,可实现某些异种材料间的焊

接。

可焊接材料及行业应用

激光焊接可应用于钛、镍、锡、锌、铜、铝、铬、铌、金、银等多种金属及其合金,及

钢、可伐合金等合金的同种材料间的焊接,也可应用于铜-镍、镍-钛、铜-钛、钛-钼、黄铜- 铜、低碳钢-铜等多种异种金属间的焊接。

广泛应用于手机通讯、电子元件、眼镜钟表、首饰饰品、五金制品、精密器械、医疗器械、汽车配

件、传感器、工艺礼品等行业。

激光焊接与传统焊接方式的比较

焊接方式热影响区热变形焊缝质量是否添加焊料焊接环境激光焊接较小较小较好否无要求电子束焊较小较小较好否真空等离子弧焊一般一般一般是需电极电阻焊较大较大一般否需电极氩弧焊较大较大一般是需电极钎焊一般一般一般是整体加温

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

波谱解析名词解释

紫外吸收光谱 1. 紫外吸收光谱系分子吸收紫外光能、发生价电子能级跃迁而产生的吸收光谱,亦称电子光谱。 2. 曲折或肩峰:当吸收曲线在下降或上长升处有停顿或吸收稍有增加的现象。这种现象常由主峰内藏有其它吸收峰造成。 3. 末端吸收:是指紫外吸收曲线的短波末端处吸收增强,但未成峰形。 4. 电子跃迁选律:P9 5. 紫外吸收光谱的有关术语:P12-13 6. Woodward-fieser规则: P21 7. Fieser-kuhns规则:P23 红外吸收光谱 1. 振动偶合:分子内有近似相同振动频率且位于相邻部位(两个振动共用一个原子,或振动基团间有一个公用键)的振动基团,常常彼此相互作用,产生二种以上基团参加的混合振动,称之为振动偶合。 2. 基频峰:本征跃迁产生的吸收带称为本征吸收带,又称基频峰。 3. 倍频峰:由于真实分子的振动公是近似的简谐振动,不严格遵守⊿V=±1的选律,也可产生⊿V=±2或±3等跃迁,在红外光谱中产生波数为基频峰二倍或三倍处的吸收峰(不严格等于基频峰的整数倍,略小)称为倍频峰。 4. 结合频峰:基频峰间的相互作用,形成频率等于两个基频峰之和或之差的峰,叫结合频峰。 5. 泛频峰:倍频峰和结合频峰统称为泛频峰。 6. 热峰:跃迁发生在激发态之间,这种跃迁产生的吸收峰称为热峰。 7. 红外非活性振动:不产生红外吸收的振动称红外非活性振动。 核磁共振光谱 1. 磁偶极子:任何带电物体的旋转运动都会产生磁场,因此可把自旋核看作一个小磁棒,称为磁偶极子。 2. 核磁距:核磁偶极的大小用核磁矩表示。核磁矩与核的自旋角动量(P)和e/2M的乘积成正比。 3. 进动:具有磁矩的原子核在外磁场中一方面自旋一方面以一定角度(θ)绕磁场做回旋运动,这种现象叫做进动。 4. 核磁共振:当射频磁场的能量()等于核自旋跃迁能时(),即旋转磁场角频率()与核磁矩进动角频率()相等时,自旋核将吸收射频场能量,由α自旋态(低能态)跃迁至β自旋态(高能态)。即,核磁矩对的取向发生倒转,这种现象称之为核磁共振。 5. 饱和:在外加磁场中,低能级核吸收射频能量被激发至高能级产生核磁共振信号,结果使低能级核起来越少,结果是低高能级的核数目相等,体系净能量吸收为0,共振信号消失。 6.弛豫:高能态的核须通过其它适当的途径将其获得的能量释放到周围环境中去,使其回到低能态,这一过程称为弛豫。 7. 纵向弛豫:是高能态核释放能量(平动能、转动能)转移给周围分子骨架中的其它核回到平衡状态的过程。(气体和低黏度的液体中) 8. 横向弛豫:高能级核与低能级核相互通过自旋状态的交换而实现能量转移,每种自旋状态的总数并未改变,但使某些高能级核的寿命减短。(固体和高黏度液中) 9. 核磁共振波谱仪的组成:磁铁磁场扫描发生器---平行安放的线圈,用于有一个小范围内

激光焊接应用讲解

激光焊接应用 一、激光焊接的主要特性。 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。 激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。 三、激光焊接的工艺参数。 1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

波谱分析习题库答案

波谱分析复习题库答案 一、名词解释 1、化学位移:将待测氢核共振峰所在位置与某基准氢核共振峰所在位置进行比较,求其相对距离,称之为化学位移。 2、屏蔽效应:核外电子在与外加磁场垂直的平面上绕核旋转同时将产生一个与外加磁场相对抗的第二磁场,对于氢核来讲,等于增加了一个免受外磁场影响的防御措施,这种作用叫做电子的屏蔽效应。 3、相对丰度:首先选择一个强度最大的离子峰,把它的强度作为100%,并把这个峰作为基峰。将其它离子峰的强度与基峰作比较,求出它们的相对强度,称为相对丰度。 4、氮律:分子中含偶数个氮原子,或不含氮原子,则它的分子量就一定是偶数。如分子中含奇数个氮原子,则分子量就一定是奇数。 5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6、助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并使吸收强度增加的基团。 7、特征峰:红外光谱中4000-1333cm-1区域为特征谱带区,该区的吸收峰为特征峰。 8、质荷比:质量与电荷的比值为质荷比。 9、磁等同氢核化学环境相同、化学位移相同、对组外氢核表现相同偶合作用强度的氢核。 10、发色团:分子结构中含有π电子的基团称为发色团。 11、磁等同H核:化学环境相同,化学位移相同,且对组外氢核表现出相同耦合作用强度,想互之间虽有自旋耦合却不裂分的氢核。 12、质谱:就是把化合物分子用一定方式裂解后生成的各种离子,按其质量大小排列而成的图谱。 13、i-裂解:正电荷引发的裂解过程,涉及两个电子的转移,从而导致正电荷位置的迁移。 14、α-裂解:自由基引发的裂解过程,由自由基重新组成新键而在α位断裂,正电荷保持在原位。 15、红移吸收峰向长波方向移动 16. 能级跃迁分子由较低的能级状态(基态)跃迁到较高的能级状态(激发态)称为能级跃迁。 17. 摩尔吸光系数浓度为1mol/L,光程为1cm时的吸光度 二、选择题 1、波长为670.7nm的辐射,其频率(MHz)数值为(A) A、4.47×108 B、4.47×107 C、1.49×106 D、1.49×1010 2、紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了(C) A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 3、紫外光谱是带状光谱的原因是由于(C )

波谱解析名词解释

《波谱解析名词解释》 1.助学团:某些饱和的原子团本身在近紫外区无吸收的,并不“发色”,但其与发色团相连或共轭时,能使发色团的吸收峰长波方向移动,强度增强,这些基团称为助色团。常用的助色团有—OH,—OR,—NR2,—SR,—Cl,—Br,—I等。 2.发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。 3红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。 4蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。 5.增色效应:使紫外吸收强度增加的作用。 6.减色效应:使紫外吸收强度降低的作用。第二章红外光谱 1费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。 2伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。 3弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。 4基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。 5倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。6振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。 7指纹区:在红外光谱中,波数在1330~667cm-1范围内称为指纹区 8振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。 9诱导效应:在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。 10共轭效应:共轭体系中电子离域现象称为共轭效应。 第三章 1化学位移:是指将待测氢核共振峰所在位置与某基准物质氢核所在的位置进行比较,

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

波谱分析复习题

《波普分析》复习题集 一、选择题 1.波长为670.7nm的辐射,其频率(MHz)数值为()A、4.47×108 B、4.47×107 C、 1.49×106 D、1.49×1010 2.紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了()A、吸收峰的强度B、 吸收峰的数目C、吸收峰的位置D、吸收峰的形状 3.紫外光谱是带状光谱的原因是由于()A、紫外光能量大B、波长短C、电子能级跃迁的 同时伴随有振动及转动能级跃迁的原因D、电子能级差大 4.化合物中,下面哪一种跃迁所需的能量最高?()A、σ→σ﹡B、π→π﹡ C、 n→σ﹡ D、n→π﹡ 5.n→π﹡跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大()A、水 B、甲 醇 C、乙醇 D、正已烷 6.CH3-CH3的哪种振动形式是非红外活性的()A、νC-C B、νC-H C、δasCH D、δsCH 7.能作为色散型红外光谱仪的色散元件材料为:()A、玻璃B、石英C、红宝石 D、 卤化物晶体 8.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何 变化的?()A、不变 B、逐渐变大C、逐渐变小 D、随原核而变 9.下列哪种核不适宜核磁共振测定()A、12C B、15N C、19F D、31P 10.苯环上哪种取代基存在时,其芳环质子化学位值最大()A、–CH2CH3 B、–OCH3 C、 –CH=CH2 D、-CHO 11.质子的化学位移有如下顺序:苯(7.27)>乙烯(5.25) >乙炔(1.80) >乙烷(0.80),其原因为:()A、 诱导效应所致B、杂化效应所致C、各向异性效应所致D、杂化效应和各向异性效应协同作用的结果 12.含奇数个氮原子有机化合物,其分子离子的质荷比值为:()A、偶数B、奇数C、 不一定D、决定于电子数

焊接结构名词解释

1.焊接温度场:指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 2.焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化, 温度随时间由低而高,达到最大值后,又由高而低的变化称为焊接热循环。 3.温度应力(热应力):变形不受约束,则说明变形是温度变化的唯一反映;若这种变形 受到约束,就会在物体内部产生应力,这种应力即为温度应力。 4.残余应力:当不均匀温度恢复到原始的均匀状态后残存在物体中的内应力。 5.自由变形(量、率):当金属物体的温度发生变化或发生相变没有受到外界的任何阻碍 而自由进行,它的形状和尺寸的变形就称为自由变形。自由变形的大小称之为自由变形量。单位长度上的自由变形量称之为自由变形率。 6.外观变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,所表现出来的部 分变形称为外观变形或可见变形。外观变形的大小称为外观变形量。单位长度上的外观变形量称为外观变形率。 7.内部变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,未表现出来的部 分变形称为内部变形或可见变形。内部变形的大小称为内部变形量。单位长度上的内部变形量称为内部变形率。 8.高组配:焊缝金属强度比母材高强度高的接头匹配。 9.低组配:焊缝金属强度比母材高强度低的接头匹配。 10.工作焊缝:一种与被连接的元件是串联的焊缝,承担着传递全部载荷的作用,焊缝一旦 开裂,结构就立即失效。 11.联系焊缝:一种与被连接的元件是并联的焊缝,主要起元件之间相互联系的作用,焊缝 一旦开裂,结构就不会立即失效。 12.焊接工艺评定:为验证所拟定的焊接工艺的正确性而进行的试验过程及结果的评价。 13.焊接工艺指导书:就是为验证试验所拟定的、经评定合格的、用于指导生产的焊接工艺 文件。 14.生产过程:使原材料或半成品的形状和重量不断的按照人们的意图发生改变的过程。或 者定义为把原材料变成成品的直接和间接的劳动过程的总和。 15.工艺过程:是指直接改变毛坯的形状、尺寸、力学性能以及物理性能,使之成为半成品 或成品的生产过程。 16.放样:指按设计图样在放样平台上,将其局部或全部按1:1的比例画出结构部件或零 件的图形和平面展开尺寸的加工工序。 17.划线:根据设计图样及工业上的要求按1:1的比例,将待加工工件形状、尺寸及各种 加工符号划在钢板或经粗加工的坯料上的加工工序。 18.号料:是用放样所取得的样板或样杆,在原材料或经粗加工的坯料上划下料线、加工线、 检查线及各种位置线的工艺过程。 19.夹具:是指将待装配的零件准确组对、定位并加紧的工艺装配,是定位器、夹紧器和各 种推拉装置的总称。 20.疲劳强度:指金属材料在无限多次交变载荷作用下而不破坏的最大应力。 21.疲劳极限:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力。 22.疲劳图:表达疲劳强度和循环特性之间关系的图形。 23.疲劳曲线:描述疲劳试验中所加交变应力振幅值S与试样达到破坏的交变应力周数N之 间的关系曲线。

激光焊接工艺详解

激光焊接工艺详解 随着科学技术的发展,近年来出现了激光焊接。那么什么是激光焊接呢?激光焊接的特点与优点又有哪些呢? 下图是激光焊接的工作原理: 首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出. 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

激光焊接工艺参数讲解

激光焊接原理与主要工艺参数 作者:opticsky 日期:2006-12-01 字体大小: 小中大 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,

激光焊接基础知识

米亚奇公司 Nd(钕):YAG激光器激光焊接指南 米亚奇公司2003年版 此处包含的材料,未经米亚奇公司书面同意,严禁复 制或用于任何用途 联系方式: 米亚奇公司 Myrtle大道1820号 蒙罗维亚CA, 91017-7133 Tel.: 626 303 5676 Fax: 626 599 9636 https://www.360docs.net/doc/4a18206800.html,

目录 1.激光基础 1.1 介绍 1.2 激光产生的原理 1.3 Nd:YAG激光的介质 1.4 泵浦源 1.5 谐振器 1.6 激光安全 2.激光焊接基本原理 2.1脉冲激光焊接 2.1.1实时功率反馈 2.1.2输出功率斜波 2.1.3脉冲的成形 2.1.4时间的分配 2.1.5能量分配 2.1.6光束的传输 2.1.7聚焦头 2.2激光是怎么实现焊接的 2.3主要焊接参数 2.3.1接缝设计与配合 2.3.2部分聚焦 2.3.3材料的选择和其表面镀层 2.4激光的参数 2.4.1名词术语 2.4.2光学系统 2.4.3聚焦镜片 2.4.4峰值功率和脉冲宽度 2.4.5接缝的焊接 2.4.6保护气体 2.5焊接举例

1.激光基础 1.1介绍 “激光”一词是Light Amplification by Stimulated Emission of Radiation(受激辐射而放大的光)的缩写,激光器的要素有: Nd:YAG激光器有两种类型,连续波的和脉冲波的,正如它们的名字所指,连续激光的波形要么是开,要么是关,但脉冲激光只用部分脉冲完成焊接。脉冲激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。 1.2激光产生的原理 激光本质上是分三步产生的,发生几乎是瞬间的。 1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到 高能级,处在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。 2.光子自发传播并最终撞击到别的处于高能级的电子,由于光速极快,处在激 发态的原子的密度很大,所以这个过程是极其短暂的,入射光子将电子从高能级激发到低能级并产生另一个光子,这两个光子是相干的,这意味着它们相位相同,波长相同,传播方向相同,这个过程叫做受激辐射。 3.光子传播方向是不定的,然而一些沿着介质传播的光子撞击共振器的反射镜, 又通过介质反射回来,共振反射镜决定了受激辐射的优先扩大方向,为了使

有机波谱分析名词解释

红外“活性”振动:在振动过程中?μ≠0,其吸收带在红外光谱中可见。 红外“非活性”振动:偶极矩不发生改变(?μ=0)的振动,这种振动不吸收红外光,在IR谱中观测不到。 3.自由度:基本振动的数目称为振动自由度。 4.振动偶合效应:当两个或两个以上相同的基团连接在分子中同一个原子上时,其振动吸收带常发生裂分,形成双蜂,这种现象称振动偶合 5.特征频率或特征吸收谱带:某些官能团有比较固定的吸收频率,可以作为鉴定官能团的依据。 6.相关峰:每个官能团都有几种振动方式,能产生红外吸收光谱的每种振动一般产生一个相应的吸收峰。习惯上把这些相互依存又可相互佐证的吸收峰。

7.指纹区:<1333cm-1的频率区域,主要是各种单键(如C-C,C-N,C-O等)的伸缩振动与各 种弯曲振动吸收区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。 简答题: ?1.红外光谱的原理:分子吸收红外光引起的振动能级和转动能级跃迁而产生的信号。 (记忆:振、转光谱——红外光谱) ?2.红外光谱的产生条件: 当红外光的频率恰好等于基团的振动频率时,分子能吸收该频率的红外光,即形成IR。 ①振动分为:伸缩振动(键长)、弯曲振动(键角) ②频率:化学键力常数k ③红外光被吸收条件:νIR = ν振动;Δμ振动≠0Δμ越大,吸收越强。 3.红外光谱表示方法: 用仪器按照波数(或波长)记录透射光强度(或吸收光强度)→红外光谱图 横坐标:波数(cm-1)或波长(μ m) 纵坐标:透光率(T/%)或吸光度(A) 7.理论上,每个振动自由度在红外光谱区均产生一个吸收峰,但实际的红外谱图中峰的数目比自由度少? 因为:(1)有偶极矩变化的振动才会产生红外吸收,无瞬间偶极矩变化的振动则不出现红外吸收。 (2)频率完全相同的振动导致峰重叠彼此发生简并。 (3)强宽峰往往要覆盖与它频率相近的弱而窄的吸收峰。 (4)某些振动的吸收强度太弱,以至无法清晰地予以记录。 (5)某些振动的吸收频率超出了记录范围(4000~650cm-1)。 ?8.决定峰强的因素 ①强度与分子振动的对称性:对称性↑→偶极矩变化↓→强度↓ ②强度与基团极性:极性↑→偶极矩变化↑→强度↑ ③强度与分子振动能级跃迁几率:跃迁几率↑→强度↑ ④强度与样品浓度:样品浓度↑→强度↑ 9.影响红外峰位、峰强的因素 1.内部因素: (1)电子效应: a.诱导效应:吸电子基团(-I 效应)使吸收峰向高频方向移动(兰移) b.共轭效应:(+C效应)吸收峰向低波数区移动 (2)空间效应: a.空间位阻:阻碍杂化或共轭 向高波数位移。 b.环张力:环张力的增大,ν C=C (3)场效应:原子或原子团的静电场通过空间相互作用 (4)氢键效应:氢键形成,低波数位移 (5)互变异构 (6)振动偶合效应。 2.外部因素:溶剂、浓度

特种加工:名词解释-填空-简答题..教学提纲

12-13-2 《特种加工》复习: 名词解释 1.特种加工:特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。 2.电火花加工:电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工。 3.极性效应:在电火花加工过程中,无论是正极还是负极,都会受到不同程度的电蚀。即使是相同的材料,正负电极的电蚀也是不同的。这种单纯由于正负极性不同而彼此电蚀量不一样的现象叫做极性效应。 4.电火花线切割:电火花线切割简称线切割。它是在电火花穿孔、成形加工的基础上发展起来的。它不仅使电火花加工的应用得到了发展,而且某些方面已取代了电火花穿孔、成形加工。如今,线切割机床已占电火花机床的大半。 5.极间介质消电离:放电通道中的带电粒子复合为中性粒子,恢复本次放电通道处间隙介质的绝缘强度,以免总是重复在同一处发生放电发生而导致电弧放电,这样可以保证按两级相对最近处或电阻率最小处形成下一击穿放电通道。 6.混气电解加工:混气电解加工就是将一定压力的气体(主要是压缩空气)用混气装置使之与电解液混合在一起,并使电解液成分为包含无数气泡的气液混合物,然后送入加工区进行电解加工。 7.电化学加工:电化学加工也称为电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。 8.阳极溶解:金属作为阳极发生氧化反应的电极过程。 9.阴极沉淀: 10.电极极化:一般将有电流通过电极时,电极的平衡状态被破坏,阳极电位向更加正的方向移动,阴极的电位向更加负的方向移动,电极电位偏离平衡电位的现象称为电极极化。11.电化学钝化:在电解加工过程中海油一种叫钝化的现象,它使金属阳极溶解过程的超电位升高,使电解速度减慢。 12.电解加工:基于电解过程中的阳极溶解原理并借助于成型的阴极,将工件按一定形状和尺寸加工成型的一种工艺方法,称为电解加工。 13.电解抛光:是以被抛工件为阳极,不溶性金属为阴极,两级同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。 14.电解磨削:是由电解作用和机械磨削作用相结合而进行加工的,比电解加工的加工精度高,表面粗糙度小,比机械磨削的生产率高。 15.电铸加工:电铸是在芯模表面电沉积金属,然后使两者分离来支取零件的工艺。 16.涂镀加工:涂镀又称为刷镀或无槽电镀,是在金属工件表面局部快速电化学沉积金属的技术。 17.激光加工:是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,考光热效应来加工各种材料 17.激光打孔: 18.激光切割:材料在激光热源照射下,工件与激光束相对移动,进行加工的过程。 19.激光焊接:激光焊接是以聚焦的激光束作为能源,利用轰击焊件所产生的热量进行焊接的一种高效精密的焊接方法。 20.激光淬火:激光淬火是以高密度能量激光束作为能源,迅速加热工件并使其自冷硬化的

吉大《波谱分析》离线作业及答案

一、名词解释(每小题5分,共30分) 1. 化学位移:由原于核和周围电子静电场之间的相互作用引起的Y发射和吸收能级间的相对移动。 2. 屏蔽效应:由于其他电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。 3. 相对丰度:相对丰度又称同位素丰度比(isotopic abundance ratio),指气体中轻组分的丰度C与其余组分丰度之和的比值。 4. 氮律: 分子中含偶数个氮原子或不含氮原子则它的分子量就一定是偶数。如分子中含奇数个氮原子,则分子量就一定是奇数。? 5. 分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6. 助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并吸收强度增加的基团。 二、简答题(每小题8分,共40分) 1、色散型光谱仪主要有几部分组成及其作用; 答:由光源、分光系统、检测器3部分组成。光源产生的光分为两路:一路通过样品,另一路通过参比溶液。切光器控制使参比光束和样品光束交替进入单色器。检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。 2、紫外光谱在有机化合物结构鉴定中的主要贡献; 答:在有机化合物结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团和芳香性等方面有独到之处。 3、在质谱中亚稳离子是如何产生的?以及在碎片离子解析过程中的作用是什么答:离子m1在离子源主缝至分离器电场边界之间发生裂解,丢失中性碎片,得到新的离子m2。这个m2与在电离室中产生的m2具有相同的质量,但受到同m1一样的加速电压,运动速度与m1相同,在分离器中按m2偏转,因而质谱中记录的位置在m*处,m*是亚稳离子的表观质量,这样就产生了亚稳离子。?

焊接课后答案及名词解释

焊接课后答案及名词解 释 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

1.试述熔化焊接、钎焊和粘接在本质上有何区别 熔化焊接:使两个被焊材料之间(母材与焊缝)形成共同的晶粒 针焊:只是钎料熔化,而母材不熔化,故在连理处一般不易形成共同的晶粒,只是在钎料与母材之间形成有相互原于渗透的机械结合。 粘接:是靠粘结剂与母材之间的粘合作用,一般来讲没有原子的相互渗透或扩散。 2.怎样才能实现焊接,应有什么外界条件 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 3.焊条的工艺性能包括哪些方面(详见:焊接冶金学(基本原理)p84) 焊条的工艺性能主要包括:焊接电弧的稳定性、焊缝成形、在各种位置焊接的适应性、飞溅、脱渣性、焊条的熔化速度、药皮发红的程度及焊条发尘量等 4.低氢型焊条为什么对于铁锈、油污、水份很敏感(详见:焊接冶金学(基本原理)p94) 由于这类焊条的熔渣不具有氧化性,一旦有氢侵入熔池将很难脱出。所以,低氢型焊条对于铁锈、油污、水分很敏感。 5.焊剂的作用有哪些 隔离空气、保护焊接区金属使其不受空气的侵害,以及进行冶金处理作用。 6.能实现焊接的能源大致哪几种它们各自的特点是什么 见课本p3 :热源种类 7.焊接电弧加热区的特点及其热分布(详见:焊接冶金学(基本原理)p4) 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,如果再进一步分析时,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。 8.什么是焊接,其物理本质是什么 焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性) 2)微观:焊接是在焊件之间实现原子间结合。 9,焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同P8 (1)原材料不同:普通冶金材料的原材料主要是矿石、废钢铁和焦炭等;而焊接化学冶金的原材料主要是焊条、焊丝和焊剂等。(2)反应条件不同:普通化学冶金是对金属熔炼加工过程,是在放牧特定的炉中进行的;而焊接化学冶金过程是金属在焊接条件下,再熔炼的过程,焊接时焊缝相当于高炉。 10.为什么电弧焊时熔化金属的含氮量高于它的正常溶解度(详见:焊接冶金学(基本原理) p34) 电弧焊时熔化金属的含氮量高于溶解度的主要原因在于:1)电弧中受激的氮分子,特别是氮原子的溶解速度比没受激的氮分子要快得多;2)电弧中的氮离子可在阴极溶解;3)在氧化性电弧气氛中形成NO,遇到温度较低的液态金属它分解为N和O,N迅速溶于金属。

相关文档
最新文档