单级倒立摆系统的极点配置与状态观测器设计

单级倒立摆系统的极点配置与状态观测器设计
单级倒立摆系统的极点配置与状态观测器设计

单级倒立摆系统的极点配置与状态观测器设计

14122156 杨郁佳

(1)倒立摆的运动方程并将其线性化

选取小车的位移z ,及其速度z 、摆的角位置θ及其角速度θ

作为状态变量,即T

x z z θθ??=???

? 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml Ml x ????????????-????=+????????+-???????????? []1000y x

= 设M=2kg ,m=0.2kg ,g=9.81m/2

s ,则单级倒立摆系统的状态方程为

(101001010)

01020.500013030

011040.54x x x x u x x x x ??????????????????-????????=+????????????????-????????????

[]12100034x x y x x ????

??=??????

(2)状态反馈系统的极点配置。

首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。

MATLAB 程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];

B=[0; 0.5; 0; -0.5];

C=[1 0 0 0];

D=0;

rct=rank(ctrb(A,B))

[z,p,k]=ss2zp(A,B,C,D)

MATLAB 程序执行结果如下:

系统能控,系统的极点为

1=0

λ

2=0

λ

3=3.3166

λ

4=-3.3166

λ

可以通过状态反馈来任意配置极点,将极点配置在

1=-3

λ*

2=-4

λ*

3=-5

λ*

4=-6

λ*

MATLAB程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5];

P=[-3 -4 -5 -6];

K=place(A,B,P)

MATLAB程序执行结果如下:

因此,求出状态反馈矩阵为

K=[-72.0 -68.4 -332.0 -104.4]

采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型。

首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值:2。运行仿真程序,显示仿真曲线,如下。

处。

仿真结果表明倒立摆的杆子与数值方向的偏角从初值2,经过控制稳定在=0

(3)状态观测器实现状态反馈极点配置。

MATLAB程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];

B=[0; 0.5; 0; -0.5];

C=[1 0 0 0];

rob=rank(obsv(A,C))

MATLAB程序执行结果如下:

Rob=4说明系统能观,可以设计状态观测器。取状态观测器的特征值为-3,-4,-5,-6 MATLAB 程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];

A1=A ’;

C=[1 0 0 0];

C1=C ’;

P=[-3 -4 -5 -6];

H1=place(A1,C1,P);

H=H1’

MATLAB 程序执行结果如下:

状态观测器矩阵[]18 130 540 1790T

H =--

采用MATLAB/Simulink 构造具有状态观测器的单级倒立摆状态反馈控制系统的仿真模型。

首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值:2。运行仿真程序,显示仿真曲线,如下。

对比两个仿真图,可以发现加上状态观测器对单级倒立摆的控制效果基本上无影响。

实验 6 极点配置与全维状态观测器的设计(优.选)

实验 6 极点配置与全维状态观测器的设计 一、实验目的 1. 加深对状态反馈作用的理解。 2. 学习和掌握状态观测器的设计方法。 二、实验原理 在MATLAB 中,可以使用acker 和place 函数来进行极点配置,函数的使用方法如下:K = acker(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 K = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 [K,PREC,MESSAGE] = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵,PREC 为特征值,MESSAGE 为配置中的出错信息。 三、实验内容 1.已知系统 (1)判断系统稳定性,说明原因。 (2)若不稳定,进行极点配置,期望极点:-1,-2,-3,求出状态反馈矩阵k。 (3)讨论状态反馈与输出反馈的关系,说明状态反馈为何能进行极点配置? (4)使用状态反馈进行零极点配置的前提条件是什么? 1. (1) (2) 代码: a=[-2 -1 1;1 0 1;-1 0 1]; b=[1,1,1]'; p=[-1,-2,-3]'; K=acker(a,b,p) K = -1 2 4 (3)讨论状态反馈与输出反馈的关系, 说明状态反馈为何能进行极点配置?

在经典控制理论中,一般只考虑由系统的输出变量来构成反馈律,即输出反馈。在现代控制理论的状态空间分析方法中,多考虑采用状态变量来构成反馈律,即状态反馈。从状态空间模型输出方程可以看出,输出反馈可视为状态反馈的一个特例。状态反馈可以提供更多的补偿信息,只要状态进行简单的计算再反馈,就可以获得优良的控制性能。 (4)使用状态反馈配置极点的前提是系统的状态是完全可控的。 2.已知系统 设计全维状态观测器,使观测器的极点配置在12+j,12-j 。 (1)给出原系统的状态曲线。 (2)给出观测器的状态曲线并加以对比。(观测器的初始状态可以任意选取)观察实验结果,思考以下问题: (1)说明反馈控制闭环期望极点和观测器极点的选取原则。 (2)说明观测器的引入对系统性能的影响。 (1)A=[0 1;-3 -4]; B=[0;1]; C=[2 0]; D=[]; G=ss(A,B,C,D); x=0:0.001:5; U=0*(x<0)+1*(x>0)+1*(x==0); X0=[0 1]'; T=0:0.001:5; lsim(G,U,T,X0);

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

单级倒立摆稳定控制实验

单级倒立摆稳定控制实验 一.实验目的 1.了解单级倒立摆的原理与数学模型的建立; 2.掌握LQR控制器的设计方法; 3.掌握基于LQR控制器的单级倒立摆稳定控制系统的仿真方法。 二.实验内容 图1 一级倒立摆原理图 一级倒立摆系统的原理框图如上所示。系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。光电码盘1将连杆的角度、角速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈回控制卡。计算机从运动控制卡中读取实时数据,确定控制决策,并由运动控制卡来实现该控制决策,产生相应的控制量,驱动电机转动,带动连杆运动,保持摆杆的平衡。 在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图2所示。 图2 直线一级倒立摆系 统

其中: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ 摆杆与垂直向上方向的夹角 θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 下图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图3 (a )小车隔离受力图; (b ) 摆杆隔离受力图 分析小车水平方向所受的合力,可以得到以下方程: Mx F bx N =--&&& (1) 由摆杆水平方向的受力进行分析可以得到下面等式: ()2 2sin d N m x l dt θ=+ (2) 即:2cos sin N mx ml ml θθθθ=+-&&&&&

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

单级倒立摆系统的极点配置与状态观测器设计

单级倒立摆系统的极点配置与状态观测器设计 14122156 杨郁佳 (1)倒立摆的运动方程并将其线性化 选取小车的位移z ,及其速度z g 、摆的角位置θ及其角速度θg 作为状态变量,即T x z z θθ??=??? ?g g 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml Ml x ????????????-????=+????????+-????????????g []1000y x = 设M=2kg ,m=0.2kg ,g=9.81m/2 s ,则单级倒立摆系统的状态方程为 (1010) 01010 01020.500013030 011040.54x x x x u x x x x ??????????????????-????????=+????????????????-???????????? []12100034x x y x x ???? ??=?????? (2)状态反馈系统的极点配置。 首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。 MATLAB 程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5]; C=[1 0 0 0]; D=0; rct=rank(ctrb(A,B)) [z,p,k]=ss2zp(A,B,C,D) MATLAB程序执行结果如下: 系统能控,系统的极点为 1=0 λ 2=0 λ 3=3.3166 λ 4=-3.3166 λ 可以通过状态反馈来任意配置极点,将极点配置在 1=-3 λ* 2=-4 λ* 3=-5 λ* 4=-6 λ*

倒立摆系统的控制器设计

倒立摆系统的控制器设计

摘 要 倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来;倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。因此,对倒立摆系统的研究具有十分重要的理论和实践意义。 本文首先将直线倒立摆抽象为简单的模型以便于受力分析进行机理建模,然后通过牛顿力学原理进行分析,得出相应的模型,进行拉氏变化带入相应参数得出摆杆角度和小车位移、摆杆角度和小车加速度、摆杆角度和小车所受外界作用力、小车位移与小车所受外界作用力的传递函数,其中摆杆角度和小车加速度之间的传递函数为: 02()0.02725()()0.01021250.26705s G s V s s Φ==- ………… (1) 即我们在本次设计中主要分析的系统的传递函数。 然后从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,利用Matlab 中的Simulink 仿真工具进行仿真,得出结论该系统的开环响应是发

散的。 最后分别利用根轨迹分析法,频域分析法和PID 控制法对倒立摆系统进行校正。 针对目标一:调整时间0.5(2%)s t s =误差带,最大超调量%10%≤p σ,选取参数利用根轨迹法进行校正,得出利用超前校正环节的传递函数为: 135.1547( 5.0887) ()135.1547c s G s s +=+ ………………………… (2) 针对目标二:系统的静态位置误差常数为10;相位裕量为 50 ;增益裕量等于或大于10 分贝。通过频域法得出利用超前校正环节的传递函数为: 1189.6(8.15) ()99.01c s G s s +=+ …………………………… ……………………(3) 针对目标三: 调整时间误差带)%2(2s t s =,最大超调量,%15%≤p σ,设计或调整PID 控制器参数,得出调整后的传递函数为: 150()21020c G s s s =++ ………………………………………. .(4)

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

状态反馈与状态观测器

实验七 状态反馈与状态观测器 一、实验目的 1. 掌握用状态反馈进行极点配置的方法。 2. 了解带有状态观测器的状态反馈系统。 二、实验原理 1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。 2. 已知线形定常系统的状态方程为 x Ax Bu y cx =+=为了实现状态反馈,需要状态变 量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。解决的方法是用计算机构成一个与实际系统具有同样动态方程的模拟系统,用模拟系统的状态向量 ?()x t 作为系统状态向量()x t 的估值。状态观测器的状态和原系统的状态之间存在着误差,而引起误差的原因之一是无法使状态观测器的初态等于原系统的初态。 引进输出误差?()()y t y t -的反馈是为了使状态估计误差尽可能快地衰减到零。状态估计的误差方程为 误差衰减速度,取决于矩阵(A-HC )的特征值。 3. 若系统是可控可观的,则可按极点配置的需要选择反馈增益阵k ,然后按观测器的动态要求选择H ,H 的选择并不影响配置好的闭环传递函数的极点。因此系统的极点配置和观测器的设计可分开进行,这个原理称为分离定理。 三、实验内容 1. 设控制系统如6.1图所示,要求设计状态反馈阵K ,使动态性能指标满足超调量%5%σ≤,峰值时间0.5p t s ≤。

一阶倒立摆课程设计报告

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系):英才学院专业:自动化班号: 任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)的超调量小于20度(0.35弧度) (4)稳态误差小于2%。

工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。 工作计划安排: 第3周:(1)建立直线一级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。 第4周:实物调试; 撰写课程设计论文。 同组设计者及分工: 各项工作独立完成 指导教师签字 年月日教研室主任意见:

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=- 2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

线性系统极点配置和状态观测器基于设计(matlab) - 最新版本

一. 极点配置原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且: 这时,闭环系统的状态空间模型为: ()x A BK x Bv y Cx =-+?? =? 二. 状态观测器设计原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可观的,则可引入全维状态观测器,且: ??(y y)??x Ax Bu G y Cx ?=++-??=?? 设?x x x =-,闭环系统的状态空间模型为: ()x A GC x =- 解得: (A GC)t (0),t 0x e x -=≥ 由上式可以看出,在t 0≥所有时间内,如果(0)x =0,即状态估计值x 与x 相等。如果(0)0x ≠,两者初值不相等,但是()A GC -的所有特征值具有负实部,这样 x 就能渐进衰减至零,观测器的状态向量?x 就能够渐进地逼近实际状态向量x 。状态逼近的速度取决于G 的选择和A GC -的特征配置。 三. 状态观测的实现 为什么要输出y 和输入u 对系统状态x 进行重构。 u Kx v =-+

证明 输出方程对t 逐次求导,并将状态方程x Ax Bu =+代入整理,得 2(n 1)(n 2)(n 3)21n n y Cx y CBu CAx y CBu CABu CA x y CBu CABu CA Bu CA x -----=??-=??--=????----=? 将等号左边分别用z 的各分量12,, ,n z z z 表示,有 121(n 1)(n 2)(n 3) 2 n n n y C z y CBu CA z z y CBu CABu x Qx z CA y CBu CABu CA Bu -----?? ???????? -?? ????? ? ? ?????==--==?? ????????????????????----?? ? 如果系统完全能观,则 rankQ n = 即 1?(Q Q)T T x Q z -= (类似于最小二乘参数估计) 综上所述,构造一个新系统z ,它是以原系统的输出y 和输入u ,其输出经过变 换1(Q Q)T T Q -后得到状态向量?x 。也就是说系统完全能观,状态就能被系统的输入输出以及各阶倒数估计出来。 四. 实例 给定受控系统为 再指定期望的闭环极点为12,341,1,2i λλλ*** =-=-±=-,观测器的特征值为 12,33,32i λλ=-=-±,试设计一个观测器和一个状态反馈控制系统,并画出系统 的组成结构图。 []0100000101000100 05 021000x x u y x ???? ????-????=+????????-???? =

基于LQR的一级倒立摆设计说明

直线一级倒立摆LQR 控制器的设计 摘要 在控制理论上倒立摆使许多抽象的概念可以直观的表达出来。无论是在实践还是理论上都具有深刻的意义。可以用拉格朗日方法建模,设计倒立摆二次型最优控制器,通过MATLAB 仿真和实际系统实验,实现对倒立摆的稳定控制。建立模型,确定参数,进行控制算法设计、系统调试和分析等步骤实现。 关键词:二次型;倒立摆;稳定控制 前言 倒立摆的最初研究开始于20世纪50年代,由美国麻省理工学院的控制论专家根据火箭发射助推器原理设计;而后人们有参照双足机器人控制问题研究出二级倒立摆设备,从而提高了检验控制论和方法的能力,也拓宽了检验围。 在控制理论上倒立摆使许多抽象概念如系统稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以直观的表现出来。同时由于倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为研究对象,并不断从中发掘出新的控制理论和控制方法。 课程设计要求:熟悉倒立摆实际控制系统;对倒立摆系统建模;进行控制算法设计;进行系统调试和分析;利用MATLAB 高级语言编程,实现倒立摆稳定控制;实时输出波形,得出结论。 一. 线性二次最优控制LQR 基本理论 LQR 控制器是应用线性二次型最优控制原理设计的控制器。它的任务在于,当系统状态由于任何原因偏离了平衡状态时,能在不消耗过多能量的情况下,保持系统状态各分量仍接近于平衡状态。线性二次型最优控制研究的系统是线性的或可线性化的,并且性能指标是状态变量和控制变量的二次型函数的积分。 线性二次最优控制LQR 基本原理为,由系统方程: X AX BU ? =+ 确定下列最佳控制向量的矩阵K : 使得性能指标达到最小值: ()() *u t K x t =-)(* * J X QX U RU dt ∞ =+?

基于MATLAB的状态观测器设计

基于MATLAB 的状态观测器设计 预备知识: 极点配置 基于状态反馈的极点配置法就是通过状态反馈将系统的闭环极点配置到期望的极点位置上,从而使系统特性满足要求。 1. 极点配置原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且: Kx u input -= 这时,闭环系统的状态空间模型为: ???=+-=Cx y Bu x )BK A (x 2. 极点配置的MATLAB 函数 在MATLAB 控制工具箱中,直接用于系统极点配置的函数有acker()和place()。调用格式为: K=acker(A,C,P) 用于单输入单输出系统 其中:A ,B 为系统矩阵,P 为期望极点向量,K 为反馈增益向量。 K=place(A,B,P) (K,prec,message)=place(A,B,P) place()用于单输入或多输入系统。Prec 为实际极点偏离期望极点位置的误差;message 是当系统某一非零极点偏离期望位置大于10%时给出的警告信息。 3. 极点配置步骤: (1)获得系统闭环的状态空间方程; (2)根据系统性能要求,确定系统期望极点分布P ; (3)利用MATLAB 极点配置设计函数求取系统反馈增益K ; (4)检验系统性能。 已知系统模型 如何从系统的输入输出数据得到系统状态?

初始状态:由能观性,从输入输出数据确定。 不足:初始状态不精确,模型不确定。 思路:构造一个系统,输出逼近系统状态 称为是的重构状态或状态估计值。实现系统状态重构的系统称为状态观 测器。 观测器设计 状态估计的开环处理: 但是存在模型不确定性和扰动!初始状态未知! 应用反馈校正思想来实现状态重构。 通过误差来校正系统:状态误差,输出误差。 基于观测器的控制器设计 系统模型 若系统状态不能直接测量, 可以用观测器来估计系统的状态。 L是观测器增益矩阵,对偏差的加权。 真实状态和估计状态的误差向量 误差的动态行为:

状态反馈与极点配置报告

自 动 控 制 原 理 (课程设计)

一、题目 用MATLAB创建用户界面,并完成以下功能: (1)由用户输入被控系统的状态空间模型、闭环系统希望的一组极点; (2)显示未综合系统的单位阶跃响应曲线; (3)显示采用一般设计方法得到的状态反馈矩阵参数; (4)显示闭环反馈系统的单位阶跃响应曲线; (5)将该子系统嵌入到寒假作业中程序中。 分别对固定阶次和任意阶次的被控系统进行设计。分别给出设计实例。 二、运行结果 界面:如图 由用户输入被控系统的状态空间模型、闭环系统希望的一组极点 例如,输入 010 001 034 A ?? ?? =?? ?? -- ?? , 1 B ?? ?? =?? ?? ?? ,[] 2000 C=,0 D=,闭环系统 希望的一组极点:22j -+、22j --、5 -如图所示:

被控系统的单位阶跃响应曲线 闭环系统的单位阶跃响应曲线

状态反馈矩阵显示 三、讨论 该闭环控制系统的状态反馈与极点配置设计系统可用于任意阶次的控制系统。在此之前,我还做了一个固定阶次的控制系统状态反馈与极点配置的Matlab 控制台程序(见附录二)。 该系统的利用状态反馈进行极点任意配置所采用的方法为一般方法,其步骤如下: ①判断受控系统是否完全能控; ②由给定的闭环极点要求确定希望的闭环特征多项式的n个系数 ~ i a; ③确定原受控系统的特征多项式系数i a; ④确定系统状态反馈矩阵 ~ ~~ ~ [,,,] 12n f f f F=的诸元素~~1 1i i i f a a - =- -; ⑤确定原受控系统化为能控标准形的变换阵的逆1 P-, ⑥确定受控系统完成闭环极点配置任务的状态反馈阵 ~ 1 F F P-=。 四、参考文献 [1]黄家英.《自动控制原理》.高等教育出版社,2010.5 [2]唐向红,郑雪峰.《MATLAB及在电子信息类》.电子工业出版社,2009.6 [3]吴大正,高西全.《MATLAB新编教程》.机械工业出版社,2008.4 五、附录 function varargout = tufeiqiang(varargin) %TUFEIQIANG M-file for tufeiqiang.fig % TUFEIQIANG, by itself, creates a new TUFEIQIANG or raises the existing % singleton*. % % H = TUFEIQIANG returns the handle to a new TUFEIQIANG or the handle to % the existing singleton*. % % TUFEIQIANG('Property','Value',...) creates a new TUFEIQIANG using

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

相关文档
最新文档