高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析

一、高考物理精讲专题动量守恒定律

1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:

(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;

(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;

(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.

【答案】(1)2

4.610N F N -=⨯ (2)1 1.25B T = (3)127s 360

t π

=

,001290143ββ==和 【解析】 【详解】

解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111

-22

m gl m v m v μ=- 解得:17m/s v =

碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '

=+

取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

b点:对Q,由牛顿第二定律得:

2

2

22

N

v

F m g m

R

-=

解得:2

4.610N

N

F-

=⨯

(2)设Q在c点的速度为c v,在b到c点,由机械能守恒定律:

22

2222

11

(1cos)

22

c

m gR m v m v

θ

-+=

解得:2m/s

c

v=

进入磁场后:Q所受电场力22

310N

F qE m g

-

==⨯=,Q在磁场做匀速率圆周运动

由牛顿第二定律得:

2

2

1

1

c

c

m v

qv B

r

=

Q刚好不从gh边穿出磁场,由几何关系:1 1.6m

r d

==

解得:1 1.25T

B=

(3)当所加磁场22T

B=,2

2

2

1m

c

m v

r

qB

==

要让Q从gh边穿出磁场且在磁场中运动的时间最长,则Q在磁场中运动轨迹对应的圆心角最大,则当gh边或ef边与圆轨迹相切,轨迹如图所示:

设最大圆心角为α,由几何关系得:2

2

cos(180)

d r

r

α

-

︒-=

解得:127

α=︒

运动周期:2

2

2m

T

qB

π

=

则Q在磁场中运动的最长时间:2

2

2

127127

•s

360360360

m

t T

qB

π

απ

===

此时对应的β角:190

β=︒和

2

143

β=︒

2.如图所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方

h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。

(1)求导体棒刚进入凹槽时的速度大小;

(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;

(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4

P = 【解析】 【详解】

解:(1)根据机械能守恒定律,可得:212

mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s =

(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点

根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=

(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:

22

12111()22

mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+

回路电功率:2

E P R

=

联立解得:94

P W =

3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车

的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:

(1)物块a与b碰后的速度大小;

(2)当物块a相对小车静止时小车右端B到挡板的距离;

(3)当物块a相对小车静止时在小车上的位置到O点的距离.

【答案】(1)1m/s (2) (3) x=0.125m

【解析】

试题分析:(1)对物块a,由动能定理得:

代入数据解得a与b碰前速度:;

a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,

由动量守恒定律得:,代入数据解得:;

(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,

代入数据解得:,

对小车,由动能定理得:,

代入数据解得,同速时车B端距挡板的距离:;

(3)由能量守恒得:,

解得滑块a与车相对静止时与O点距离:;

考点:动量守恒定律、动能定理。

【名师点睛】本题考查了求速度、距离问题,分析清楚运动过程、应用动量守恒定律、动能定理、能量守恒定律即可正确解题。

4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。一质量为m b= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。后来木块A与B发生二次碰撞,

碰后A、B同向运动,速度大小分别为1m/s、4m/s。求:木块A、B第二次碰撞过程中系统损失的机械能。

【答案】9J

【解析】试题分析:依题意,第二次碰撞后速度大的物体应该在前,由此可知第二次碰后A、B 速度方向都向左。

第一次碰撞,规定向右为正向 m B v0=m B v B+m A v A

第二次碰撞,规定向左为正向 m A v A-m B v B= m B v B’+m A v A’

得到v A=4m/s v B=2m/s

ΔE=9J

考点:动量守恒定律;能量守恒定律.

视频

5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影

响.

【答案】

【解析】

设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)

此过程中动能损失为:ΔE损=f·2d=1

2

mv20-

1

2

×3mV2(2分)

解得ΔE=1

3

mv20

分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0

(2分)

因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2

(1分),由能量守恒得:

1 2mv2

1

1

2

mV2

1

1

2

mv2

-ΔE损1(2分)

且考虑到v1必须大于V1,

解得:v1=

13 () 26

+v0

设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)

损失的动能为:ΔE′=1

2

mv2

1

1

2

×2mV2

2

(2分)

联立解得:ΔE′=13

(1)

2

+×mv20

因为ΔE′=f·x(1分),

可解得射入第二钢板的深度x为:(2分)

子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解

6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:

(1)整个过程中摩擦阻力所做的总功;

(2)人给第一辆车水平冲量的大小;

(3)第一次与第二次碰撞系统功能损失之比。

【答案】

【解析】略

7.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】

因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mv

v M m

'=

-;

8.两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边

有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图所示.C 与B 发生碰撞并立即结成一个整体D .在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定无机械能损失).已知A 、B 、C 三球的质量均为m .求: (1)弹簧长度刚被锁定后A 球的速度.

(2)在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.

【答案】(1)013v (2)2

0136

mv 【解析】

(1)设C 球与B 球发生碰撞并立即结成一个整体D 时,D 的速度为v 1,由动量守恒有: mv 0=(m+m )v 1

当弹簧压缩至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒有:2mv 1=5mv 2 由两式得A 的速度为:v 2=

15

v 0 (2)设弹簧长度被锁定后,贮存在弹簧中的势能为E p ,由能量守恒有:

2212112522

p mv mv E ⋅=⋅+ 撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D 的动能,设D 的速度为v 3,则有:()231

22

p E m v =

以后弹簧伸长,A 球离开档板P ,并获得速度,当弹簧再次恢复到原长时,A 的速度最大,由动量守恒定律及能量关系可知:345232mv mv mv =+ ;2245113222

p E mv mv =⋅+⋅ 解得:4043

520

v v =

(3)当A 、D 的速度相等时,弹簧压缩到最短时,此时D 球速度最小. 设此时的速度为v 6,由动量守恒定律得:2mv 3=5mv 6 设此使弹性势能为E P ′,由能量守恒定律得:()()222360111

=

252220

P E m v m v mv '-=

9.如图所示,A 为有光滑曲面的固定轨道,轨道底端的切线方向是水平的,质量

140kg m =的小车B 静止于轨道右侧,其上表面与轨道底端在同一水平面上,一个质量

220kg m =的物体C 以2.0/m s 的初速度从轨道顶端滑下,冲上小车B 后经过一段时间与

小车相对静止并一起运动。若轨道顶端与底端的高度差 1.6h m =,物体与小车板面间的动摩擦因数0.40μ=,小车与水平面间的摩擦忽略不计,取2

/10g m s =,求:

(1)物体与小车保持相对静止时的速度v ;

(2)物体冲上小车后,与小车发生相对滑动经历的时间t ; (3)物体在小车上相对滑动的距离l 。 【答案】(1)2 /m s ;(2)1 s ;(3)3 m 【解析】

试题分析:(1)下滑过程机械能守恒,有:22

121122

0mgh m m v v +

=+ ,代入数据得:26/v m s =;设初速度方向为正方向,物体相对于小车板面滑动过程动量守恒为: 2mv m M v =+()

联立解得:2206

2 /2040

mv v m s M m ⨯=

==++。 (2)对小车由动量定理有:mgt Mv μ=,解得:402

1 0.42010

Mv t s mg μ⨯=

==⨯⨯。 (3)设物体相对于小车板面滑动的距离为L ,由能量守恒有:

22

21122mgL m m M v v μ=-+()代入数据解得:()2

22 3 2m M m v L m m g

v μ-+==。

考点:动能定理、动量守恒定律、机械能守恒定律

【名师点睛】本题考查动量定恒、机械能守恒及功能关系,本题为多过程问题,要注意正确分析过程,明确各过程中应选用的物理规律。

10.图中两根足够长的平行光滑导轨,相距1m 水平放置,磁感应强度B =0.4T 的匀强磁场竖直向上穿过整个导轨所在的空间.金属棒ab 、cd 质量分别为0.1kg 和0.2kg ,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上.若两棒以相同的初速度3m /s 向相反方向分开,不计导轨电阻,求:

(1)金属棒运动达到稳定后的ab 棒的速度大小;

(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热; (3)金属棒运动达到稳定后,两棒间距离增加多少? 【答案】(1)1m/s (2)1.2J

(3)1.5m

【解析】

【详解】

解:(1)ab、cd棒组成的系统动量守恒,最终具有共同速度v

,以水平向右为正方向,则

解得稳定后的ab 棒的速度大小:

(2)根据能量转化与守恒定律,产生的焦耳热为:

(3)对cd 棒根据动量定理有:

即:

两棒间距离增加:

11.如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连.质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零.现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹

性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求

ν

ν的值.

【答案】

【解析】

试题分析:小滑块以水平速度v0右滑时,有:20

1

=0-

2

fL mv

-(2分)

小滑块以速度v滑上木板到运动至碰墙时速度为v1,则有22

1

11

=-

22

fL mv mv

-(2分)滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为v2,

则有

12

=(4)

mv m m v

+(2分)

由总能量守恒可得:22

12

11

=-(4)

22

fL mv m m v

+(2分)

上述四式联立,解得

3

2

v

v

=(1分)

考点:动能定理,动量定理,能量守恒定律.

12.如图所示,物块质量m=4kg,以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g=10m/s2),求:

(1)物块相对平板车静止时,物块的速度;

(2)物块在平板车上滑行的时间;

(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长?

【答案】(1)0.4m/s(2)(3)

【解析】

解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。

(1)物块滑上平板车的过程中,二者组成的系统动量守恒,取v 的方向为正方向。mv=

(M+m)v′,,即物块相对平板车静止时,物块速度为0.4m/s。(2)由动量定理,

(3)物块在平板车上滑行时,二者都做匀变速直线运动,且运动时间相同,因此,对物块

,对板车,物块在板车上滑行的距离,要

使物块在平板车上不滑下,平板车至少长0.8m。

本题考查的是对动量守恒定律和动量定理问题的应用,根据动量守恒定律可求出物块相对平板车静止时的速度,再由动量定理得到时间;由匀变速直线运动的特点,可得结果。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得 ,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的 1 2 反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2 10m/s g =。求: (1)碰撞后瞬间,小球受到的拉力是多大? (2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】 解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= = (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 2.冰球运动员甲的质量为80.0kg 。当他以5.0m/s 的速度向前运动时,与另一质量为100kg 、速度为3.0m/s 的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极短,求: (1)碰后乙的速度的大小; (2)碰撞中总动能的损失。 【答案】(1)1.0m/s (2)1400J 【解析】 试题分析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…① 代入数据解得:V′=1.0m/s…② (2)设碰撞过程中总机械能的损失为△E ,应有:mv 2+MV 2=MV′2+△E…③

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=⨯ (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)

高考物理动量守恒定律的应用解题技巧及经典题型及练习题 (含答案) 一、高考物理精讲专题动量守恒定律的应用 1. 如图所示,在光滑的水平面上有一足够长的质量 质量m=1kg 的小物块,长木板与小物块间的动擦因数 止.现用F=14N 的水平恒力向石拉长木板,经时间 (1) 小物块在长木板上发生相对滑幼时,小物块加速度 (2) 刚撤去F 时,小物块离长木板右端的距离 s ; ⑶撒去F 后,系统能损失的最大机械能 AE. 【答案】(1) 2m/s 2 (2) 0.5m (3) 0.4J 【解析】 【分析】 (1 )对木块受力分析,根据牛顿第二定律求出木块的加速度; (2) 先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出 长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离; (3) 撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损 失的最大机械能AE . 【详解】 (1) 小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则: 解得a 1=卩g=2m/s (2) 对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-卩mg=Ma, 解得:a 2= 3m/s 2. 1 1 小物块运动的位移: X 1= a 1t 2= x 2支m=1m , 2 2 11 长木板运动的位移: X 2= a 2t 2= x 3 X m=1.5m , 2 2 则小物块相对于长木板的位移: △x=X 2-x 1=1.5m-1m=0.5m . (3) 撤去F 后,小物块和木板的速度分别为: v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为 0,动量守恒:mv m Mv (M m)v 解得 v 2.8m/s 从撤去F 到物体与木块保持相对静止,由能量守恒定律: 12 12 mv m Mv 2 2 解得?E=0.4J 【点睛】 该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认 真分析物体 M=4kg 的长木板,在长木板右端有一 卩=0.2开始时长木板与小物块均静 t=1s 撤去水平恒力 F , g=10m/s 2.求 a 的大 小; mg=ma E 丄(M 2 m)v

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得 ,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的 1 2 反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2 10m/s g =。求: (1)碰撞后瞬间,小球受到的拉力是多大? (2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】 解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ∆ 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-∆-∆甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ∆∆⎛ ⎫=-- ⎪⎝⎭乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ∆∆--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ∆=-≈乙乙甲。 2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。已知物块B 与木板间

高考物理动量守恒定律解题技巧及练习题(含答案)

高考物理动量守恒定律解题技巧及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30。的光滑斜面上放置一质量为m的物块B, B的下端连接一轻质 弹簧,弹簧下端与挡板相连接,B平衡时,弹簧的压缩量为xo,。点为弹簧的原长位 置.在斜面顶端另有一质量也为m的物块A,距物块B为3xo,现让A从静止开始沿斜面 下滑,A与B相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上 运动,并恰好回到。点(A、B均视为质点),重力加速度为g.求: (1)A、B相碰后瞬间的共同速度的大小; (2)A、B相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R= x o的半圆轨道PQ,圆弧轨道与斜面相切 于最高点P,现让物块A以初速度v从P点沿斜面下滑,与B碰后返回到P点还具有向上的速度,则v至少为多大时物块A能沿圆弧轨道运动到Q点.(计算结果可用根式表示) 2j3gx° E p 1 mgx o v 7(20~4/3) gx0 V2 【解析】 试题分析:(1) A与B球碰撞前后,A球的速度分别是v i和V2,因A球滑下过程中,机械能守恒,有:mg (3x0) sin30 = ;mv12 解得:v1= 3gx0…① 又因A与B球碰撞过程中,动量守恒,有:mv1=2mv2…② 1 1 --- 联立①② 伶:v2= — v1= J3gx0 2 2 ' (2)碰后,A、B和弹簧组成的系统在运动过程中,机械能守恒. 1 贝U 有:E P+—?2mv22 = 0+2mg?x o sin30 2 解得: E P= 2mg?x o sin30 工?2mv22=mgx o-mgx o=」mgxo…③ 2 4 4 (3)设物块在最高点C的速度是vc,

高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)及解析

高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ∆= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ⨯=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-⨯= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)

高考物理动量守恒定律解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的 1 2 反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2 10m/s g =。求: (1)碰撞后瞬间,小球受到的拉力是多大? (2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】 解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理: 22 1111011=22 m gL m v m v μ--

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案) 一、高考物理精讲专题动量守恒定律的应用 1. 竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径 R=1m 的 半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆 连接,开始时c 静止于管道水平部分右端 P 点处,在M 点处的a 球在水平推力F 的作用下 由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且 满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ; (3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量. 【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】 【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球 c 运动到Q 点时,小球b 恰 好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从 c 球运动到Q 点到减速到零的过程列 能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量, 由圆方程可知S 1m 2 代入数据可得:v 0 4m/s (2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 2 1 2 1 2 1 2 由机械能守恒可得 m a v 0 m a v 1 (m b m c )v 2 2 2 2 解得 V 1 0, V 2 4m/ s A E 阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求

相关文档
最新文档