人类全基因组测序

人类全基因组测序
人类全基因组测序

1

技术优势

全基因组测序(Whole Genome Sequencing,WGS)是利用高通量测序平台对人类不同个体或群体进行全基因组测序,并在个体或群体水平上进行生物信息分析。可全面挖掘DNA 水平的遗传变异,为筛选疾病的致病及易感基因,研究发病及遗传机制提供重要信息。

全基因组测序

平台优势

HiSeq X 测序平台

读长:PE150 通量:1.8T/run 测序周期:3

专为人全基因组测序准备、测序周期短、通量高

生物信息分析

技术路线

技术参数

样品要求

样本类型:DNA 样品

样本总量:≥1.0 μg DNA (提取自新鲜及冻存样本) ≥1.5 μg DNA (提取自FFPE 样本)样品浓度:≥ 20 ng/μl 测序平台及策略HiSeq X PE150

测序深度

肿瘤:癌组织(50X),癌旁组织/血液样本(30X)遗传病:30~50 X 项目周期37天

3

案例解析

该研究选取3个家系中6个患者和1个正常个体,首先使用基因芯片寻找纯合突变位点,然后对其中无亲缘关系的2例患者采用全基因组测序研究,在2例患者非编码区域均发现相同的变异,10号染色体PTF1A 末端发生一个点突变(chr10:23508437 A>G),且变异在患病人群和细胞试验中均得到了验证。研究解释了生长发育启动子隐性变异是罕见孟德尔遗传病的常见致病原因,同时说明许多疾病的致病突变也可能位于非编码区。

图1 检出的变异信息

智力障碍是影响新生儿心智发育的一类疾病。这项研究选取50个经过基因芯片和全外显子测序未确诊致病因子的trio 家系,全基因组测序检出84个de novo SNVs 和8个de novo CNVs,及一些结构变异(如VPS13B、STAG1、IQSEC2-TENM3),检出率为42%。揭示编码区的de novo SNVs 和de novo CNVs 是导致智力障碍的主要因素,全基因组测序可以作为可靠的遗传性检测应用工具。

案例一 单基因病研究——全基因组测序鉴定PTF1A末端增强子常染色体隐性突变导致胰腺 发育不全[1]

案例二 复杂疾病研究——全基因组测序解析智力障碍的主要致病因素[2]

图2 PTF1A 的家系图谱

参考文献

案例三 癌症研究——全基因组测序揭示卵巢癌化疗抗性特征[3]

选取92个浆液性卵巢癌(HGSCs)患者原发实体瘤、腹水样本或尸检样本共114个样本及正常对照进行WGS研究,重点关注前期化疗有效,后期产生化疗抗性的患病个体。在产生化疗抗性的个体中频繁检测到CCNE1基因突变,通过检测不同治疗阶段癌细胞的变异情况,发现基因断裂导致抑癌基因失活是产生化疗抗性的重要原因。此项研究揭示了在化疗选择压力下HGSCs患者基因组的异质性和适应性,在选择化疗方案作为HGSC治疗手段时,需要采用必要的策略避免产生化疗抗性。

图4 产生化疗抗性的个体样本中体突变的数量及频率

[1] Weedon M N, Cebola I, Patch A M, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic

agenesis [J].Nature Genetics, 2013, 46(1): 61-64.

[2] Christian G, Hehir-Kwa J Y, Djie Tjwan T, et al. Genome sequencing identifies major causes of severe intellectual

disability [J]. Nature, 2014, 511(7509): 344-347.

[3] Patch A-M, Christie E L, Etemadmoghadam D, et al. Whole genome characterization of chemoresistant ovarian cancer [J].

Nature, 2015, 521: 489-494.

图3 智力障碍患者中检出 IQSEC2基因突变

4

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

Ion torrent微生物(细菌)全基因组重测序文库构建实验方案

微生物(细菌)全基因组重测序文库构建实验方案 一、重测序原理 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。 二、技术路线 ↓基因组DNA提取 细菌DNA(纯化) ↓超声波打断 DNA片段化 ↓ 文库构建 ↓Ion OneTouch 乳液PCR、ES ↓Ion PGM、Ion Proton 上机测序 ↓ 生物信息学分析 三、实验方案 1.细菌总DNA的提取 液氮速冻、干冰保存的细菌菌液:若本实验室可以提供该细菌生长的条件,则对菌液进行活化,培养至对数期时,对该细菌进行DNA提取;若本实验室不能提供该细菌的生长条件,则应要求客户提供尽可能多的样本,以保证需要的DNA量。 细菌DNA采用试剂盒提取法(如TianGen细菌基因组提取试剂盒)。 取对数生长期的菌液,按照细菌DNA提取试剂盒操作步骤进行操作。提取完成后,对基因组DNA进行纯度和浓度的检测。通过测定OD260/280,范围在1.8-2.0之间则DNA较纯,使用Qubit对提取的DNA进行定量,确定提取的DNA 浓度达到文库构建的量。

2.DNA片段化 采用Covaris System超声波打断仪(Covaris M220),将待测DNA打断 步骤: 1)对待打断的DNA进行定量,将含量控制在100ng或者1μg 2)打开Covaris M220安全盖,将Covaris AFA-grade Water充入水浴容器内,至液面到最高刻度线(约15mL),软件界面显示为绿色 3)将待打断DNA装入Ep LoBind管中,其中DNA为100ng或1μg,加入Low TE 至总体积为50mL 4)将稀释的DNA转移至旋钮盖的Covaris管中(200bp规格),转移过程中不能将气泡带入,完成后旋紧盖子 5)选择Ion_Torrent_200bp_50μL_ScrewCap_microTube,将对应的小管放入卡口,关上安全盖,点击软件界面“RUN” 6)打断结束后,将混合液转移至一支新的1.5mL离心管中 3.末端修复及接头连接 3.1 末端修复 使用Ion Plus Fragment Kit进行,以100ng DNA量为例,各组分使用前瞬时离心2s 步骤: 1)加入核酸酶free水至装有DNA片段的1.5mL离心管中,至总体积为79μL 2)向体系中加入20μL 5×末端修复buffer,1μL末端修复酶,总体积为100μL 3)室温放置20min 3.2 片段纯化 片段纯化使用Agencourt AMpure XP Kit进行 步骤: 1)加入180μL Agencourt AMpure XP Reagent beads于经过末端修复的1.5mL离心管中,充分混匀,室温放置5min

全基因组从头测序(de novo测序)

全基因组从头测序(de novo测序) https://www.360docs.net/doc/4a6505596.html,/view/351686f19e3143323968936a.html 从头测序即de novo 测序,不需要任何参考序列资料即可对某个物种进行测序,用生物信息学分析方法进行拼接、组装,从而获得该物种的基因组序列图谱。利用全基因组从头测序技术,可以获得动物、植物、细菌、真菌的全基因组序列,从而推进该物种的研究。一个物种基因组序列图谱的完成,意味着这个物种学科和产业的新开端!这也将带动这个物种下游一系列研究的开展。全基因组序列图谱完成后,可以构建该物种的基因组数据库,为该物种的后基因组学研究搭建一个高效的平台;为后续的基因挖掘、功能验证提供DNA序列信息。华大科技利用新一代高通量测序技术,可以高效、低成本地完成所有物种的基因组序列图谱。包括研究内容、案例、技术流程、技术参数等,摘自深圳华大科技网站 https://www.360docs.net/doc/4a6505596.html,/service-solutions/ngs/genomics/de-novo-sequencing/ 技术优势: 高通量测序:效率高,成本低;高深度测序:准确率高;全球领先的基因组组装软件:采用华大基因研究院自主研发的SOAPdenovo软件;经验丰富:华大科技已经成功完成上百个物种的全基因组从头测序。 研究内容: 基因组组装■K-mer分析以及基因组大小估计;■基因组杂合模拟(出现杂合时使用); ■初步组装;■GC-Depth分布分析;■测序深 度分析。基因组注释■Repeat注释; ■基因预测;■基因功能注释;■ ncRNA 注释。动植物进化分析■基因家族鉴定(动物TreeFam;植物OrthoMCL);■物种系统发育树构建; ■物种分歧时间估算(需要标定时间信息);■基因组共线性分析; ■全基因组复制分析(动物WGAC;植物WGD)。微生物高级分析 ■基因组圈图;■共线性分析;■基因家族分析; ■CRISPR预测;■基因岛预测(毒力岛); ■前噬菌体预测;■分泌蛋白预测。 熊猫基因组图谱Nature. 2010.463:311-317. 案例描述 大熊猫有21对染色体,基因组大小2.4 Gb,重复序列含量36%,基因2万多个。熊猫基因组图谱是世界上第一个完全采用新一代测序技术完成的基因组图谱,样品取自北京奥运会吉祥物大熊猫“晶晶”。部分研究成果测序分析结果表明,大熊猫不喜欢吃肉主要是因为T1R1基因失活,无法感觉到肉的鲜味。大熊猫基因组仍然具备很高的杂合率,从而推断具有较高的遗传多态性,不会濒于灭绝。研究人员全面掌握了大熊猫的基因资源,对其在分子水平上的保护具有重要意义。 黄瓜基因组图谱黄三文, 李瑞强, 王俊等. Nature Genetics. 2009. 案例描述国际黄瓜基因组计划是由中国农业科学院蔬菜花卉研究所于2007年初发起并组织,并由深圳华大基因研究院承担基因组测序和组装等技术工作。部分研究成果黄瓜基因组是世界上第一个蔬菜作物的基因组图谱。该项目首次将传

微生物基因组研究进展及意义

微生物基因组研究进展及其意义 近年来,病原微生物的基因组研究取得了飞速的进展。所谓基因组研究是指对微生物的全基因进行核苷酸测序,在了解全基因的结构基础上,研究各个基因单独或数个基因间相互作用的功能。由于过去人们大多从表型分析入手,寻找已知功能的编码基因,实际只了解微生物中极少数的基因,如链球菌的链激酶基因、结核杆菌编码的热休克蛋白基因等。还有大量未知基因未被发现。通过基因组研究,则从根本上揭示了微生物的全部基因,不仅可发现新的基因,还可发现新的基因间相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律,从而得以发展新的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能有在工农业生产上的应用价值。因此,全球除已完成了70余株覆盖重要病毒科的病毒代表株全基因组研究外,据美国基因组研究所(The Institute for Genomic Research, TIGR)报道,目前已完成了19种微生物基因组测序,其中11种与人类及疾病相关(嗜血流感杆菌,生殖道支原体,肺炎支原体,幽门螺杆菌,枯草杆菌,伯氏疏螺旋体,结核杆菌,梅毒螺旋体,沙眼衣原体,普氏立克次体)。另外,还有40余种微生物已被登记正在进行测序,预计在1999~2000年完成〔1〕。 病毒基因组研究进展 病毒因其基因组小,是进行基因组研究最早的生物体。早在1977 年已完成了噬菌体DNA的全基因测序。存在于脊髓灰质炎疫苗中的SV40,是最早完成全基因测序的与疾病相关的病毒;此后,许多病毒均已完成了全基因测序,并根据序列的开放阅读框架(ORF)对编码蛋白进行了推导。已对相当一些病毒蛋白进行了重组表达,还对一些病毒基因编码的调控序列进行了研究。除一般大小的病毒已完成了基因组测序,对大基因组病毒,疱疹病毒科,如水痘病毒基因组为0.125Mb(Mega-basepair,兆碱基对)〔2〕。巨细胞病毒,基因组为0.229Mb〔3〕。我国已对痘苗病毒天坛株(约0.2Mb)进行了全基因测序,发现与国外的痘苗毒株序列有明显的差异〔4〕。我国还对甲、乙、丙、丁、戊、庚型肝炎病毒进行了国内毒株的全基因测序。近来还对国内2株发现的虫媒病毒毒株完成了全基因测序。我国从不同来源的标本中发现了不少乙肝病毒变异株,有的具有特殊的生物学特性〔5〕。对病毒基因中调控因子的分析,发现了与乙肝病毒增强子作用的新细胞核因子〔6〕。 因此,目前对病毒的基因组研究已进入了后基因组阶段,即从全基因水平研究病毒的生物学功能,同时发现新的基因功能。对于医学病毒学当前主要方向是研究病毒基因组中与致病及诱生免疫应答相关的基因,从而揭示和解决迄今尚未解决的问题,以达到控制或消灭一些重要病毒感染的目的。 建议目前可进行后基因组研究的领域为: 1.病毒持续性感染:基因组中与持续性感染相关的基因,基因变异或调控因子研究。已报道的乙肝病毒的前核心基因出现终止密码突变,

DNA测序标准实验流程(V1.3版)

DNA测序标准实验流程(V1.2版)1.对DNA的要求 纯度:OD 260 / OD 280 = 1.6 ~ 2.0, PCR产物用量:每反应15 -20ng(片段大于3KB可加两倍DNA)。 质粒DNA用量:每反应20 -25ng(插入片段大于3KB质粒要加两倍DNA)。 1300载体本身序列就比较长,我们建议每反应加50-80ng。 每个小组一次配100份BD MIX(BD 0.4ul,5*buffer 1.8ul,water 2.8ul)长期保存,每个反应体系加5ul 2.P CR产物的测序PCR反应(测序PCR反应中只要加一个引物就可以,需要加热盖) 标准反应体系: 10ul体系 试剂用量 纯化的P CR产物(15-20 ng / μL) 1 μL (片段大于3KB可加两倍DNA) 引物(2 pmol / μL) 1 μL BigDye (2.5 x) 0.4 μL BigDye Seq Buffer (5 x) 1.8μL 灭菌去离子水 5.8μL 96 °C 1 min → (96 °C 10 sec → 50 °C 5 sec → 60 °C 2 min) x 25个循环→ 4 °C保温 质粒DNA的测序PCR反应 标准反应体系: 10ul体系 试剂用量 质粒DNA (20-25 ng / μL) 1 μL (插入片段大于3KB质粒要加两倍DNA) 引物(2 pmol / μL) 1 μL BigDye (2.5 x) 0.4 μL BigDye Seq Buffer (5 x) 1.8 μL 灭菌去离子水 5.8 μL 96 °C 1 min → (96 °C 10 sec → 50 °C 5 sec → 60 °C 2 min) x 25个循环→ 4 °C保温 注意:BigDye (2.5 x)是一种含有DNA聚合酶和荧光物质的混合物,非常昂贵,平时都放在-20度保存。加之前拿出来放在冰上融化,用完马上放回-20冰箱。BigDye (2.5 x)和BigDye Seq Buffer (5 x)可以混合后一起加到反应体系,有多的话可以放在-20冰箱,下次还能使用。 BIGDYE尽量避光,一般用铝珀纸遮盖。P CR样品处理过程中如在室温放置和酒精挥发阶段都尽量用铝珀纸遮盖或者放入抽屉,有利于样品的稳定性。 3.测序产物纯化 单个0.2 mL离心管离心方法: 1. 每孔加入1μL 7.5M NH3Ac,26μL 100%酒精,盖好,震荡4次。(酒精和NH3Ac先混合好,而且要比样品数多预算几个) 2. 台式离心机12000 x g 4°C离心20 min,马上用枪吸尽上清液。(DNA很微量,基本看不到,所以枪头不要碰到DNA沉积处) 3. 每孔加入100μL 75% 酒精,12000 x g 4°C离心10 min,马上用枪吸尽上清液。(如果不是马上操作,DNA沉淀很可能 浮起,被吸走,所以如果没有及时吸去上清的话,要重新离心5MINS。) 4. 让酒精在室温避光(抽屉)挥发干净(至少20mins),加入10 μL Hi-Di Formamide溶解DNA。 5. 在PCR仪上变性:95 °C 4 min,4 °C 4 min。上机测序。 96孔板整板离心方法: 1. 每孔加入1μL 7.5M NH3Ac,26μL 100%酒精,盖好,震荡4次。(酒精和NH3Ac先混合好,而且要比样品数多预算几个) 2. 板式离心机4000 x rpm 4°C离心30min;马上倒置96孔板,弃上清,倒置在洗水纸上,离心500rpm,1mins。 3. 加100μL 75% 酒精,4000 rpm 4°C离心20 min;马上倒置96孔板,弃上清,离心500rpm,1mins。 4.让酒精在室温避光(抽屉)挥发干净(至少15mins),加入10 μL Hi-Di For mamide溶解DNA。 5. 在PCR仪上变性:95 °C 4 min,4 °C 4 min。上机测序。 4. 部分相关试剂 酒精:100%酒精使用国产分析纯;75%酒精用去离子水配制。 BigDye (2.5 x) -20度保存 BigDye Seq Buffer (5 x) 4度保存 7.5M NH3Ac 4度保存 Hi-Di For mamide -20度保存 黄方亮 2009.10.27日整理

人类全基因组测序

1 技术优势 全基因组测序(Whole Genome Sequencing,WGS)是利用高通量测序平台对人类不同个体或群体进行全基因组测序,并在个体或群体水平上进行生物信息分析。可全面挖掘DNA 水平的遗传变异,为筛选疾病的致病及易感基因,研究发病及遗传机制提供重要信息。 全基因组测序 平台优势 HiSeq X 测序平台 读长:PE150 通量:1.8T/run 测序周期:3 天 专为人全基因组测序准备、测序周期短、通量高

生物信息分析 技术路线 技术参数 样品要求 样本类型:DNA 样品 样本总量:≥1.0 μg DNA (提取自新鲜及冻存样本) ≥1.5 μg DNA (提取自FFPE 样本)样品浓度:≥ 20 ng/μl 测序平台及策略HiSeq X PE150 测序深度 肿瘤:癌组织(50X),癌旁组织/血液样本(30X)遗传病:30~50 X 项目周期37天

3 案例解析 该研究选取3个家系中6个患者和1个正常个体,首先使用基因芯片寻找纯合突变位点,然后对其中无亲缘关系的2例患者采用全基因组测序研究,在2例患者非编码区域均发现相同的变异,10号染色体PTF1A 末端发生一个点突变(chr10:23508437 A>G),且变异在患病人群和细胞试验中均得到了验证。研究解释了生长发育启动子隐性变异是罕见孟德尔遗传病的常见致病原因,同时说明许多疾病的致病突变也可能位于非编码区。 图1 检出的变异信息 智力障碍是影响新生儿心智发育的一类疾病。这项研究选取50个经过基因芯片和全外显子测序未确诊致病因子的trio 家系,全基因组测序检出84个de novo SNVs 和8个de novo CNVs,及一些结构变异(如VPS13B、STAG1、IQSEC2-TENM3),检出率为42%。揭示编码区的de novo SNVs 和de novo CNVs 是导致智力障碍的主要因素,全基因组测序可以作为可靠的遗传性检测应用工具。 案例一 单基因病研究——全基因组测序鉴定PTF1A末端增强子常染色体隐性突变导致胰腺 发育不全[1] 案例二 复杂疾病研究——全基因组测序解析智力障碍的主要致病因素[2] 图2 PTF1A 的家系图谱

基因组重测序分析流程-代码文件

差异位点分析流程步骤分解 数据准备: mkdir 1.QC cd 1.QC ln -s /root/mdna-data/reseq/1.QC/*.fastq . Ls cd .. mkdir 2.mapping cd 2.mapping ln -s /root/mdna-data/reseq/2.mapping/ref.fasta . 步骤1:参考基因建索引 cd 2.mapping ##bwa建索引: bwa index ref.fasta Expected Result:得到一系列BWA 进行alignment 需要的文件。 ##samtools建索引: samtools faidx ref.fasta Expected Result:生成refgene.fasta.fai。每行都是fasta 文件中每条contig 的record,每条record 由contig name, size, location, basesPerLine 和bytesPerLine 组成。 ##生成字典: java -jar /root/mdna_software/picard-tools-1.102/CreateSequenceDictionary.jar R=ref.fasta O=ref.dict Expected Result:生成refgene.dict。描述fasta 文件内容,类似SAM header 格式。 步骤2:bwa比对 ##用bwa作比对: nohup bwa aln -e 3 -i 10 -t 1 -R 100 -q 20 ref.fasta ../1.QC/test_trim1.fastq -f 1.sai & nohup bwa aln -e 3 -i 10 -t 1 -R 100 -q 20 ref.fasta ../1.QC/test_trim2.fastq -f 2.sai & nohup bwa aln -e 3 -i 10 -t 1 -R 100 -q 20 ref.fasta ../1.QC/test_trim_unpaired.fastq -f s.sai & jobs

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

基因组DNA测序文库构建

基因组DNA测序文库构建 1.对收到的DNA样品进行检测,取2-3ul样品,用1%的琼脂糖胶检测,对于纯度不够(含 RNA或蛋白)的DNA样品需要柱纯化后重新检测。 对于细菌基因组需要扩增16S全长序列,进行验证。 对于噬菌体或者质粒样品,若用16S全长引物扩增,无目的条带则无细菌基因组污染,若出现目的条带则存在污染,需要去除后建库。 2.用Qubit检测DNA样品浓度。 3.吸取部分DNA样品,用TE或Elution Buffer稀释,终浓度在10ng/ul-30ng/ul之间, 体积为130ul。用Covaris破碎,破碎时请根据需要片段大小,按标准操作流程操作。 4.样品足够多的情况下,可以取适量破碎后的产物进行PAGE胶或者琼脂糖胶检测。 5.对破碎后的产物进行柱式法(5倍体积的B3+100-200ul异丙醇)浓缩回收,加入50-100ul TE或Elution Buffer洗脱。回收产物用Qubit测值。 6.修平和磷酸化 100ul体系

DNA 1ug 5 X T4 polymerase buffer 20ul BSA (5mg/ml) 2ul ATP (100mm) 1ul dNTP(10mm)10ul T4 DNA Polymerase (5U/ul) 1ul Klenow(10U/ul)1ul T4 PNK (10U/ ul) 1.5ul 22°C反应20min,柱式法纯化,50-100ul TE洗脱。纯化后Qubit测值。 7.加‘A’ 100ul体系 DNA 0.5-2.5ug 10 X klenow buffer 10ul dATP(10mm) 1-3ul Klenow(exon-)(5U/ul)1-3ul 37°反应20min,柱式法纯化,50-100ul TE洗脱。纯化后Qubit测值。 8.连接头 200ul体系 10 X T4 DNA ligase buffer 20ul PEG4000 30ul ATP(100mm) 2ul DNA X 接头 Y T4 DNA ligase 1.5-2ul 加水至 200ul DNA与接头的摩尔比约在1:3至1:10之间。 9.连接产物用柱式法纯化后,跑琼脂糖胶切割目的区域回收。 10.PCR扩增 10 X TagE buffer 5ul Mg2+ 4ul dNTP(10mm) 1ul lib-PCR-F 0.5ul

基因组测序术语解释

DNA关键词: WG-BSA (全基因组重测序BSA) 对已有参考基因组序列的物种的所有作图群体(F1、F2、RIL、DH 和BC1等),对亲本进行个体重测序,对某个极端性状材料混池测序,检测SNP,获得与性状紧密关联的分子标记和精细定位区域,是目前最高效的基因定位方法。通过选取某个极端性状,利用高效率低成本的混池测序技术,勿需开发分子标记进行遗传图的构建,快速定位与性状相关的候选QTL。 MP-Reseq (多混池全基因组重测序) 针对特有的优良地方品种中的不同品种/品系,通过群体内pooling 建库的方法,进行全基因组重测序,采用生物信息学方法全基因组范围内扫描变异位点,能快速的定位不同混池样品基因组中明显经过人工或自然选择的区域,检测与性状相关的基因区域及其功能基因。 全基因组个体重测序 基于全基因组重测序的变异图谱通过测序手段结合生物信息分析研究同一物种不同个体之间的变异情况,获得大量的变异信息,如SNP、Indel、SV 等。主要可以快速地获得大量的分子标记以及不同个体在基因组水平上的差异。 全基因组关联分析-GWAS 通过重测序对动植物重要种质资源进行全基因组基因型鉴定,与关注的表型数据进行全基因组关联分析,找出与关注表型相关的SNP位点,定位数量性状基因,与数量性状相关的基因紧密连锁的SNP标记,后续可用于分子标记辅助育种,助力育种进程。 全基因组重测序-遗传进化 通过对来自全国各地、具有代表性的XX 份XX 材料进行全基因组重测序,检测SNP、Indel、SV,并利用获得的SNP 与SV 数据进行群体多样性分析,包括连锁不平衡分析、群体进化分析、群体结构分析、群体主成分分析等。 全基因组重测序-遗传图谱 基于全基因组重测序技术对已有参考基因组序列的物种进行个体或群体的全基因组测序,利用高性能计算平台和生物信息学方法,检测单核苷酸多态性位点(SNP),并计算多态性标记间的遗传连锁距离,绘制高密度的遗传图谱。通过与表型性状进行关联分析,利用获得的强关联性标记进行下游基因的精细定位。遗传图可用于分子标记辅助育种,重要性状候选基因克隆,辅助基因组组装,比较基因组学等研究。 细菌基因组de novo 测序 细菌是生物的主要类群之一,是所有生物中数量最多的一类。细菌广泛分布于土壤和水中,或者与其他生物共生,也有部分种类分布在极端环境中,例如温泉,甚至是放射性废弃物中。由于细菌自身的营

二代测序流程

Illumina测序的化学原理 目前我们接触到的很多生物信息学的技术,都是基于NGS技术的,比如RNA-Seq,ChIP-Seq,FAIRE-Seq,ChIA-PET,Hi-C等等。所谓的NGS就是Next Generation Sequencing,翻译为“下一代测序技术”,或者是“第二代测序技术”。之所以这么叫,是因为相比较于第一代测序技术其测序通量有了很大的提升 一些常用的基本概念介绍: flowcell:是指Illumina测序时,测序反应发生的位置,1个flowcell含有8条lane lane:每一个flowcell上都有8条泳道,用于测序反应,可以添加试剂,洗脱等等tail:每一次测序荧光扫描的最小单位 reads:指测序的结果,1条序列一般称为1条reads bp:base pair 碱基对,用于衡量序列长度 双端测序:是指一条序列可能比较长,如500bp,我们可以两端各测150bp junction:在进行双端测序时,中间会留有200bp测不到的东西,我们称其为junction adapter:就是在测序时需要的一段特定的序列,有类似于引物的功能 primer:PCR中的引物 测序反应基本流程介绍: 1、建库 A、将基因组DNA用超声波打断(由于Illumina测序策略本身的问题,导致其测序长度不可能太长,目前最好的X Ten测序仪也就只能双端各测150bp,所以不可能直接拿整个基因组去测序,因此在测序的时候就需要先将其打断成一定长度的片段,这个根据需要使用不同的策略,一般测人的基因组,我们是先将其打断成300-500bp长度的片段,这个是根据跑胶控制的) B、打断以后会出现末端不平整的情况,用酶补平,所以现在的序列是平末端 C、完成补平以后,在3'端使用酶加上一个特异的碱基A D、加上A之后就可以利用互补配对的原则,添加adapter,这个adpater可以分成两个部分,一部分是测序的时候需要使用的引物序列,另一部分是建库扩增时候需要用到的引物序列 E、进行PCR扩增,使得DNA样品浓度能够满足上机要求 建库示意图如下:

一代测序规范操作规范

P C R产物测序实验操作流程一、实验试剂和耗材准备 (一)实验试剂 (二)、实验耗材

二、实验仪器 三、实验操作具体步骤 (一)核酸的提取 按照DNA或RNA提取试剂盒操作(具体操作步骤参考试剂盒操作说明书),如是RNA需进一步反转录为cDNA。-20℃保存备用。 (二)测序PCR模板的制备 (1)、预先制备适量冰 (2)、在冰上融化模板DNA、引物以及Extender PCR-to-Gel Master Mix (3)、按照以下反应体系进行PCR并保持反应体系在冰上 (4)将反应体系放入PCR仪,执行以下反应程序 95℃5min→

(95℃ 30sec,67℃ 30sec -0.5 ℃/循环,72℃ 1min)x14循环→ (95℃ 30sec,57℃ 30sec,72℃ 1min)x 30循环→ 72℃ 7min→4℃ Forever (5)琼脂糖凝胶电泳检测:量取适量1×TBE缓冲液并称取一定量琼脂粉溶于其中制成1%-2%的琼脂糖凝胶,在微波炉上加热溶化,待温度降至60℃-70℃左右加入荧光染料,温度降至40℃-50℃左右将琼脂粉溶液倒入插有梳子的凝胶槽中冷却,待凝胶完全凝固备用。将凝胶置于水平电泳槽中,取少量PCR产物上样电泳,将电泳好的样品置于凝胶成像系统中进行检测和分析。 (6)将检测合格的PCR产物用酶解法进行纯化。根据核酸外切酶I (Exo I),碱性磷酸酶(AIP)的作用浓度,加入到PCR反应产物中,37℃消化15min,85℃使酶失活15min。纯化体系如下: (三)、纯化后的PCR产物的测序反应 1、纯化后的PCR产物按照1:3~1:6稀释(若琼脂糖凝胶电泳条带非常亮,可以适当增大稀释倍数) 2、测序反应用引物稀释到1μM (1)PCR产物测序反应体系(10μl): PCR产物测序体系中PCR产物的加入量如下表: DNA纯度:OD260/OD280=1.6~1.8;DNA含量(ng/μl)=OD260×50

07年完成基因组测序的生物

07年完成基因组测序的生物 生物通报道:在即将过去的2007年,动物、植物、微生物的基因组测序工作进行的如火如荼,多项基因组测序结果被公布,包括第一个个人基因组图谱、马基因组图谱、肺癌基因组图谱和多种致病性细菌的基因组测序结果。 人类基因组测序的进一步深入 世界首份个人DNA图谱出炉 57年前,美国生物学家詹姆斯·沃森与弗朗西斯·克里克共同发现了脱氧核糖核酸(DNA)分子结构的双螺旋模型,并因这项基因研究领域的重大突破获得诺贝尔奖。今天,沃森成为自己研究的受益者--他将成为世界第一份完全破译的“个人版”基因组图谱的拥有者。 第一个个体基因组序列公布 来自美国克莱格凡特研究所(J. Craig Venter Institute,由TIGR所建立),加拿大多伦多大学,加州大学圣地亚哥分校,西班牙巴塞罗那大学(Universitat de Barcelona)的研究人员近期公布了单个个体二倍体基因组序列,为未来的基因组比较打开了一道门,也开创了个体基因组信息的新纪元。 杜克大学公布第一张人类基因组印记基因图谱

来自杜克大学的研究人员创造了第一张人类基因组印记基因(imprinted genes)图谱,并且他们表示其成功的关键在于一个称为机器学习(machine learning)的人工智能形式:modern-day Rosetta stone。这项研究新发现了四倍于之前识别的印记基因,并即将公布在12月3日《Genome Research》封面上。 完成测序的动物 第一张马基因组图谱草图公布 国际马类基因组序列计划(the international Horse Genome Sequencing Project)宣布,科学家们首次完成家马((Equus caballus))的基因图谱草图,得到了270万个DNA碱基对的数据,全部数据已经进入公共数据库,可免费供全世界的生物学家和兽医学家使用。 《自然》封面:首个有袋动物基因组序列公布 一种灰色短尾负鼠(Monodelphis domestica)的基因组测序的完成则为这一推测给出了切实的证据。负鼠是第一个完成基因组测序的有袋动物,测序结果公布在4月10日的《自然》杂志上,而且这种小动物还登上了该期杂志的封面。 家猫基因组测序完成

微生物宏基因组测序

宏基因组学(Metagenomics),又称元基因组学,以特定生境中的整个微生物群落作为研究对象,采用新一代高通量测序技术,获得环境微生物基因信 息总和,研究环境微生物的群落结构、物种分类、系统进化、基因功能及代谢网络等。宏基因组测序摆脱了传统研究中微生物分离培养的技术限制,直接提取 环境样本DNA进行测序,具有通量高、速度快、信息全等特点,在鉴定低丰度的微生物群落、挖掘更多基因资源方面具有很大优势,基于测序技术和生物信息学的快速发展,宏基因组技术优势在微生物研究领域中愈发明显,应用范围愈发广泛。 技术参数 参考文献 [1] B?ckhed F, Roswall J, Peng Y, et al . Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life [J]. Cell host & microbe, 2015, 17(5): 690-703. [2] Sunagawa S, Coelho L P , Chaffron S, et al . Structure and function of the global ocean microbiome [J]. Science, 2015, 348(6237): 1261359. 案例解析 [案例一] 婴儿肠道微生物宏基因组[1] 肠道微生物对人体至关重要,本文采用宏基因组测序技术对98个瑞典产妇的粪便及婴儿的粪便进行分析,研究出生一年内肠道的微生物,评估分娩方式和喂养方式对肠道菌群建立的影响。与顺产婴儿的肠道微生物相比,剖腹产婴儿肠道微生物与母亲相似性明显降低。营养对肠道微生态的组成和功能有重要影响,促使婴儿肠道微生物向成人肠道微生物群转变的主要驱动力量并不是开始喂食固体食物,而是停止母乳喂养。微生物群落组成和生态网络在不同样本阶段具有明显差异,与微生物功能成熟度相关。 [案例二] 全球海洋微生物群体的结构与功能[2] 微生物是生物地球化学进程的主要推动力,但对它们的功能多样性、微生物种群结构以及生态因素进行总体分析还存在很大的挑战。本研究采集全球海洋68个位点的上层和中层海水的243个样本进行宏基因组分析,得到7.2TB数据。对获得的数据进行分析,发现139个样本中含有的微生物物种数目多于35,000个,而且在上层海水的垂直分层中,温度是影响微生物种群分布的主要因素。分析海洋微生物核心功能,发现其与人体肠道微生物的相似性高达73%。 图1 不同生产方式及不同年龄阶段肠道菌群的差异 图2 Tara Oceans在全球海洋微生物中发现的新基因多样性 多样本标准分析PCA分析Heatmap Cluster Krona物种注释展示差异显著性分析OG-物种归属分析代谢通路分析 样品要求 文库类型测序策略数据量类型 分析内容 项目周期 宏基因组测序 35~75个自然日 HiSeq PE150 5 Gb/10 Gb Raw data 300 bp小片段文库常见环境样本(请使用干冰或冰袋运送) 土壤、淤泥、沉积物≥5 g 粪便≥2 g 组织样本≥1 g 水体送样为过滤后的滤膜(最适滤膜直径3-4cm)拭子样本≥2个 DNA样本(请使用干冰或冰袋运送)DNA:浓度≥50 ng/μl 总量≥2 ng OD260/280:1.8~2.0,无 RNA、蛋白质等 杂质污染 多样本高级分析MRPP分析NMDS分析Anosim分析LEfSe分析 CCA/RDA分析 O c c u r r e n c e f r e q u e n c y (n =15) 1

微生物基因组denovo测序分析流程

#流程大放送#微生物基因组Denovo测序分析 知因无限 一介绍 微生物基因组De novo测序分析也叫微生物基因组从头测序分析,指不依赖于任何参考序列信息就可对某个微生物进行分析的测序分析技术,用生物信息学的方法进行序列拼接获得该物种的基因组序列图谱,然后进行注释等后续一系列的分析。微生物Denovo基因组测序及分析技术可以应用于医药卫生等领域。 二技术应用领域 1、基因组图谱的系统性构建 例子:过去几个月,肠病毒D68令数百名美国儿童患病。华盛顿大学的研究人员测序和分析了肠病毒D68(EV-D68)的基因组,这一成果将发表在新一期的Emerging Infectious Diseases杂志上。(Genome Sequence of Enterovirus D68 from St. Louis, Missouri, USA)肠病毒D68(EV-D68)能在儿童中引起严重的呼吸道疾病。其基因组序列可以“帮助人们开发更好的诊断测试,”共同作者Gregory Storch说。“有助于解释病毒感染为什么会造成严重的疾病,以及EV-D68为什么比过去传播得更广。”(来自于生物通的报道) 2、微生物致病性和耐药性位点检测及相关基因功能研究 例子:根据分泌蛋白、毒力因子、致病岛、必需基因等结果去探讨所测物种致病性和耐药性。 3、微生物的比较基因组分析,确定各个近缘微生物中的系统发育关系 二基本分析流程图

三可能的结果展示图 示例图1 微生物基因组的功能注释

示例图2 微生物基因组的系统进化关系 注:以上图片和文字来自参考文献21。 六参考文献 [1] Hong-Bin Shen, and Kuo-Chen Chou, "Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites", Journal of Biomolecular Structure & Dynamics, 2010, 28: 175-86. [2]Hong-Bin Shen and Kuo-Chen Chou, "Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells.", Biopolymers. 2007, 85, 233-240. [3] Ren Zhang and Yan Lin, (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Research 37, D455-D458. [4] The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007 May 23;8(1):172. [5] The Pfam protein families database: M. Punta, P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L.L. Sonnhammer, S.R. Eddy, A. Bateman, R. D. Finn Nucleic Acids Research (2014) Database Issue 42:D222-D230. [6] Clustal W and Clustal X version 2.0.(2007 Nov 01) Bioinformatics (Oxford, England) 23 (21) :2947-8.PMID: 17846036. [7] Felsenstein, J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. [8] Li et al (2010). De novo assembly of human genomes with massively parallel short read

相关文档
最新文档