仿生机器人的研究综述

仿生机器人的研究综述
仿生机器人的研究综述

仿生机器人的研究综述

华明亚

(上海大学机电工程与自动化学院,上海200072)

摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。

关键词:仿生机器人;机器人运动;发展趋势;

Research review on bionic robot

Hua Mingya

(School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend.

Key words: Bionic robot; robot movement; development trend;

1 机器人的研究现状

1.1 机器人国外研究现状

由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。

自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

1986年美国Utah 大学工程设计中心研制成功了著名的UTAH/MIT 灵巧手,该手有四指,拇指两关节,其余三指各有三关节,手指关节绳索驱动并设有张力传感器.1990年由贝尔实验室完成了灵巧手的软硬件控制系统,并模拟人手拿、夹、抓、握物体多种动作进行了实验。美国CED, Sarcos 研究公司,贝尔实验室和能源部等联合开发了具有手的仿人臂,并推出了新型灵巧遥控操作系统DTS.其中的灵巧臂(DA)是液式10自由度手臂(包括三自由度的手).。1995年Bologna 大学在PUMA 机器人基础上设计研制成有三指灵巧手的仿人臂系统。

1999年日本研制的宠物狗AIBOERS-110具有18个关节,每个关节由伺服电机驱动以保持柔性运动.CWRU 的仿生机器人实验室研究了基于蟋蟀运动机能的机器人,其共有六条腿,后两条腿较长,有两个关节.各腿的运动通过压缩空气来驱动,它可以在一定的范围内行走和跳跃,能够适应粗糙地带和障碍。

目前国外机器人正朝着智能化,高性能,微型化发展,并且一直走在科技的前沿,引领者机器人的发展。

1.2 机器人国内研究现状

国内一些科研院所,如北航、北科大、国防科大、东南大学、沈阳自动化所和哈工大等进行了仿生机器人的研究.北航机器人研究所在国家X63 "智能机器人主题支持下,研制出了能实现简单抓持和操作作业的3指9自由度灵巧手.沈阳自动化所研制开发的6000m 水下自治机器人达到世界先进水平.哈工大机器人研究所研制了高灵活性的仿人手臂及拟人双足步行机器人.其仿人手臂具有工作空间大、关节无奇异姿态、结构紧凑等特点.通过软件控制可实现避障、回避关节极限和优化动力学性能等.双足步行机器人为关节式结构,具有12个自由度,可以完成平地前进、后退、侧行、转向和上下阶梯等步行功能。

虽然在仿生机器人的研究中,美国和日本走在

前列,此外加拿大、英国、瑞典、挪威、澳大利亚等

国也都在这方面的技术研究中非常突出,但是我国的

机器人技术经过一番奋勇直追,也逐渐拉近了和发达

国家的水平。国内,哈尔滨工程大学机电工程学院的

研究人员研制了一种两栖仿生机器蟹]1[,如图1所示。

实验证明:仿生蟹能够按照双四足步态在平坦的地而上实现前进、后

退、横行、左右转弯等动作,横行时最大运动速度约0. 2 m/s ,前后行走时最大为0. 1 m/s ,并可以跨越高30 mm

的障碍。在水中运动时,需将机器蟹整体放

入根据其外形定制的柔性皮套内,即采用整体包裹的防水方式。

2 机器人的研究内容

仿生机器人可以分为地面仿生机器人、水下仿生机器人以及空中仿生机器人。

2.1 地面仿生机器人

地面仿生机器人有着广泛的应用,比如在考古,探索未知天体,恶劣环境作业等方面的应用有着不可或缺的地位,因此研究它们对于科研,医疗还有生活有着重要的意义。下面简单介绍两种地面机器人。

仿生六足机器人在战场侦察、定点清除、危险环境下搜救以及狭小空间作业检测等领域中,爬行机器人发挥着关键作用。它容易实现稳定性爬行,受到广大研究者的青睐。六足机器人常见的结构有矩形六足机器人和六边形六足机器人。Chu 和]2[Pang 对轴对称本体六腿机器人和圆周对称本体六腿机器人进行比较,圆周对称六腿机器人从转向性能和稳定裕度等方面都有更好的性能。北京航空航天大学丁希仑课题组]43[ 主要针对圆周对称分布的六腿步

行机器人步态及稳定性进行分析,其只能在平面内爬行,且控制方法考虑欠缺。哈工大]5[设

计出一款可以在崎岖地形中行走的六足步行机器人,该机器人采用ARM 与FPGA 多层次控制结构,具有负载能力,通过仿真实验验证了其可行性。

设计了一种结构简单,可实现在壁面上全方位运动的六足爬壁机器人(图2),机器人净重141g 。机器人整体结

构采用圆周对称结构设

计,机器人主要由上、

下机体两部分组成。

为了简化机器

人的结构,我们仿照尺

镬的运动方式,上、下

机体之间通过曲柄滑块

结构连接,由一个电机

驱动曲柄往复运动,实现上下机体之间线性相对运动,从而机器人可以前进后退运动;同时上、下机体之间具有一个转动自由度,可实现灵活的转向运动,这是机器人实现在壁面上的全方位运。

美国宇航局(NASA)喷气推进实验

室2002年12月研制成功的机器蜘蛛

Spider-pot ,如图3所示,装有一对可

以用来探测障碍的天线,拥有异常灵活

的腿,能跨越障碍,攀登岩石,探访靠

轮子滚动前进的机器人无法抵达的区

域。凭借娇小的身材,该机器蜘蛛非常

适合勘探彗星、小行星等小型天体。在

国际空间站上可以充当维护员,及时发现空气

泄漏等故障]6[。

2.2 空中仿生机器人

机械苍蝇可作为救援机器人或间谍飞行器。机器苍蝇的体重只有六十毫克,翼展也仅仅有三厘米,它是典型的仿生学产品,其飞行运动原理和真的苍蝇非常相似。美国加州大学伯克利分校研制出机器苍蝇,如图4所示,目的是利用仿生原理获得苍蝇的杰出的飞行性能。机器苍蝇有普通苍蝇大小,有4只翅膀,只有1个玻璃眼睛,质量约43 mg ,直径5一10 mm ,与真苍蝇差不多,身体用像纸一样薄的不锈钢制成,翅膀用聚酷树脂做成。由太阳能电池 驱动,1个微型压电石英驱动器以180次/s 的频率扇动它的4只小翅膀。

由于体型小,苍蝇周围气流的粘性比鸟类或者机翼固定的飞机更大。对昆虫来说飞行就像是踩水一样。苍蝇翅膀运动产生的空气动力可以在千分之一秒内改变激烈程度。相反,传统的机翼却受制于平稳的气体流动。正是因为这个差异,预测飞机性能的分析工具对于动态飞行昆虫效果甚微,这也使得研制机械苍蝇的工作愈发的困难重重。研究工作者依次解决了机器苍蝇设计中扭曲和拍打,材料,控制和低功耗等难题,最终研制出应用于实际的机器苍蝇。

昆虫机(Entomopter)(图5)是由美国乔治亚理工研究院、英国剑桥大学和ETS 实验室合作研制的类似飞峨的机器人]7[,质量50 g ,能够装载0. 1 N 有效载荷。动力装置是一种基于往复式化学肌肉( Reeiproeating Chemieal Musele } RCM)的可再生装置,通过直接的非燃烧式反应把化学能变为动能。机冀的扑动是自主的(自然而然或非受控的)和匀称的(恒频和等辐的),上下挥动都产生升力,可以使昆虫机悬停飞行。

2.3 水下仿生机器人

随着无人地而战车、无人飞机和无人舰艇等逐渐在战场上显示出越来越高的作战效能,无人化作战平台将在未来现代化战争中发挥重要的作用。无人潜航器(Unmanned Underwater Vehicles,UUV)是无人平台的一个重要发展方向。美国战略与预算评估中心的高级分析家罗伯特·沃克认为,未来美军对制海权的掌握,将是通过无人水下潜航器,而非传统认为的静音潜艇。可见无人潜航器在未来海战中的重大意义越来越得到军事专家的认可。加快发展无人潜航器,占据战略制高点,对于取得未来战争局部优势至关重要。

UUV 是一种能下潜的无人自主航行系统,由载体结构、控制系统、导航系统、能源系统和推进系统等系统和设备组成]8[。 国外比较有代表性的水下机器人当属美国的伍兹霍尔海洋研究所历时9年设计研制的深海无人潜器Nereus ,长约4m ,宽约 2.5m,空气中重约

2.812345678吨。其最大潜深为11000m ,航速3节,续航时间为20小时。它具有一种混合式操控系统,集两种操作模式于一身,既可以自主地进行海洋探测任务,也可以通过遥控来完成工作。该潜水器于2009年5月31日下潜至西太平洋的马里亚纳海沟,潜深达到了10902m 。如图6所示:

我国的水下机器人的研究工作在历史上发展较慢,二十世纪六十年代中期对水下机器人进行了探索性研究,70年代研制了拖曳式潜水器。从20世纪70年代末到80年代初,随着工业机器人技术的发展,以及海上救助打捞和海洋石油开采的需要,我国也开始了水下机器人的研制与应用工作。上海交通大学和中国科学院联合研制了我国第一艘无人遥控潜水器“HR-O 1”号。中科院沈阳自动化所等单位研制了“CR-O1”和“CR-02”型潜深6000m 、航程小于50公里的无人无缆水下机器人。哈尔滨工程大学水下机器人国防科技重点实验室研制的多种自主式智能水下机器人系列等.如“仿生”系列(图7) ,“微龙”系列(图11)水下机 器人。其中“仿生一I ”总长2.4m ,最大直径0.62m ,潜深10m ,负载能力60kg ,仿金枪鱼推进,配有月牙形尾鳍和一对联动胸鳍。“微龙一I ”总长0.95m ,排水量76kg 。躯体为扁圆截而,长方形外壳,非水密部分为玻璃钢材质,内置双圆柱铝合金水密耐压壳体。躯体的长宽比为2:1

,采用可充电铿离子电池为能源,安装有左右布置的两个主推进器、可调攻角水

平舵和垂直稳定翼,组成航行和操纵执行系统,配备的传感器有水下TV、探测声纳、超短基线水声定位系统、磁罗经、深度计等。

3 机器人的发展趋势

3.1 向智能型发展

增加水下机器人行为的智能水平一直是各国科学家的努力目标。但是由于目前的人工智能技术不能满足水下机器人智能增长的需要,因此需要将人的智力引入到水下机器人中来,这就是监控型水下机器人的思想。不完全依赖于机器的智能,更多地依赖传感器和人的智能,是今后的一个重要发展方向,并且把这种机器人称为基于传感器的先进水下机器人。发展多机器人协同控制技术,也是增加UUV智能的重要方面。

3.2 仿生机器人的微型化

仿生微型机器人可用于小型管道的检测作业,可进入人体肠道进行检查和实施治疗而不伤害人体,也可以进入狭小的复杂环境进行作业。因此,机器人的小型化和微型化是一个发展趋势。仿生机器人微型化的关键是实现机电系统的微型化,将驱动器、传动装置、传感器、控制器、电源等集成到一块硅片上,构成微机电系统,才能实现机器人整体结构的微型化。

3.3 仿生机器人的相似性和多变性

在军事侦察和间谍任务中,如果仿生机器人的外形与所模仿的生物外形完全一致,将能更隐蔽地、更安全地完成任务。因此,仿生机器人的外形与所模仿的生物的相似性,是仿生机器人研究的热点之一。日本研制的变形机器人包括若干小机器人,小机器人通过红外传感器和照相机识别周围的障碍物,然后相互协调,按照不同需要组合成狗、蜘蛛和蛇等7种形态,可以根据环境变化而改变自己的形状。机器人的多变性使其能够进入各种人类难以接近的灾害现场实施调查,还有望应用于航天等领域。

4 展望

随着科技的发展,机器人的应用越来越广泛。同时,随着机器人作业环境的复杂化,要解决机器人而临的问题,必须向自然界学习,从自然界为人类提供的丰富多彩的实例中寻求解决问题的途径,在对自然界生物的学习、模仿、复制和再造的过程中,发现和发展相关的理论和技术方法,使机器人在功能和技术层次上不断提高。仿生机器人作为机器人家族中的重要成员,由于其高度灵活性和柔性、高度的易复制性以及在军事、娱乐和服务等方而的重要性,己经成为21世纪机器人研究的热点,必将出现更多的种类,也将得到更深入的应用。致谢:感谢在这次工作中给予我支持和鼓励的所有人。

参考文献:

[1] 王立权,孙磊,陈东良,等仿生机器蟹样机研究[J]哈尔滨工程大学学报,2010,26 (5) :591一595

[2] Chu S K K, Pang G K H. Comparison between different model of hexapod robot in fault-tolerant gait [J]. IEEE Transactions on Systems, Man and Cybernetic,Part A,2002,32(6):752 -756

[3] 丁希仑,王志英,Roveua A六边形对称分布六腿机器人的典型步态及其运动性能分析[J]机器人,2010,32 (6) :759-765

Ding X L,Wang Z Y, Rovetta A. Typical gaits and motion analysis of a hexagonal symmetrical hexapod robot [J]Robot,2010,32(6):759 765 (in Chinese)

[4] 徐坤,丁希仑,李可佳圆周对称分布六腿机器人三种典型行走步态步长及稳定性分析[J]机器人,2012 , 34 (2) :231 241

Xu K, Ding X L,Li K J. Stride size and stability analysis of a radially symmetrical hexapod robot in three typical gaits [J]. Robot 2012 34 (2):231一241(inChinese)

[5] 王倩,陈甫,减希品,等新型六足机器人机构与控制系统设计[J]机械设训一与制造,2008,3(3):148 150 Wang Q ,Chen P ,Zang X Z ,et al. Design of mechanism and control system of a new hexapod robot[J]Machinery Design and Manufac;ture,2008,3 (3):148-150(in Chinese)

[6] P. Agostinetti, N. Pilan, G. Serianni, V. Antoni Consorzio RFX. COMPENSA TION OF BEAMLET DEFLECTION BY MECHANICAL OFFSET OF THE GRIDS APERTURES IN THE SPIDER ION SOURCE;[M] .IEEE IEEE Transactions on Systems; Publishers , 2011

[7] 许宏岩,付宜利,王树国,等仿生机器人的研究[J] 机器人,2009 31 (3):283一288

[8] 陈强,张林根.美国军用UUV现状及发展趋势分析[J].舰船科学技术,2010,32(7):129-134.

[9] MENCIASSI A, GORINI S, PERNORIO G,Actuated Artificial Earthworm[C]//IEEE International Conference on Robots and Automation, New Orleans,USA,2004

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

仿生机器人的研究综述

仿生机器人的研究综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。 关键词:仿生机器人;机器人运动;发展趋势; Research review on bionic robot Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend. Key words: Bionic robot; robot movement; development trend; 1 机器人的研究现状 1.1 机器人国外研究现状 由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。 自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望 摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。 一、导言 代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。 基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。 现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

仿生机器人的研究现状及其发展方向

学号1210111188 论文题目仿生机器人的研究进展及发展趋势学生姓名颛孙鹏 院别机械工程学院 专业班级12机自(3)班 指导教师周妍

仿生机器人的研究进展及其发展趋势 摘要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注。主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望。 关键词:仿生机器人;研究现状;发展方向 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实。随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员。 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人。仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动。 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑。以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压。由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展。鱼类在水下的行进速度很快,金枪鱼速度可达105km/h,而人类最快的潜艇速度只有84km/h。所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象。仿鱼推进器效率可达到70%~90%,与水的相对速度比螺旋桨推进器小得多,有效地解决了噪音问题。美国麻省理工学院和日本都研制出了仿鱼机器人。在国内,中科院沈阳自动化研究所和北京航空航天大学机器人研究所已研制了机器鱼样机。

浅谈仿生机器人的发展

《学科前沿》论文 浅谈仿生机器人的发展 机器人技术作为一门新兴学科,在工业飞速发展的今天扮演着非常重要的作用,而其发展与机械电子、机电一体化、控制原理等多学科的发展息息相关。仿生机器人作为机器人领域的一大分支,可以说是本世纪一个不可忽视的领域,也将是机器人日后发展的大方向。 仿生学是20世纪60年代出现的一门综合性边缘学科,它由生命科学与工程技术科学相互渗透、相互结合而成。它在精密雷达、水中

声纳、导弹制导等许多应用领域中都功不可没。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、军事侦察攻击、水下地下管道、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展.未来的机器人将在人类不能或难以到达的已知或未知环境里为人类工作。人们要求机器人不仅适应原来结构化的、已知的环境,更要适应未来发展中的非结构化的、未知的环。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。这一应用已经成为机器人研究领域的热点之一,势必推动机器人研究的蓬勃展。 自然界生物的运动行为和某些机能已成为机器人学者进行机器 人设计、实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现。仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人 系统。仿生机器人的类型很多,按其模仿特性分为仿人类肢体和仿非人生物两大类。由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。仿人型步行机器人是目前机器人技术的前沿课题,是具有挑战性的技术难题之一。日本本田公司和大阪大学联合推出的P2和P9型仿人步行机器人代表了当今世界的最高水平。仿非人生物机器人的研究近二十年来一直是一个非常活跃的

仿生机器人的应用及发展

仿生机器人的应用及发展 1、仿生机器人发展概述 首先,模仿某些昆虫而制造出来的机器人并非简单。比如,国外有的科学家观察发现,蚂蚁的大脑很小,视力极差,但它的导航能力高超:当蚂蚁发现食物源后回去召唤同伴时,是把这一食物的映像始终存储在它的大脑里,并利用大脑里的映像与眼前真实的景像相匹配的方法,循原路返回。科学家认为,模仿蚂蚁这一功能,可使机器人在陌生的环境中具有高超的探路能力。 其次,不论何时,对仿生机械(器)的研究,都是多方面的,也就是既要发展模仿人的机器人,又要发展模仿其他生物的机械(器)。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。 在机器人向智能机器人发展的时程中,就有人提出“反对机器人必须先会思考才能做事”的观点,并认为,用许多简单的机器人也可以完成复杂的任务。20世纪90年代初,美国麻省理工学院的教授布鲁克斯在学生的帮助下,制造出一批蚊型机器人,取名昆虫机器人,这些小东西的习惯和蟑螂十分相近。它们不会思考,只能按照人编制的程序动作。 几年前,科技工作者为圣地亚哥市动物园制造电子机器鸟,它能模仿母兀鹰,准时给小兀鹰喂食;日本和俄罗斯制造了一种电子机器蟹,能进行深海控测,采集岩样,捕捉海底生物,进行海下电焊等作业。美国研制出一条名叫查理的机器金枪鱼,长1.32米,由2843个零件组成。通过摆动躯体和尾巴,能像真的鱼一样游动,速度为7.2千米/小时。可以利用它在海下连续工作数个月,由它测绘海洋地图和检测水下污染,也可以用它来拍摄生物,因为它模仿金枪鱼惟妙惟肖。有的科学家正在设计金枪鱼潜艇,其实就是金枪鱼机器人,行驶速度可达20节,是名副其实的水下游动机器。它的灵活性远远高于现有的潜艇,几乎可以达到水下任何区域,由人遥控,它可轻而易举地进入海底深处的海沟和洞穴,悄悄地溜进敌方的港口,进行侦察而不被发觉。作为军用侦察和科学探索工具,其发展和应用的前景十分广阔。 同样,研究制造昆虫机器人,其前景也是非常美好的。例如,有人研制一种有弹性腿的机器昆虫,大小只有一张信用卡的1/3左右,可以像蟋蟀一样轻松地跳过障碍,一小时几乎可前进37米。这种机器昆虫最特殊的地方是突破了“牵动关节必须加发动机”的观念。发明家用的新方法是:由铅、锆、钛等金属条构成一个双压电晶片调节器。当充电时,调节器弯曲,充完电了它又弹回原状,反复充电,它就成了振动条。在振动条上装有昆虫肢体,振动条振动就成了机器昆虫

仿生六足机器人研究报告学士学位论文

项目研究报告 ——小型仿生六足探测机器人 一、课题背景: 仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。 不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。 二、项目创新点: 作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。 简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。 三、研究内容: 1.仿生学原理分析: 仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

仿生机器人的机构设计及运动仿真

前言 随着仿生学与机器人技术的飞速发展,仿生机器人已日益成为机器人领域的研究热点。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用[3]。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、海洋探索、水下洞穴探索、军事侦察、军事攻击、军事防御、水下地下管道探测与维修、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展,未来的机器人将在人类不能或难以到达的已知或未知环境里工作。人们要求机器人不仅要适应原来结构化的、己知的环境,更要适应未来发展中的非结构化的、未知的环境。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。 本文结合当前仿生机器人的研究现状与未来发展方向,以慧鱼机器人模型为平台制作对机械本体结构、传动系统,控制系统的软件编程进行了系统设计及介绍。现对研究和实验当中取得的主要成果总结如下: 1.通过对甲虫六条腿的结构与功能的研究,设计了六足仿生机器人的足的结构,实现了机器人的结构仿生。 2.在对仿生模型的结构仿生与运动仿生分析的基础上,确定了采用慧鱼ROBO接口板作为控制器。 3.利用慧鱼ROBO接口板实现了电机和微动的控制,从而对机器人进行运动控制。 4.根据三角步态原理,设计了前进、后退以及转弯等不同运动状态。并对机器人进行了运动分析,得出了一般的结论。 5.以慧鱼公司开发的编程软件:ROBO PRO,对机器人进行软件编程,使它按规定的路线运动,实现对其运动的控制。 本次毕业设计的目的和意义是综合运用大学四年里所学到的基础理论知识达到设计目的并提高自己分析问题和解决问题的能力,提高机械控制系统设计、操纵机构的设计能力及运用PRO/E设计软件的建模能力,并增强自身的动手能力与计算机编程能力。 本课题的研究前景十分广阔。例如,可以通过对海蟹的研究,进行仿生设计,制造出海陆两用的仿生机器人,建立基于环境适应行为的智能运动控制策略。在此基础上,为未来智能化近海两栖作战新概念武器结构设计与分析提供新方法。 对于跟踪国际先进军事技术,建立新型作战武器有重要意义。同时,开展对海的

仿生机器人关键技术

仿生机器人关键技术 “仿生机器人”是指模仿生物、从事生物特点工作的机器人。,涉及到机械设计、计算机、传感器、自动控制、人机交互、仿生学等多个学科。因此,机器人领域中需要研究的问题非常多。主要研究问题包括以下五个方面: 1 建模问题 仿生机器人的运动具有高度的灵活性和适应性。其一般都是冗余度或超冗余度机器人,结构复杂,运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此,研究建模问题,实现机构的可控化是研究仿生机器人的关键问题之一。 2 控制优化问题 机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到整体大于组分之和,同时要研究高效优化的控制算法才能使系统具有实时处理能力。 3 信息融合问题 在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器。多传感器的信息融合技术是实现其具有一定智能的关键。信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。 4 机构设计问题 合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。 5 微传感和微驱动问题 微型仿生机器人有些已不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题,如动力源、驱动方式、传感集成控制以及同外界的通讯等。实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技术。同时,在设计时必须考虑到尺寸效应、新材料、新、工艺等问题。

仿生机器人学概论

仿生机器人学概论 ——读Direct control of paralysed muscles by cortical neurons有感 机械设计制造及其自动化XXXX班 Wdl U201XXXXXX

关于侵入式脑-机接口的探索 读Direct control of paralysed muscles by cortical neurons有感Direct control of paralysed muscles by cortical neurons(神经运动弥补 术)于2008年发表于nature。并被评为当年的最佳论文。因为其打破先前的常规研究,省去了对神经电信号的采集、解码、再输出的繁琐过程,直接将脑细胞的电信号通过人造电路传输到运动神经元从而实现对目标肌肉的意识控制。这样便省去了复杂的解码过程,也大大降低了技术难度和设备体积。使通过人工设备恢复神经中枢受损而导致的瘫痪病人恢复运动能力变得更加现实。下面便是我读过这篇文章后的一些感想与受到的启发。 文章指出将控制信号从大脑直接通过人工电路连接到执行器是一个潜在的治疗脊髓损伤所造成的瘫痪的方法。然后,这样的信号可以控制肌肉的电刺激,从而恢复瘫痪肢体的运动。以前独立的实验表明,无论是与真实运动或虚拟运动有关的运动皮质神经元的活动,都已经证实可以被用于控制电脑光标或机器人手臂,并且可以用功能性电刺激来激活瘫痪肌肉。在这里,本文中所述实验表明,可以用运动皮质的神经元细胞的活动来直接控制肌肉的刺激信号,从而恢复目标定向运动的暂时瘫痪的手臂。此外,神经细胞可以控制得同样出色,无论之前与运动的联系如何,神经元都可以很好地控制功能性电刺激,这一发现大大扩展了脑-机接口控制信号源。猴子学会使用这些人造肌肉皮层细胞连接,产生双向手腕扭矩,并同时控制多个神经肌肉对。这种直接转换可以实现由独立电子电路实现从皮层活动到肌肉刺激的连接,创造一个相对自然的神经假肢。这些结果首次证明了直接人工皮质细胞和肌肉之间的连接可以弥补中断生理的途径从而恢复瘫痪肢体运动的意志控制。 脊髓受伤损坏了从大脑到肢体的神经通路,但运动皮质和肢体事实上都是正常的,近年的研究显示,瘫痪多年的患者仍然可以有意识地调节手部的运动皮质。其它的脑-机接口研究都使用复杂的算法来解码与任务相关的大量神经活动,并以此来计算所需的对外部设备的控制参数。作者另辟蹊径,直接连接皮质神经元细胞活动控制病人的瘫痪肢体刺激来重新建立肢体功能。这个实验表明了猴子可以学会使用从任意运动皮质神经元细胞的人工联系对传递到多块肌肉上的刺激分级,从而在瘫痪的手臂上恢复有目的的运动。

仿生机器人概述

仿生机器人概述 一、仿生机器人的定义 简单来说,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。从本质上来讲,所谓“仿生机器人”就是指利用各种机、电、液、光等各种无机元器件和有机功能体相配合所组建起来的在运动机理和行为方式、感知模式和信息处理、控制协调和计算推理、能量代谢和材料结构等多方面具有高级生命形态特征从而可以在未知的非结构化环境下精确地、灵活地、可靠地、高效地完成各种复杂任务的机器人系统.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 二、对仿生机器人的理解 仿生机器人是一个很宏大的概念,字面上讲任何模仿自然界生物的机器都可以称之为仿生机器人。但是根据诸多文献的定义,现在人们倾向于将第四代及之后的机器人称之为仿生机器人,也就是2000年之后产生的机器人。我认为这样界定的根据在于第四代机器人具有了完备的感知能力和面对简单问题时的处理能力,如现在的两足机器人能够根据地形的变化自行调整行走模式,从容的绕开障碍物并且保持重心平衡,而这是以前的机器人所无法实现的。所以我们认为这时的机器人初步具有了人的智力,可以与生物的智能相比拟,是仿生机器人。 三、仿生机器人的产生前提与发展动力 生物在经过了千百万年的进化之后,由于遗传和变异的原因,已经形成了从执行方式、感知方式、控制方式,一直到信息加工处理方式、组织方式等诸多方面的优势和长处.仿生机器人这门学科产生和存在的前提就在于,生物经过了长期的自然选择进化而来,在结构、功能执行、信息处理、环境适应、自主学习等多方面具有高度的合理性、科学性和进步性.而非结构化的、未知的工作环境、复杂的精巧的高难度的工作任务和对于高精确度、高灵活性、高可靠性、高鲁棒性、高智能性的目标需求则是仿生机器人提出和发展的客观动力.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 生物在漫长的进化过程中演变出的无比精巧、合理的结构,是目前人类所有的理论和技术都无法达到的。任何由人类设计的堪称完美的结构,放到自然界的生物面前,都相形见绌。因此,研究现成的最优化、最完美的生物体就成为人类设计机械最廉价、最可靠的范本,由此诞生了仿生学这一专门的学科,而仿生机器人则是机械与仿生学两者结合的最佳产物。这也是仿生机器人产生的前提与发展的动力。 四、仿生机器人的现状

仿生机器人概论

仿生机器鱼技术研究综述 摘要:本文首先介绍各类型鱼类的游动特点及推动机理,对仿生机器鱼进行了分类,并对国内外仿生机器鱼的研究现状进行了综述.最后总结了仿生机器鱼研究的关键难点技术和未来发展趋势。 关键词:仿生,水下机器人,综述 一、引言 伴随着人类文明的发展,可开采和利用的陆地资源正日益减少和枯竭。海洋面积占地球面积的71%,海洋中蕴藏着丰富的生物资源和矿产资源,人类开发 和利用海洋的脚步随着科技的发展逐渐加快。 水下机器人作为一个水下高技术仪器设备的集成体,在军事、民用、科研等领域体现出广阔的应用前景和巨大的潜在价值。鱼类作为海洋生物中数量最多的脊椎动物,经历了亿万年的自然选择过程,进化出了非凡的水中生存能力,既可以在持久游速下保持低能耗、高效率,也可以在拉力游速或爆发游速下实现高机动性。因此仿生机器鱼的研究成为水下机器人研究的热点。 二、鱼类游动推进机理 对鱼类推进模式的研究是仿生机器鱼研制的基础,国内外学者很早就致力于这方面的研究工作。P.Webb在1984年根据鱼类游动推进所使用的身体部位的不同,对鱼类的游动推进模式提出了详细的分类方案,即鱼类的推进模式可以分为:1)身体、尾鳍推进模式(BCF Model),采用这种模式游动的鱼类是利用躯干部和 尾部肌肉(大侧肌)的交替伸缩,使身体左右扭动屈曲前进即通过身体的波动和尾鳍的摆动产生推进力。 2)中间鳍、对鳍推进模式(MPF Model),这种方式主要依靠胸鳍或腹鳍的摆动 产生推进力。一般鱼类主要以MPF模式为辅助游动模式,如弓鳍鱼科模式(Amiiform)的鱼类、电鳗科模式(Gynmotiform)的鱼类;但对于而鳐科模式 (Rajiform) 、刺鲀科模式(Diodontiform)的鱼类MPF则为主要的推进方式。 两种仿生推进模式(BCF方式和MPF方式)分别具有不同的特点: 1)BCF方式的游动效率、速度和快速起动性能较高,但机动性能一般,适合长 距离、高速度的游动,或者需瞬时加速和转向的场合; 2)MPF方式的推进效率和游速较低,但具有良好的灵活机动性和精确定位能力, 可应用于在空间狭窄和结构复杂的场所实施各种水下复杂作业。 三、仿生机器鱼的分类

仿生鱼机器人设计说明书

仿生鱼机器人设计说明书

目录 第一章绪论…………………………………………………………………………………………………目的及意义…………………………………………………………………………………………… 研究现状………………………………………………….…………………………………………… 本文的主要工作…………………………………………………………………………………… 第二章概述………………………………………………………………………………………………… 整体构思…………………………………………………………………………………………..… 仿生依据……………………………………………………………………………………………… 第三章机械结构设计……………………………………………………………………………………机械设计思路及建模…………………………………………………………………………… 创新点…………………………………………………………………………………………………… 零件明细……………………………………………………………………………………………… 第四章仿真分析…………………………………………………………………………………………第五章电路设计…………………………………………………………………………………………第六章控制系统…………………………………………………………………………………………第七章总结…………………………………………………………………………………………………优势及创新点……………………………………………………………………………………… 主要关键技术……………………………………………………………………………………… 应用前景与趋势………………………………………………………………………………… 不足与改进…………………………………………………………………………………….……

相关文档
最新文档