土壤中含盐量的测定

土壤中含盐量的测定
土壤中含盐量的测定

土壤中含盐量的测定

This model paper was revised by the Standardization Office on December 10, 2020

实验八土壤中含盐量的测定

一、实验目的

1.练习浸取、过滤、蒸干、恒重等基本操作。

2.测定土壤中可溶性盐份的总含量。

二、实验原理

土样按一定的固液比加适量水,经一定时间的振荡或搅拌,过滤,吸取一定量的滤液,经蒸干后,称得的重量即为烘干残渣总量(此数值一般接近或略高于盐份总量)。将此烘干残渣总量再用过氧化氢去除有机质后干燥,称其重量即得可溶盐份重量。

三、实验仪器

100mL烧杯、分析天平、烘箱、水浴锅(或沙浴盘)、电炉、250mL烧杯、漏斗、定量滤纸。

四、实验步骤

1.称取风干土壤20g,置于烧杯中,加入100mL蒸馏水,搅拌3min后立即过滤。

2.吸取50mL滤液,?放入已干燥称重的100mL小烧杯中,于水浴(或砂浴)蒸干。用15%过氧化氢溶液处理,水浴加热,去除有机物。

3.用滤纸片擦干小烧杯外部,?放入100~105℃烘箱中烘4小时,然后移至干燥器中冷却(一般冷却30min即可)?至室温,用分析天平称量。

4.称好后的烘干残渣继续放入烘箱中烘2小时后再称,?直至恒重(即两次重量相差小于0.0003g)。

注意事项:

加过氧化氢去除有机物时,其用量只要达到使残渣湿润即可。

五、结果计算

土中残渣总量(%)=10050100

(??-+样杯渣杯)W W W %

土中可溶盐量(%)=10050100??-+样

杯)盐杯(W W W % 数据列表表示如下:

六、讨论

土壤盐分计对土壤中盐分含量的测定方法

土壤盐分计对土壤中盐分含量的测定方法

土壤盐分计对土壤中盐分含量的测定方法 土壤中可溶性盐分是用一定的水土比例和在一定时间内浸提出来的土壤中所含有的水溶性盐分。分析土壤中可溶性盐分的阴、阳离子组成,和由此确定的盐分类型和含量,可以判断土壤的盐渍状况和盐分动态,因为土壤所含的可溶性盐分达一定数量后,会直接影响作物的发芽和正常生长。当然,盐分对作物生长的影响,主要决定于土壤可溶性盐分的含量及其组成,和不同作物的耐盐程度。就盐分组成而言:苏打盐分(碳酸钠、碳酸氢钠)对作物的危害最大,氯化钠次之,硫酸钠相对较轻。当土壤中可溶性镁增高时,也能毒害作物。因此,定期测定土壤中可溶性盐分总量及其盐分组成,可以了解土壤的盐渍程度和季节性盐分动态,据此拟订改良利用盐碱土的措施。 通常,用水浸提液的烘干残渣量来表示土壤中水溶性物质的总量,烘干残渣量不仅包括矿质盐分量,尚有可溶性有机质以及少量硅、铝等氧化物。盐分总量通常是盐分中阴、阳离子的总和,而烘干残渣量一般都高于盐分总量,因而应扣除非盐分数量。此外,所测得的可溶性盐分总量,尚可验证系统分析中各种阴阳离子分量的分析结果。 可溶性盐分总量的测定方法很多,有重量法、电导法、比重计法,还有阴阳离子总合计算法等,由于比重计法比较粗放,而阴阳离子总和计算法又比较费时,所以在这里只重点介绍通用的重量法。 托普云农土壤盐分计/土壤盐分测量仪主要用于农业生产过程中各种土壤,水培养基质的盐分含量测量。该土壤盐分计可直接插入土壤速测并自动记录,大屏幕中文液晶显示数据,可将数据导入计算机。 一、托普云农土壤盐分计技术参数 土壤温度技术参数:

温度单位:℃ 测试范围:-40℃~100℃ 精度:±0.5℃ 传感器长度:≥25cm 分辨率:0.1℃ 土壤盐分技术参数: 固态传感器可直接埋入土壤中 测量范围:0~19.99ms/cm 测量精度:±2% 分辨率:0.01ms/cm 温度补偿:0~50℃ 土壤水份技术参数: 水份单位:%(m3/m3) 响应时间:≤2秒 土壤水份分辨率:0.1% 标准电缆长度:1.5m(可按客户需要定做,最长可至1000m) 可选件:测量地下深层土壤水分时建议使用土钻 含水率测试范围:0~100% 相对百分误差:≤3% 二、托普云农土壤盐分计手持机技术参数 记录容量:设备内部Flash可存储近3万条数据,标配4G内存卡可无限存储,亦可与Flash中数据同时存储。

(完整版)土壤总盐量测定

土壤全盐量的测定中华人民共和国林业行业标准L Y / T 1 2 5 1 -1 9 9 土壤浸出液的制备 方法要点 土壤水溶性盐可按一定的土水比例(通常采用1:5 ), 用平衡法浸出,然后侧定浸出液中的全盐量以及CO32-, HCO3-,Cl-, SO42-, C a2+, Mg2+,N a+,K+等8种主要离子的含量(可计算出离子总量) 。测定结果均以千克土所含厘摩尔数( c mo l / k g ) 表示。 主要仪器 真空泵 往复式电动振荡机 离心机(4000r/min) 锥形瓶 布氏漏斗或素瓷滤烛 抽滤瓶 锥形瓶。 测定步骤 用台秤准确称取通过2mm筛孔的风干土样50.00g,放入干燥的500m L锥形瓶中。用量筒准确加入无二氧化碳的纯水250mL,加塞,振荡3min, 按土壤悬浊液是否易滤清的情况,选用下列方法之一过滤,以获得清亮的浸出液,滤液用干燥锥形瓶承接。全部滤完后,将滤液充分摇匀,塞好,供测定用。 容易滤清的土壤悬浊液:用滤纸在7cm直径漏斗上过滤,或用布氏漏斗抽滤,滤斗上用表面皿盖好,以减少蒸发。最初的滤液常呈浑浊状,必须重复过滤至清亮为止。 较难滤清的土壤悬浊液:用皱折的双层紧密滤纸在10cm直径漏斗上反复过滤。碱化的土壤和全盐量很低的粘重土壤悬浊液,可用素瓷滤烛抽滤。如不用抽滤,也可用离心分离,分离出的溶液也必须清晰透明。 注意事项 ①浸出液的土水比例和浸提时间: 用水浸提土壤中易溶盐时,应力求将易溶盐完全溶解出来,同时又须尽可能使难溶盐和中溶盐(碳酸钙、硫酸钙等)不溶解或少溶解,并避免溶出的离子与土壤胶粒吸附的离子发生交换反应。因此应选择适当的土水比例和振荡时间。 各种盐类的溶解度不同,有的相差悬殊,因而有可能利用控制水土比例的方法将易溶盐与中溶盐及难溶盐分离开。采用加水量小的土水比例,较接近于田间实际情况,同时难溶盐和中溶盐被浸出的量也较少。因此有人采用1:2.5,或1:1的土水比例,或采用饱和泥浆浸出液。加水里小的土水比例,给操作带来的困难很大,特别难适用于粘重土壤。于是有人采用加水t大的土水比例. 如1:5 ,1:10或1:20等。这样又导致易溶盐总量偏高的结果(特别是含硫酸钙和碳酸钙较多的土壤更为显著)。 在同一土水比例下,浸提的时间愈长,中溶盐和难溶盐被浸出的可能性愈大,土粒与水溶液之间的离子交换反应亦愈完全。由此产生的误差也愈大。前人的研究证明,对于土壤中易溶盐的土壤,一般有2-3min便足够了。 因此,制备土壤水浸出液时的土水比例和浸提时间必须统一规定,才能使分析结果可以相互比较。本标准现采用国内较通用的1:5土水比例和振荡3 min时间的规定。 ②盐分分析的土样,可以用湿土样(同时测定土壤水分换算系数K1),也可以通过2mm筛孔的风干土样。 ③制备浸出液所用的蒸馏水或去离子水。放久后会吸收空气中二氧化碳,用这种水浸提土壤时,将会增加碳酸钙的溶解度故须加热煮沸,逐尽二氧化碳。冷却后立即使用。此外,蒸馏

实验三 土壤pH和全盐的测定

土壤酸度包括潜性酸、土壤胶体上吸附的H + 和活性酸溶液中的H + ,它们处于动态平衡中。活性酸常以pH 表示( 土壤pH 值是土壤溶液中氢离子活度的负对数) 是一种强度因素。土壤pH 值对土壤理化性质、土壤肥力以及植物生长都起着重要作用,故又称为实际酸度或有效酸度。本实验要求掌握土壤pH 测定的一般方法。 3.1.1 实验方法、原理土壤pH 的测定方法可分为比色法,电位法。其中比色法有方法简便,不需贵重仪器,受测量条件限制较少,便于野外调查使用等优点,但准确度低。电位法测定具有准确,快速,方便等优点。但需精密的测量仪器,测量条件限制较多。本实验采用电位法测定。测定原理是用pH 计测定土壤悬浊液pH 时,由于玻璃电极内外溶液H+ 活度不同而产生电位差,E=0.059.1oga1/ a2 , a1= 玻璃电极内溶液的H+ 活度( 固定不变) ;a2= 玻璃电极外溶液的H+ 活度( 即待测液 H+ 强度) ,电位计上读数换算成pH 值后在刻度盘上直接显示读出pH 值。 3.1.2 仪器试剂pH 计、50 或100ml 烧杯、移液枪或移液管、标准缓冲溶液(pH7 和pH4 )、去离子水、0.01M CaCl 2 溶液、1M KCl 溶液 3.1.3 步骤称取10g 风干土样于50 或100ml 烧杯中。加入50ml 去离子水,混匀。可用玻璃棒搅拌3-5 分钟,但需注意防止污染。静置10 分钟。用pH 计将电极插入悬液中(上层上部),读取读数pH W 。用去离子水冲洗电极,接着测下一个样品(没有必要将电极擦干)。 3.1.4 注意事项液土比例:液土比例影响pH 值测定结果,测定时液土比应加以固定。为使所测pH 更接近田间的实际情况,以液土比1 :1 或 2.5 : 1 较好。本实验采用液土比5 :1 。提取与平衡时间:对不同土壤搅拌与放置平衡时间要求有所不同。界面电位影响:甘汞电极与悬浊液接触会产生液接电位,影响pH 测定。玻璃电极在悬液中的位置不同也会产生结果差异。固常规测定中电极位置有所要求。 3.2. 土壤水溶性盐的测定 土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的障碍因素。上壤中水溶性盐的分析,对了解盐分动态,对作物生长的影响以及拟订改良措施具有十分重要的意义。土壤水溶性盐的分析一般包括全盐量测定,阴离子(Cl - 、SO 2- 3 、CO 2- 3 、HCO - 3 、NO - 3 ) 和阳离子(Na + 、K + 、Ca 2+ 、Mg 2+ ) 的测定,并常以离子组成作为盐碱土分类和利用改良的依据。 3.2.1 土壤水溶性盐总量的测定 3.2.1 实验方法、原理土壤水溶性盐的测定分水溶性盐的提取和浸出液盐分的测定两部分。在进行土壤水溶性盐提取时应特别注意水土比例、振荡时间和提取方式,它们对盐分溶出量都有一定影响。目前在我国采用5 :1 浸提法较为普遍。盐分的测定主要采用电导法和烘干法,其中以电导法较简便,快速,烘干法较准确,但操作繁琐费时。本实验采用水土比5 :1 浸提,电导法测定水溶性盐总量。电导法测定原理是土壤水溶性盐是强电解质,其水溶液具有导电作用,在一定浓度范围内,溶液的含盐量与电导率呈正相关,因此通过测定待测液电导率的高低即可测出土壤水溶性盐含量。 3.2.2 仪器试剂250ml 三角瓶,漏斗、电导仪、电导电极。0.01M KCl ,0.02M KCL 标准溶液。 3.2.3 操作步骤土壤水溶性盐的提取,称取过1mm 筛风干土20.00g ,置于250ml 干燥三角瓶中,加入蒸馏水100m1( 水土比5 :1) ,振荡5 分钟,过滤于干燥三角瓶中,需得到清壳滤液。( 此

滴灌对土壤含盐量的影响及合理灌溉的建议

滴灌对土壤含盐量的影响及合理灌溉的建议 摘要:对于干旱半干旱地区,农业灌溉是一件大事,但灌溉制度的建立是一件难事。根据国内部分试验研究表明:节水灌溉只是在一个相对较长的时间内。保持土壤的可重复利用性,但不能从根本上解决土壤盐碱化问题。因此为了不破坏土壤结构,并且在一个合适的时间段内使土壤中盐的总量达到动态平衡,要合理制定灌溉制度,以达到农业的可持续发展。 关键词:滴灌,漫灌,土壤盐分,灌溉制度,动态平衡 0.引言 水是生命之源,任何生物的生长生活都离不开水。水的使用主要分为:农业用水、工业用水、生活用水,而农业用水主要体现在灌溉方面。但地球上的水在时间和空间上的分布有明显的差异。对于有些缺水地区,在农作物生长发育期,天然降水已不能满足作物正常的需水要求,而传统的灌溉方式会降低水资源的利用效率。因此在考虑经济效益的前提下,为满足作物正常的生长需水要求,大力发展滴灌灌溉方式显得尤为重要。 水中含有多种盐,以Na+、K+、Ca2+、Mg2+、C1-、SO42-、HCO3-等为主,植物在生长过程中吸收大量的水和少量的盐,且不同植物吸收的矿质离子不同,植物在不同的生长期吸收的矿质离子也不同。随水进入土壤中的盐,一部分进入地下水系统,一部分滞留在土壤中。

在持续的土面蒸发和植物蒸腾作用下,溶解在潜水中的盐分会源源不断的向上层移动、堆积,最终导致部分地区的土壤盐碱化或次生盐碱化。因此在推行节水灌溉的同时,防治土壤盐碱化才是可持续农业可发展的关键。研究表明旱作物适宜土壤含水量下限与上限的范围一般相当于田间持水量的55%-85%。在满足植物需水量的前提下,灌溉水量小时会使土壤中的盐分增加,甚至会出现局部盐碱化;水量大时对盐碱地有淋洗作用但会增加水量的消耗。因此在节水灌溉时,灌溉水量的多少尤为重要。 1.国内相关研究成果 1)宰松梅、仵峰等研究不同滴灌形式对棉田土壤理化性质的影 响的试验结果表明:土壤盐分的累积与灌溉制度和当地气候条件有关。滴灌条件下,以毛管为中心,在一定范围内的土壤含盐量距毛管距离的增加而增加;地下滴灌土壤EC值变化主要发生在20-50cm的土层。但在靠近毛管处存在一个土壤盐分质量分数较低的区域,该区域正是根系活动的主要区域。而在表层(20cm以上)土壤的含盐量较高, 不利于作物的出苗;膜下灌溉的EC值变化主要发生在20cm以上的土层,表层含盐量较低,但在20-100cm土层,土壤含盐量明显高于地 下滴灌。因此长期使用膜下滴灌应加强土壤盐分的监测。 2)苏里坦等试验研究结果表明:膜下灌溉条件下,随时间的推 移土壤盐分呈现出从深层到地表和膜下到膜间的双向迁移趋势,但灌溉结束后,在蒸发作用下,土壤水分和盐分同时向地表迁移,从而引起膜下土壤脱盐区和达标脱盐区的不断缩小。另外,随着灌水量的增

土壤电导率测定方法(精)

土壤电导率测定方法 土壤电导率是测定土壤水溶性盐的指标, 而土壤水溶性盐是土壤的一个重要属性, 是判定土壤中盐类离子是否限制作物生长的因素。上壤中水溶性盐的分析, 对了解盐分动态, 对作物生长的影响以及拟订改良措施具有十分重要的意义。土壤水溶性盐的分析一般包括全盐量测定, 阴离子 (Cl - 、 SO 2- 3 、 CO 2- 3 、 HCO - 3 、 NO - 3 和阳离子 (Na + 、 K + 、 Ca 2+ 、 Mg 2+ 的测定, 并常以离子组成作为盐碱土分类和利用改良的依据。下面把测定方法告诉你, 你应该更能理解土壤电导率与土壤性质的关系了。 测定方法为: 1 实验方法、原理 土壤水溶性盐的测定分水溶性盐的提取和浸出液盐分的测定两部分。在进行土壤水溶性盐提取时应特别注意水土比例、振荡时间和提取方式, 它们对盐分溶出量都有一定影响。目前在我国采用 5 :1 浸提法较为普遍。盐分的测定主要采用电导法和烘干法,其中以电导法较简便,快速,烘干法较准确,但操作繁琐费时。本实验采用水土比 5 :1 浸提,电导法测定水溶性盐总量。电导法测定原理是土壤水溶性盐是强电解质, 其水溶液具有导电作用, 在一定浓度范围内, 溶液的含盐量与电导率呈正相关, 因此通过测定待测液电导率的高低即可测出土壤水溶性盐含量。 2 仪器试剂 250ml 三角瓶,漏斗、电导仪、电导电极。 0.01M KCl , 0.02M KCL 标准溶液。 3 操作步骤 土壤水溶性盐的提取, 称取过 1mm 筛风干土 20.00g , 置于 250ml 干燥三角瓶中,加入蒸馏水 100m1( 水土比 5 :1 ,振荡 5 分钟,过滤于干燥三角瓶中,需得到清壳滤

土壤水溶性盐含量测定方案

土壤水溶性盐含量测定方案 一、实验原理 利用质量差法计算土壤中水溶性盐的含量。将蒸发皿放在105-110℃烘箱中烘12h,称重M1,然后吸取一定量的土壤浸提液放在瓷蒸发皿中,在水浴锅上蒸干,用过氧化氢H2O2氧化有机质,然后在105-110℃烘箱中烘干,称重,即得烘干残渣质量M2,根据前后质量差算出水溶性盐的质量。 二、实验仪器和试剂 电子天平,水浴锅,烘箱,漏斗,150ml锥形瓶,筛孔1mm的标准筛,10ml移液管,吸耳球,玻璃棒,瓷蒸发皿,滤纸,过氧化氢,(振荡机) 三、实验步骤 (1)土样制备。将采回的土样,放在塑料布上,摊成薄薄的一层,置于室内通风阴干;在土半干时,需将大土块捏碎,以免完全干后结成硬块,难以磨细;土样风干后去除杂质(植物残体),磨细后过筛。 (2)制备5:1水土浸出液。称取过1mm筛孔相当于20g烘干土的风干土,放入150ml 的锥形瓶中,加100ml蒸馏水,用玻璃棒混匀,手摇荡(振荡机震荡)3min后过滤,将清亮的滤液收集备用。 (3)将烘干后的蒸发皿,分别称其质量M1。 (4)吸取20ml的土壤浸出液,放在100ml已知烘干质量的字蒸发皿中,在水浴上蒸干;(5)待蒸发皿出现残渣,不必取下蒸发皿,用滴管沿皿周围加过氧化氢H2O2,使残渣湿润即可注1,然后继续蒸干,反复用H2O2处理,使有机质完全氧化为止,此时干残渣全为白色。

(6)取完全氧化后且蒸干的残渣和蒸发皿,放在在105-110℃烘箱中烘干1-2h,取出冷却后,用分析天平分别称其质量M2。 (7)将蒸发皿和残渣再次烘干0.5h,取出放在干燥器中冷却,称重,前后两次质量差不得大于1mg注2。 四、结果计算 (1)土壤水溶盐总量(g/Kg)=(M2-M1)/M*1000 其中式中:M----烘干土质量 (2)土壤含盐量(%)=(M2-M1)/M*100 注1:避免过多的过氧化氢氧化分解时泡沫过多,使盐分溅失,因此必须少量多次地反复处理,直至残渣完全变白为止。但当溶液中有铁存在而出现黄色氧化铁时,不可无以为是有机质的颜色。 注2:由于盐分(特别是镁盐)在空气中易吸水,故在相同的时间和条件下冷却称重。

土壤水溶性盐的测定

土壤水溶性盐的测定 土壤水溶性盐的提取 1 方法提要 用除去二氧化碳的水浸提土壤中水溶性盐,水土比为5:1。将水土混合液过滤,滤液作为待测液。 2 适用范围 本方法适用于各类土壤水溶性盐的提取。 3 主要仪器设备 3.1往复式或旋转式振荡器;满足180r/min±20r/min的振荡频率或达到相同效果; 3.2真空泵(抽气用); 3.3巴氏滤管或布氏漏斗(平板瓷漏斗); 3.4广口瓶,500mL; 3.5具塞三角瓶,500mL。 4 试剂 4.1去除二氧化碳的水:将蒸馏水 煮沸15min,冷却后立即使用。 5 分析步骤 称取通过2mm孔径筛的风干试样50.00g,置于500mL广口瓶中,加250mL去除CO2的水,用橡皮塞塞紧瓶口,在振荡机上振荡3min,立即用抽气过滤装置(见图)或布氏漏斗抽滤于具塞三角瓶中,开始滤出的10mL滤液弃去,以获得清亮的滤液,加塞备用。该浸出液可用于土壤水溶性盐总量(电导率法或重量法)、碳酸根和重碳酸根(电位滴定法或双指示剂中和法)、氯离子(硝酸银滴定法)、硫酸根离子(硫酸钡比浊法或EDTA间接滴定法)、水溶性钙和镁离子(原子吸收分光光度法)、水溶性钾和钠离子(火焰光度法或原子吸收分光光度计法)的测定。电导、碳酸根和重碳酸根等测定应立即进行,其他离子的测定亦应在当天完成。 6 注释

1)浸提时水土比例和浸提时间对盐分的浸出量都有一定的影响,必须统一规定,才便于分析结果相互比较。本方法采用国内通用的5:1水土比例和振荡提取3min 的规定。 2) 除去二氧化碳的水可以有效地减小碳酸盐(碳酸钙、碳酸镁)和硫酸钙的溶解量,从而影响着水浸出液的盐分数量,因此,浸提时必须使用除去二氧化碳的水。 3) 待测液不可在室温下放置时间过长(一般不得超过1天),否则会影响钙、镁、碳酸根和重碳酸根的测定,可以将滤液储存在4℃条件下备用。 4) 巴氏滤管是用不同细度的陶瓷制成,其微孔大小分为6级。号数越大,微孔越小,土壤盐分过滤可用1G 3或1G 4。也有的巴氏滤管微孔大小分为粗、中、细三级,土壤盐分过滤可用粗号或中号。 水溶性盐总量的测定 A 电导法 1 方法提要 土壤中水溶性盐属强电解质,其溶液导电能力的强弱称为电导度。在一定浓度范围内,溶液的含盐量与电导率呈正相关。因此,土壤浸出液电导率的数值能反映土壤含盐量的高低,但不能反映混合盐的组成。如果土壤溶液中几种盐分彼此间的比值比较固定时,则用电导法测定总盐分浓度的高低是相当准确的。 将电导电极插入一定浓度的电解质溶液时,根据欧姆定律,当温度不变,电阻R 与电极极片间距离(L)成正比,与极片的截面积(A)成反比:R =ρ A L 式中ρ为电阻率。当L=1cm ,A =1cm 2,则R=ρ,此时测得的电阻称为电阻率(ρ)。 溶液的电导是电阻的倒数,溶液的电导率则是电阻率的倒数。 则溶液电导(S)为:L A R S y 1== 式中 y 为电导率。对于某一电导电极A 和L 是固定的,则y 值与离子浓度及组成有关。电导率的单位常用西门子·米-1(S ·m -1)。土壤溶液的电导率一般小于1,因此,也常用d S ·m -1(分西门子·米- 1)表示。 溶液温度将按下式对电导率产生影响: )] 25(1[1 25℃t R ℃ y -+=α 式中α为温度系数。对多数离子来说,溶液温度每升高1℃,迁移率约增加2%。但是,各种离子的温度系数值是不同的,不同温度范围的温度系数也是不同的。所以当条件允许时,应在恒温系统中进行测定。待测液的电导可在电导仪上测得,经电极常数K 和温度校正值

盐渍土含盐量的测定

表盐渍土按盐渍化程度分类 注:离子含量以100g干土内的含盐总量计 盐渍土盐分测试 质量法 (1)原理 吸取一定量的土壤浸出液于瓷蒸发皿,在水浴上蒸干,用过氧化氢氧化有机质,然后在 105 ~110 ℃烘箱中烘干,称重,即得烘干残渣质量。试验主要仪器设备有电热板、水浴锅、干燥器、瓷蒸发皿或 50 ml 烧杯、分析天平(感量0. 000 2 g)、坩埚钳。试剂: 15% 双氧水,取市售 30% 双氧水,加蒸馏水稀释1倍。简言之吸取水浸液,经蒸干称重得到烘干残渣。烘干残渣经去除有机质,其量即作为可溶盐总量。 (2)仪器及设备 水浴锅、电烘箱、分析天平 (3)步骤 1、水浸提液的制备 ①将土壤样品带回实验室内烘干、混合、除杂,取过2mm筛孔的风干土样10g,放入100ml塑料瓶中,加入50ml无二氧化碳蒸馏水(去离子水)。

②加塞,在振荡机(150-180次min)上准确振荡 5 min, ③立即使用滤纸提取分离制备土壤浸出液,放入25 ℃恒温箱,密封备用。 2、用大肚吸管待测液30ml,放入已知质量(m0)的蒸发皿中(或烧杯)在水浴 上蒸干,在将近蒸干时加入少量的15%H 2O 2 加过氧化氢去除有机物时,其用量只要达到使残 渣湿润即可同时不断转动蒸发皿,使之与残渣充分接触,继续在水浴上加热以去除有机质,反复处理至残渣发白,以完全去除有机质,蒸干。 3、用滤纸片擦干蒸发皿底部在 105 ~110℃下烘干2h,取出,在干燥器中冷却30 min 后,用分析天平称重。 4、并且继续烘干1 h,冷却,称重,直至恒重(m1)(即前后2 次质量之差不超过)。 (4)计算公式 水溶性盐总量(g/kg) =((m1-m0)×1 000)/m 式中,m 为与吸取土壤浸出液相当的土壤样品质量(g);m1为烘干至恒重的器皿与盐分质量之和(g);m0为器皿的烘干重(g);1 000 为换算成 g/kg。 数据列表表示

土壤中含盐量的测定

土壤中含盐量的测定 This model paper was revised by the Standardization Office on December 10, 2020

实验八土壤中含盐量的测定 一、实验目的 1.练习浸取、过滤、蒸干、恒重等基本操作。 2.测定土壤中可溶性盐份的总含量。 二、实验原理 土样按一定的固液比加适量水,经一定时间的振荡或搅拌,过滤,吸取一定量的滤液,经蒸干后,称得的重量即为烘干残渣总量(此数值一般接近或略高于盐份总量)。将此烘干残渣总量再用过氧化氢去除有机质后干燥,称其重量即得可溶盐份重量。 三、实验仪器 100mL烧杯、分析天平、烘箱、水浴锅(或沙浴盘)、电炉、250mL烧杯、漏斗、定量滤纸。 四、实验步骤 1.称取风干土壤20g,置于烧杯中,加入100mL蒸馏水,搅拌3min后立即过滤。 2.吸取50mL滤液,?放入已干燥称重的100mL小烧杯中,于水浴(或砂浴)蒸干。用15%过氧化氢溶液处理,水浴加热,去除有机物。 3.用滤纸片擦干小烧杯外部,?放入100~105℃烘箱中烘4小时,然后移至干燥器中冷却(一般冷却30min即可)?至室温,用分析天平称量。 4.称好后的烘干残渣继续放入烘箱中烘2小时后再称,?直至恒重(即两次重量相差小于0.0003g)。

注意事项: 加过氧化氢去除有机物时,其用量只要达到使残渣湿润即可。 五、结果计算 土中残渣总量(%)=10050100 (??-+样杯渣杯)W W W % 土中可溶盐量(%)=10050100??-+样 杯)盐杯(W W W % 数据列表表示如下: 六、讨论

土壤全盐测定

土壤含盐量的测定 1、目的:本方法适用于测定土壤和水的全盐含量。电导率仪使用前需要预热10分钟以上。电导率有多个档位,本手册统一使用uS/cm为计算单位。其它单位的换算为 1S/cm=103mS/cm=106uS/cm 2、全盐提取:称取10.0g土壤到100ml烧杯中,加水50ml,准确搅拌3分钟,不要使土壤粘连在烧杯底部,尽量使土壤悬浮,结束后,立即用电导率仪测定电导,并测定悬浮液温度。 3、全盐测定(自动温度校正,适于提取温度与25度差异<3℃的日常测定) 3.1仪器加电预热10分钟后测定。一般用mS档,调节温度补偿旋钮至提取液温度,测定/校准档位到校准位置,调整常数旋钮至电极常数(不计小数点)。 3.2测定/校准档位到测定位置,将探头插入提取液中,记录读数。 3.3计算:土壤全盐%=EC *0.2881-0.004322 4、全盐测定(手工校正温度,适于提取温度与25度差异>3℃的日常测定) 4.1仪器加电预热10分钟后测定。一般用mS档,调节温度补偿旋钮至25摄氏度,将电极插入标准电导率溶液中,测定/校准档位到校准位置,调整常数旋钮至电极常数(不计小数点)。 4.2测定/校准档位到测定位置,将电极插入提取液中,记录读数。 4.3 计算:土壤全盐%=EC*F*0.2881-0.004322,EC为电导率(mS/cm)F为温度系数(见附1)。 5、全盐测定(手工温度校正电极校准,适于定期标定电极常数) 5.1仪器加电预热10分钟后测定。一般用mS档,调节温度补偿旋钮至25摄氏度,将电极插入标准电导率溶液中,测定/校准档位到测定位置,根据下表,依据提取液温度查得标准溶液电导率,调整常数旋钮到制定电导率,此时,按下测定/校准按钮,显示实际电极常数,如果此时的电导常数与电极标称常数差别>5%,需要重新清洗电极,标定、记录常数。此时可测定提取液,无需进行温度和电极常数标定。 计算:将EC值与温度输入土壤含盐量计算器,自动算出含盐量或。 土壤全盐%=EC*F*0.2881-0.004322, 其中EC单位为mS/cm,f为温度校正系数。 水全盐(g/L)=EC*F*0.64 附1: 电导温度系数的确定:F=1.8539348-0.052389252*A1+0.000898067*A1^2-0.00000678*A1^3 其中A1为温度,在EXCEL表中,将F后面公式直接考在B1中(包括等号),在A1中输入温度可计算温度系数。 附2:DDS-11A电导率仪使用步骤 1、根据测定目标选择电极 选择电极常数范围 0.1 ~1(光亮) ~1(铂黑) ~10 测定范围uS/cm 0.1-30 1-100 100-3000 附表:不同KCl标准液的电导率(mS/cm) ℃ 74.246g/L 1M/L 7.4365g/L 0.1M/L 0.744g/L(本实验室 0.01M/L) 0.0744g/L (0.001M/L) 15 921.2 10.455 1.1414 0.1185 18 978.0 11.168 1.2200 0.1267 20 1017.0 11.644 1.2737 0.1322 25 1113.1 12.852 1.4083 0.1465

土壤中重金属全量测定方法(精)

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同,电热板上高温档加热(数显的控制温度300~350度1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1称量0.5000g样品放入PTFE(聚四氟乙烯烧杯中(先称量样品,后称量标 样,用少量去离子水润湿; 2缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些,加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖至形成粘稠状结晶为止(2~3小时; 3视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸; 6待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶

第九章土壤水溶性盐的测定

第九章 土壤水溶性盐的测定 9.1概述 土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的障碍因素。我国盐碱土的分布广,面积大,类型多。在干旱、半干旱地区盐渍化土壤,以水溶性的氯化物和硫酸盐为主。滨海地区由于受海水浸渍,生成滨海盐土,所含盐分以氯化物为主。在我国南方(福建、广东、广西等省、区)沿海还分布着一种反酸盐土。 盐土中含有大量水溶性盐类,影响作物生长,同一浓度的不同盐分危害作物的程度也不一样。盐分中以碳酸钠的危害最大,增加土壤碱度和恶化土壤物理性质,使作物受害。其次是氯化物,氯化物又以MgCl 2的毒害作用较大,另外,氯离子和钠离子的作用也不一样。 土壤(及地下水)中水溶性盐的分析,是研究盐渍土盐分动态的重要方法之一,对了解盐分、对种子发芽和作物生长的影响以及拟订改良措施都是十分必要的。土壤中水溶性盐分析一般包括pH 、全盐量、阴离子(Cl -、SO 42-、CO 32-、HCO 3-、NO 3-等)和阳离子(Na +、K +、Ca 2+、Mg 2+)的测定,并常以离子组成作为盐碱土分类和利用改良的依据。 盐碱土是一种统称,包括盐土、碱土、和盐碱土。美国农业部盐碱土研究室以饱和土浆电导率和土壤的pH 与交换性钠不依据,对盐碱土进行分类(表9-1)。我国滨海盐土则以盐分总含量为指标进行分类(表9-2)。 在分析土壤盐分的同时,需要对地下水进行鉴定(表9-3)。 当地下水矿化度达到2g·L -1时,土壤比较容易盐渍化。所以,地下水矿化度大小可以作为土壤盐渍化程度和改良难易的依据。 表9-2 我国滨海盐土的分级标准 用于灌溉的水,其导电率为0.1~0.75 dS·m 。

水溶性盐分全盐量的测定电导法2014-12-15 20.8.28

FHZDZTR0071 土壤 水溶性盐分全盐量的测定 电导法 F-HZ-DZ-TR-0071 土壤—水溶性盐分(全盐量)的测定—电导法 1 范围 本方法适用于土壤水溶性盐分(全盐量)的测定。 2 原理 土壤中的水溶性盐是强电介质,其水溶液具有导电作用,导电能力的强弱可用电导率表示。在一定浓度范围内,溶液的含盐量与电导率呈正相关,含盐量愈高,溶液的渗透压愈大,电导率也愈大。土壤水浸出液的电导率用电导仪测定,直接用电导率数值表示土壤的含盐量。 3 试剂 3.1 氯化钾标准溶液:0.0200mol/L ,称取1.4910g (精确至0.0001g )于105℃烘4h 的氯化钾(KCl )溶于无二氧化碳的水中,并稀释至1000mL 。 4 仪器 4.1 电导仪。 4.2 铂电极。 4.3 温度计。 5 操作步骤 5.1 待测液的制备:称取通过2mm 筛孔的风干土样50.000g(精确至0.001g)置于干燥的500mL 锥形瓶中,加入250.00mL 无二氧化碳的水,加塞,放在振荡机上振荡3min ,然后干过滤或离心分离,取得清亮的待测浸出溶液。也可以吸取水溶性盐分(全盐量)的测定—质量法待测液制备得到的清亮溶液测定,同时做空白试验。 5.2 将铂电极引线接到电导仪相应的接线柱上,接通电源,打开电源开关。 5.3 调节电导仪至工作状态。 5.4 将铂电极用待测液冲洗几次后插入待测液中,打开测量开关,读取电导数值。 5.5 取出铂电极,用水冲洗,用滤纸吸干,再作下一土样测定。同时测量待测液温度。 注:电导法测定全盐量时,最好用清亮的待测液。如用悬浊液,应先澄清,并在测定时不再搅动,以免损坏电极的铂 黑层。 6 结果计算 按下式计算25℃时1∶5土壤水浸出液的电导率: K f C L t ××= 式中: L ——25℃时1∶5土壤水浸出液的电导率,mS/cm ; C ——测得的电导值,mS/cm ; f t ——温度校正系数; K ——电极常数(电导仪上如有补偿装置,不需乘电极常数)。 注1:溶液的电导率不仅与溶液的离子浓度和离子负荷有关,而且受溶液的温度、电极常数等因素的影响。离子电导 度随温度而变,大多数离子每增加1℃,电导值约增加2%,所以需将不同温度下测得的电导值换算成25℃时的电导值。温度校正系数按下式计算: )(110t t a f t ?+= 式中: f t ——温度校正系数;

土壤盐分计对土壤中盐分含量的测定方法

土壤盐分计对土壤中盐分含量的测定方法 土壤中可溶性盐分是用一定的水土比例和在一定时间内浸提出来的土壤中所含有的水溶性盐分。分析土壤中可溶性盐分的阴、阳离子组成,和由此确定的盐分类型和含量,可以判断土壤的盐渍状况和盐分动态,因为土壤所含的可溶性盐分达一定数量后,会直接影响作物的发芽和正常生长。当然,盐分对作物生长的影响,主要决定于土壤可溶性盐分的含量及其组成,和不同作物的耐盐程度。就盐分组成而言:苏打盐分(碳酸钠、碳酸氢钠)对作物的危害最大,氯化钠次之,硫酸钠相对较轻。当土壤中可溶性镁增高时,也能毒害作物。因此,定期测定土壤中可溶性盐分总量及其盐分组成,可以了解土壤的盐渍程度和季节性盐分动态,据此拟订改良利用盐碱土的措施。 通常,用水浸提液的烘干残渣量来表示土壤中水溶性物质的总量,烘干残渣量不仅包括矿质盐分量,尚有可溶性有机质以及少量硅、铝等氧化物。盐分总量通常是盐分中阴、阳离子的总和,而烘干残渣量一般都高于盐分总量,因而应扣除非盐分数量。此外,所测得的可溶性盐分总量,尚可验证系统分析中各种阴阳离子分量的分析结果。 可溶性盐分总量的测定方法很多,有重量法、电导法、比重计法,还有阴阳离子总合计算法等,由于比重计法比较粗放,而阴阳离子总和计算法又比较费时,所以在这里只重点介绍通用的重量法。 托普云农土壤盐分计/土壤盐分测量仪主要用于农业生产过程中各种土壤,水培养基质的盐分含量测量。该土壤盐分计可直接插入土壤速测并自动记录,大屏幕中文液晶显示数据,可将数据导入计算机。 一、托普云农土壤盐分计技术参数 土壤温度技术参数: 温度单位:℃ 测试范围:-40℃~100℃ 精度:±0.5℃

土壤盐分累积规律

温室土壤盐分累积规律及其调控措施 ——以土壤盐渍化为视角 摘要:概述并分析了有关温室土壤盐分累积的原因、危害及累积规律的研究进展,并 对调控治理温室土壤盐分累积的主要途径进行了探讨。 关键词:温室土壤、影响因素、调控治理 由于设施栽培(主要是塑料大棚、日光温室和地膜覆盖技术)在我国蔬菜和其他重 要经济作物的反季节和跨地区种植中所起的重要作用,设施农业在全国各地得到了大面 积的推广应用,然而与当前设施栽培迅猛发展所不相适应的是在设施栽培系统中,至今 尚无一套与之相适宜的土肥管理措施。由于温室、大棚等栽培条件下的土壤缺少雨水淋洗,且温度、湿度、通气状况和水肥管理等均与露地栽培有较大差别. 其特殊的生态环境 与不合理的水肥管理措施导致了土壤次生盐渍化、养分不平衡、土壤酸化等诸多生产问 题的产生,其中最为突出的是土壤次生盐渍化,它不仅直接危害作物的正常生长,而且 也易引发其他相关生产问题。因此,了解设施土壤次生盐渍化的基本特征、成因、影响 因素及其对土壤性质的影响,对于认识我国设施土壤环境质量的变化,指导合理生产, 实现设施土壤的可持续利用具有十分重要的现实意义。 一、设施土壤次生盐渍化的基本特征 (一)、设施土壤盐分离子的组成特点 由于设施土壤次生盐渍化的形成受其特殊棚室环境和人为水肥管理措施的影响,故其盐分组成与滨海及内陆盐渍土存在着明显的差异。在引起设施土壤次生盐渍化的8种盐分离子(K+、Na+、Ca2+、Mg2+、HCO3-、Cl-、SO42-、NO3-)中,除HCO3-外,其余7种离子的含量在设施土壤中均比露地高,且差异达显著或极显著水平。Na+已不是土壤主要盐分离子,其累积量远远小于Ca2+ 和NO3-。研究表明,设施土壤中Ca2+ 的含量约占阳离子总量的60 %以上,Mg2+ 在15 % ~ 20 %之间;阴离子以NO3-为主,其含量约为阴离子总量的56 % ~ 76 %。其中硝酸盐的积累既是设施土壤次生盐渍化的主要特征之一,同时也是引起设施作物生理障碍的主导因子,造成蔬菜作物生长受阻,产量降低以及植株体内硝酸盐的大量累积。但也有报道,设施土壤中的主要阴离子是SO42- 或Cl-,这与设施栽培中施用化肥的种类和用量有关。 (二)、土壤次生盐渍化的表观现象 次生盐渍化土壤干燥时其表面会出现白色盐霜,土壤发生板结,破碎后呈灰白色粉末状;土壤湿润时,颜色发暗。当土壤含盐量超过10 g/kg时,土面会有块状紫红色胶状物(紫球藻)出现. (三)、积盐特征及其变化规律 1.土壤耕层盐分离子的组成变化特点 由于设施土壤不受雨水淋洗,施入的多余肥料则全部残留于土壤中并逐年累积。因此,随着棚室使用年限不断延长,土壤中盐分的累积量也不断增加,且由于棚室内的温度相对较高,土壤蒸发量大,盐分离子便会随着土壤水分的向上运动而逐渐向表层迁移、积聚。据报道,大棚土壤总盐量是露地的2.1 ~ 13.4倍,0 ~ 5 cm 的表层土壤含盐量约占土壤剖面总

实验四 设施土壤含盐量及pH值调查

实验四设施土壤含盐量及pH值调查 一、实验目的 了解设施内土壤的含盐量、酸度的特征,掌握土壤含盐量、pH值粗略测定的方法。 二、实验原理 土壤中的水溶性盐是强电介质,其水溶液具有导电作用,导电能力的强弱可用电导率表示。在一定浓度范围内,溶液的含盐量与电导率呈正相关,含盐量愈高,溶液的渗透压愈大,电导率也愈大。土壤水浸出液的电导率用电导仪测定,直接用电导率数值表示土壤的含盐量。 三、主要仪器及试材 三角瓶、漏斗、滤纸、pH计、电导仪、电子天平、量筒 四、实验方法与步骤 1.土壤取样:每组在某一设施内取中间和周边共3个点,每个点取5cm, 10cm,和20cm 三个土层深度进行取样分析,同时需要在附近露地定一个点取5cm,10cm,和20cm三个土层深度进行取样。 2.待测液的制备:取约5g土样装入100mL三角瓶中,加入25.00mL蒸馏水,用手来回振荡5min,然后过滤,取得清亮的待测浸出溶液。注意需要以所用的蒸馏水作为对照。 3.pH值的测定:将pH计探头用蒸馏水冲洗几次后插入待测液中,打开pH计测量开关,读取酸度值后,取出探头。用蒸馏水洗净后再作下一土样测定,或用精密pH试纸测试。 4.电导率的测定:调节电导仪至工作状态,将铂电极用蒸馏水冲洗几次后插入待测液中,打开测量开关,读取电导数值,用蒸馏水洗净后再作下一土样测定。 五、实验注意事项 电导法比质量法简便快速,测定结果直接以电导率(mS/cm或μS/cm)表示,不必换算成全盐量(g/kg)。 六、实验结果处理 准确记录操作步骤及测定结果,并对结果进行分析和比较,尤其注意分析设施内盐分的积累情况和土壤酸化情况。撰写实验报告书。 七、思考题 设施内土壤的含盐量高的原因是什么? 八、参考书目 [1] 李式军、郭世荣主编.设施园艺学(第二版).北京:中国农业出版社.2011 [2] 张福墁主编.设施园艺学.北京:中国农业大学出版社. 2001

盐渍土含盐量的测定

表7.10.2-2 盐渍土按盐渍化程度分类 注:离子含量以100g干土内的含盐总量计 盐渍土盐分测试 质量法 (1)原理 吸取一定量的土壤浸出液于瓷蒸发皿,在水浴上蒸干,用过氧化氢氧化有机质,然后在105 ~110 ℃烘箱中烘干,称重,即得烘干残渣质量。试验主要仪器设备有电热板、水浴锅、干燥器、瓷蒸发皿或50 ml 烧杯、分析天平(感量0. 000 2 g)、坩埚钳。试剂: 15% 双氧水,取市售30% 双氧水,加蒸馏水稀释1倍。简言之吸取水浸液,经蒸干称重得到烘干残渣。烘干残渣经去除有机质,其量即作为可溶盐总量。 (2)仪器及设备 水浴锅、电烘箱、分析天平 (3)步骤 1、水浸提液的制备 ①将土壤样品带回实验室内烘干、混合、除杂,取过2mm筛孔的风干土样10g,放入100ml塑料瓶中,加入50ml无二氧化碳蒸馏水(去离子水)。 ②加塞,在振荡机(150-180次min)上准确振荡5 min, ③立即使用滤纸提取分离制备土壤浸出液,放入25 ℃恒温箱,密封备用。 2、用大肚吸管待测液30ml,放入已知质量(m0)的蒸发皿中(或烧杯)在水浴上蒸干,在将近蒸干时加入少量的15%H2O2 加过氧化氢去除有机物时,其用量只要达到使残渣湿润即可同时不断转动蒸发皿,使之与残渣充分接触,继续在水浴上加热以去除有机质,反复处理至残渣发白,以完全去除有机质,蒸干。 3、用滤纸片擦干蒸发皿底部在105 ~110℃下烘干2h,取出,在干燥器中冷却30 min 后,用分析天平称重。 4、并且继续烘干1 h,冷却,称重,直至恒重(m1)(即前后2 次质量之差不超过0.0003g)。 (4)计算公式 水溶性盐总量(g/kg)=((m1-m0)×1 000)/m 式中,m 为与吸取土壤浸出液相当的土壤样品质量(g);m1为烘干至恒重的器皿与盐分质量之和(g);m0为器皿的烘干重(g);1 000 为换算成g/kg。

土壤—水溶性盐分测定

土壤—水溶性盐分(钾、钠)的测定—原子发射光谱法 1 范围 本方法适用于土壤水溶性盐分(钾、钠离子)的测定。 2 原理 土样水浸出液中的钾、钠离子,用原子发射光度法测定,钙离子量大于20mg/L 时干扰测定,加入一定量硫酸铝溶液可以抑制钙的影响。 3 试剂 3.1 钾、钠混合标准溶液:称取已在105℃烘2h 的氯化钠2.5430g(NaCl),精确至0.0001g ,溶于水,再加水稀释至1000mL 此溶液1mL 含1000μg 钠;再用水稀释5倍,得1mL 含200μg 钠标准溶液。另称取已在105℃烘2h 的氯化钾1.9069g(KCl),精确至0.0001g ,溶于水,再加水稀释至1000mL ,此溶液1mL 含1000μg 钾;再用水稀释5倍,得1mL 含200μg 钾标准溶液。将上述1mL 含200μg 钾和1mL 含200μg 钠标准溶液等体积混合,即得1mL 含100μg 钾和钠标准溶液,贮于塑料瓶中。 3.2 硫酸铝溶液:0.1mol/L ,称取34g 硫酸铝[Al 2(SO 4)3]或66g 硫酸铝 [Al 2(SO 4)3·18H 2O]溶于水,再加水稀释至1000mL 。 4 仪器 4.1 原子吸收分光光度计(发射部分)或火焰光度计。 4.2 容量瓶,25mL 。 5 操作步骤 5.1 待测液的制备:称取通过2mm 筛孔的风干土样50.000g(精确至0.001g)置于干燥的500mL 锥形瓶中,加入250.00mL 无二氧化碳的水,加塞,放在振荡机上振荡3min ,然后干过滤或离心分离,取得清亮的待测浸出溶液。也可以吸取水溶性盐分(全盐量)的测定—质量法待测液制备得到的清亮溶液测定。同时做空白试验。 5.2 试样测定:吸取5.00mL ~10.00mL 浸出液置于25mL 容量瓶中,加入1mL 硫酸铝溶液,加水稀释至刻度,摇匀。在原子吸收分光光度计(发射部分)或火焰光度计上,于76 6.5nm(钾)和589.0nm(钠)波长处(火焰光度计用钾和钠滤光片)测定发射强度,从工作曲线上查得相应的钾量和钠量。同时做空白试验。 5.3 工作曲线:分别取0、100、200、400、600、800、1000μg 钾和钠标准溶液置于25mL 容量瓶中,加入1mL 硫酸铝溶液,加水稀释至25mL ,摇匀。在相同工作条件下测定钾和钠的发射强度,绘制工作曲线。 6 结果计算 土壤水溶性盐分(钾离子)量按(1)式或(2)式计算,土壤水溶性盐分(钠离子)量按(3)式或(4)式计算: 钾离子(K + )量(g/kg)= (1) 钾离子(K + )量(cmol/kg)= (2) 钠离子(Na + )量(g/kg)= (3) 钠离子(Na + )量(cmol/kg)= (4) 式中: m 1——从工作曲线上查得钾离子量,μg ;

相关文档
最新文档