材料连接原理

材料连接原理
材料连接原理

1.试简述焊条的工艺性能?

焊接电弧的稳定性;焊缝成型;各种位置焊接的适应性;飞溅;脱渣性;焊条熔化速度;焊条药皮发红;焊接烟尘。

2.试简述药芯焊丝的特性?

(1) 熔敷速度快,因而生产效率高;

(2) 飞溅小;

(3) 调整熔敷金属成分方面;

(4) 综合成本低。

3.试简述低氢焊条熔敷金属含氢量低的原因?

(1)药皮中不含有机物,清除了一个主要氢源;

(2)药皮中加入了大量的造气剂CaCO3、降低了PH2;

(3)CaF2的去氢作用;

(4)焊条的烘干温度高。

4.试简述不锈钢焊条药皮发红的原因?有什么解决措施?

药皮发红的原因:不锈钢寒心电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。

解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。

5.CO2焊接低合金钢一般选用何种焊丝?试分析其原因?

答:应选用Si、Mn等脱氧元素含量较高的焊丝,常用的如:H08Mn2SiA。

(1)CO2具有较强的氧化性,一方面使焊丝中有益的合金元素烧损,另一方面使熔池中【FeO】含量升高。

(2)如焊丝中不含脱氧元素或含量较低,导致脱氧不足,熔池结晶后极易产生CO气孔。(3)按一定比例同时加入Mn、Si联合脱氧,效果较好。

6.试分析说明钛钙型(J422)焊条与碱性低氢型(J507)焊条,在使用工艺性和焊缝力学性能方面有哪些差别?

其他工艺性能如全位置焊接性,融化系数等差别不大

机械性能对比:

钛钙型(J422)

(1)S、P、N控制较差,冷脆性、热裂纹倾向大

(2)【O】高,氧化夹杂多,韧性低

(3)【H】高,抗冷裂能力差

碱性低氢型(J507)

(1)杂质S、P、N低

(2)【O】低,氧化夹杂少

(3)【H】低

故低氢型焊条的塑性,韧性及抗裂性较酸性的钛钙型大大提高,但其焊接工艺性能较差,对于铁锈,油污,水份等很敏感。

7熔合比的表达式和影响因素?多层焊时,如果各层间的熔合比是固定的,试推导第n层金属的成分。(考研试题)

在焊缝金属中局部熔化的母材所占的比例称为熔合比θ。

θ=(Cw-Cd)/(Cb-Cd)

Cw——焊缝金属中合金元素的实际浓度

Cb——该元素在母材中的质量百分浓度

Cd——熔敷金属中该元素的质量百分浓度。

影响因素:

焊接方法、焊接工艺参数、接头尺寸形状、坡口形状、焊道数目及母材的热物理性质、焊接材料种类、焊条(焊丝)的倾角等。

因为C1=θCb+(1-θ) Cd

C2=θC1+(1-θ) Cd=Cb+(1-)Cd

C3=Θc2+(1-θ) Cd=Cb+(1-)Cd

……

Cn=Cb+(1-)Cd

即第n层金属的成分为Cn=Cb+(1-)Cd

8、直流正接为何比直流反接时焊缝金属熔氢量高?

(1)直流正接:工件接正极。直流反接:工件接负极。

(2)带电质点H+ 在电场作用下只溶于阴极

(3)处于阴极的熔滴不仅温度高而且比比表面积大,其溶氢量大于熔池处于阴极时的溶氢量。

9、简述氮对低碳合金钢焊缝金属性能的影响?

1、N引起焊缝金属时效脆化,使焊缝金属强度提高,塑性、韧性降低,尤其是低温韧性;

2、使焊缝金属产生时效脆化。

3、促使焊缝产生氮气孔;

4、N有时是有益的,但必须有弥散强化元素存在并在正火条件下使用。

10、试简述氢对结构钢焊接质量的影响?

氢脆;白点;气孔;冷裂纹;组织变化。

11.试简述氧对焊接质量的影响?

(1)影响焊缝机械性能:塑性、韧性下降;引起热能、冷脆,时效硬化;

(2)影响焊缝金属的物理、化学性能。如降低导电性、导磁性、耐蚀性等;

(3)形成CO气孔;

(4)造成飞溅,影响焊接过程的稳定性;

(5)焊接过程中导致合金元素的氧化损失将恶化焊接性能;

(6)氧在特殊情况下是有益的,如为了改善电弧特性。降低焊缝金属中的含氢量等。

12.为什么碱性焊条对铁锈和氧化皮的敏感性大?而碱性焊条焊缝含氢量比酸性焊条低?

碱性焊条熔渣中含SiO2、TiO2等酸性氧化物较少,FeO的活度大,易向焊缝金属扩散,是焊缝增氧。因此在碱性焊条药皮中一般不加入含FeO的物质,并要求清除焊件表面的铁锈和氧化皮,否则不仅会增加焊缝中的氧,还可能产生气孔等缺陷,所以碱性焊条对铁锈和氧化皮的敏感性大。

碱性焊条焊缝含氧量比酸性焊条低,是因为碱性焊条的药皮氧化势小的缘故。

13.用某两种焊条焊接,焊条中含硫量相同。为什么焊后渣为碱性的焊缝含硫量小于渣为酸性的焊缝含硫量?

碱性渣中碱性氧化物的活度大,而碱性氧化物有利于脱硫:

[FeS]+(CaO)= [CaS]+(FeO)

[FeS]+(MnO)= [MnS]+(FeO)

故渣为碱性的焊缝含硫量小于渣为酸性的焊缝含硫量。

14.试以硅的沉淀脱氧为例,叙述提高脱氧效果的途径?

答:(1)硅的百分含量升高,氧化亚铁的百分含量降低

(2)B增加和减少渣中的二氧化硅,二氧化硅的百分含量降低,氧化亚铁的百分含量降低

(3)温度降低,反应向右进行,氧化亚铁的百分含量降低

15.为何酸性焊条宜用锰铁脱氧?而碱性焊条宜用硅锰联合脱氧?为什么要控制W[Mn]/W[Si]的比值?

增加锰在金属中的含量,或减少MnO的活度,都可以提高脱氧效果。

酸性焊条宜用锰铁脱氧:[Mn]+[FeO]=[Fe]+(MnO),在酸性渣中含SiO2和TiO2较多,脱氧产物转化为MnO·SiO2和MnO·TiO2复合物,减少了MnO的活度系数,提高了脱氧效果。

碱性焊条宜用硅锰联合脱氧:在碱性渣中MnO活度系数较大,不利于Mn的脱氧,而且碱度越大,脱氧效果越差。故碱性焊条不宜用锰铁脱氧。[Si]+2[FeO]=2[Fe]+(SiO2),SiO2与MnO生成复合物MnO·SiO2,使MnO活度系数降低。而MnO·SiO2密度小、熔点低,易易于上浮到渣中,故碱性焊条宜用硅锰联合脱氧。

W[Mn]/W[Si]过大,出现固态MnO;W[Mn]/W[Si]过小,出现固态SiO2;均会导致焊缝中夹杂物过多,只有W[Mn]/W[Si]合理时,才会生成低熔点的不饱和液态硅酸盐,使焊缝中的含氧量降低。

16.试简述用冶金方法脱硫的措施

答:(1)用合金元素锰脱硫

(2)用渣中碱性氧化物脱硫

(3)增加熔渣的碱度

(4)渣中氟化钙也有利于脱硫

17.酸型焊条熔敷金属为何氧含量较高?

答:(1)酸型焊条采用锰脱氧不如碱性焊条锰硅联合脱氧效果好

(2)酸型焊条碱度B 小,有利于渗硅反应的进行,使焊缝含氧较高

(3)酸型焊条为了控氢的目的,导致焊缝含氧

18.手工电弧焊接厚12mm 的MnMoNbB 钢,焊接线能量E=2kj/cm,预热温度为50度,求t8/5?附λ=0.29J/(cm s ℃) CP=6.7 J/(cm s ℃)

85000.731.20.750.55,

0.982-T 800-T cr cr cm cm cm E t s δδδπλ===>==11(+)=500

19.从传热学角度说明临界板厚δcr 的概念?某16Mn 钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr ?

由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc 增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc 和t8/5不再变化,此时板厚即为临界板厚δcr 。

1.95cr cm δ==

20.试简述接头偏析的种类和产生原因?

答:显微偏析:由于结晶有先后所产生的微观区域化学成分的不均匀性。

区域偏析:由于结晶有先后所产生的宏观区域化学成分的不均匀性,一般在焊接熔池的

最后凝固部位由于杂质浓度升高产生区域偏析。

层状偏析:由于结晶过程周期性变化而引起的化学成分分布不均匀所造成。

熔合线偏析:焊接过程中由于焊接热作用使熔合线附近产生碳和合金元素浓度明显变化

的现象,形成熔合线偏析。

21.简述焊接熔池的凝固特点?

答:1,熔池体积小,加热温度高,冷却速度快;

2,热源移动结晶过程连续进行并随熔池前进;

,3,液态金属中不同部位其温度不均匀性巨大,中心过热;

,4,原始成分不均匀,因熔池存在时间短而来不及均匀化。

22焊接热循环与热处理相比有何特点?试用这些特点分别比较45钢和40Cr 在热处理条件下近缝区的淬透性大小?

焊接热循环特点:①加热温度高 ②加热速度快 ③高温停留时间短④自然冷却 ⑤局部加热

淬透性比较:45钢------焊接条件下近缝区的淬透性大于热处理的淬透性,40Cr------相反 45钢由于不含碳化物形成元素,焊接条件下近缝区峰值温度高,使奥氏体晶粒粗化,增大奥氏体稳定性,故淬透性和热处理相比反而大。40Cr 在焊接快速加热条件下,高温停留时间短,碳化物形成元素不能充分溶解到奥氏体中,奥氏体的稳定化程度不如热处理条件,故淬透性小。

23 简要说明不易淬火钢和易淬火钢粗晶区的组织特点和对性能的影响?

答:不易淬火钢:

组织特点:晶粒粗大,易出现魏氏组织

性能:塑性,韧性低,易产生脆化和裂纹

易淬火钢:

组织特点:粗大的马氏体

性能:该区脆硬,易产生延迟裂纹

24.试分析钢种淬硬倾向的影响因素?用什么指标来衡量高强钢的淬硬倾向比较合理?

(1)化学成分:碳当量升高,淬硬倾向升高

(2)冷却条件:t8/5降低,淬硬倾向升高

用HAZ的最高硬度Hmax来评定钢的淬硬倾向比较合理,因为它综合反映了化学成分和冷却条件的影响。

25试简述焊接HAZ区韧化的途径有哪些?

(1)控制组织:在组织上能获得低碳马氏体、下贝氏体和针状铁素体等韧性较好的组织。(2)合理制定焊接工艺,正确地选择焊接线能量和预热,后热温度,既不致过热脆化,又不致淬硬脆化。

(3)采用焊接后热处理来接头的韧性。

(4)研制发展新的钢种,进一步细化品粒,降低钢中的杂质S、P、O、N等的含量,使钢材的韧性大为提高,也提高了焊接HAZ的韧性。

26、试分析不易淬火钢热影响区中正火区的组织特点?

该区的母材金属被加热到Tg—AC3温度范围,铁素体和珠光体将发生重结晶,全部转变为奥氏体,形成的奥氏体晶粒尺寸小于原铁素体和珠光体,然后在空气中冷却就会得到均匀而细小的珠光体和铁素体,相当于热处理时的正火组织,故亦称正火区。

27、试分析不易淬火钢热影响区中不完全重结晶区的组织特点?

焊接时处于AC1—AC3之间范围内的热影响区属于不完全重结晶区。因为处于AC1—AC3范围内只有一部分组织发生了相变重结晶过程,成为晶粒细小的铁素体和珠光体,而另一部分是始终未能溶入奥氏体的剩余铁素体,由于未经重结晶仍保留粗大晶粒。所以,此区特点是晶粒大小不一,组织不均匀。

28.试分析易淬火钢热影响区中完全淬火区的组织特点?

焊接时热影响区处于AC3以上的区域,与不易淬火钢的过热区和正火区相对应,铁素体和珠光体全部转变为奥氏体,由于这类钢的淬硬倾向较大,焊后冷却时很易得到淬火组织(马氏体),故称淬火区。在紧靠焊缝相当于低碳钢的过热区的部位,由于晶粒严重粗化,故得到粗大的马氏体,而相当于正火区的部位则得到细小的马氏体。

29.试分析易淬火钢热影响区中不完全淬火区的组织特点?

母材被加热到AC1~AC3温度之间的热影响区,在快速加热条件下,奥氏体化不完全。铁素体很少溶入奥氏体,而珠光体、贝氏体、索氏体转变为奥氏体,在随后快冷时,奥氏体转变为马氏体,原铁素体保持不变,并有不同程度的长大,最后形成马氏体+铁素体的混合组织,故称不完全淬火区。

30.低合金高强钢HAZ最常见缺陷之一为脆化,试问:脆化种类?M-A脆化特点?热应变时效脆化一般易在焊接接头的哪些部位产生?

1.脆化种类:粗晶脆化,组织脆化(M-A脆化、析出脆化、遗传脆化),热应变时效脆化,

石墨脆化等。

2.M-A脆化特点:

1)M-A脆化与钢种合金化程度有关

2)M-A脆化只有在中等冷速下产生。冷速越快,残余A全部转变为片状M;冷却过慢,残余A分解为F+Fe3C.

3)M-A组元中的孪晶M脆性大,显微裂纹易在M-A组元边界扩展。

3. 热应变时效脆化产生的部位:

单道焊时易在Ar1以下的亚热影响区出现;

多道焊时易在熔合区出现。

31.试分析如何控制低合金高强度刚焊接HAZ的韧性?

(1)控制组织:在组织上能获得低碳马氏体、下贝氏体和针状铁素体等韧性较好的组织。(2)合理制定焊接工艺,正确地选择焊接线能量和预热、后热温度,既不致过热脆化,又不致淬硬脆化。

(3)采用焊后热处理来改善接头的韧性。

(4)研制反战新的钢种,进一步细化晶粒,降低钢中的杂质S、P、O、N等的含量,使钢材的韧性大为提高,也提高了焊接HAZ的韧性。

32.在低碳低合金钢中的析出型气孔有哪几种?产生的原因是什么?

低碳低合金钢焊缝中存在的析出型气孔主要有氧气空和氮气孔两种。

析出型气孔的原因:主要是高温时熔池金属中溶解了较多的气体,凝固时由于气体的溶解度下降,气体处于饱和来不及逸出,而引起的气孔。

33.简述CO气体的产生原因?

钢焊接时,钢中的氧或氧化物与碳反应后能生成大量CO;

[C]+[O]=CO (1) [FeO]+[C]=CO+[Fe] (2)

如果这些反应发生在高温液态金属中,则由于CO完全不能溶于钢液,将以气泡的形式从熔池金属中高速上浮逸出,不易形成气孔,但当熔池冷却凝固时,由于:

(1)由于铁碳合金溶质浓度在固液界面的偏析,造成在结晶前沿和枝晶间氧化铁和碳浓度的

局部增高,有利于反应(2)的进行。

(2)因为液体金属正处于凝固结晶后期,熔池金属的粘度迅速增大,导致V上浮↓;

(3)反应(2)为吸热反应,亦加快了凝固过程,使R↑。

故生成的CO气泡很难浮出,成为残留在焊缝中的CO气孔。

34.有一种碱性焊条(J507),在出厂检验时,焊缝中没有气孔,但在产品施工焊接时,发现焊缝中有大量气孔,分析可能那些原因导致气孔?

(1)焊件清理不充分,存在铁锈,氧化铁皮,油污和水分等杂质。

(2)焊条受潮或烘干不足,烘干后放置时间过长等。

(3)焊接规范不当,如电压过高,焊速过快,电弧不稳等。

(4)电流极性不合理,直流正接较反接是气孔倾向大。

考研选做题

某厂制造压力容器,钢材为14MnMoVN钢,壁厚15mm采用手工焊

(1)焊接线能量E=10KJ/cm,根据理论公式计算t8/5。

(2)计算碳当量及HAZ的最大硬度Hmax。

(3)如何把Hmax降至300HV以下?

35、试简述在什么条件下,氢致裂纹也会在焊缝中产生?

焊缝合金成分复杂的超高强度钢和异种钢焊接时,热影响区的转变先于焊缝,因而氢就相反地从HAZ向焊缝扩散,如果焊缝出现淬硬组织,此时,氢致裂纹就会在焊缝中产生。

36、后热的作用?后热和焊后热处理有何不同?

后热的作用:

(1)减少残余应力;

(2)改善组织,降低淬透性;

(3)消除扩散氢,但对奥氏体焊缝效果不大;

(4)适当降低预热温度或代替某些结构所需的中间热处理。

后热和焊后热处理不同:延迟裂纹有延迟期(潜伏期),在延迟期内即进行加热,可以避免出现延迟裂纹。故焊后后热有“抢时间”的问题,而焊后热处理都是为了改善接头使用性能,不存在“抢时间”的问题。

37、延迟裂纹为何易在近缝区产生?试分析防止延迟裂纹的措施?

一般低合金钢焊缝C低于母材,热影响区相变滞后于焊缝。当焊缝由A转达变F、P 时,H的溶解度突然下降,且H在F、P中的扩散速度较快,导致H很快由焊缝越过熔合线附近富H,当滞后相变的HAZ中A—>M时,H使以过饱和状态残留在M中,促使该处进一步脆化,从而导致冷裂纹的产生。

防治措施:

冶金方面:

(1)选择抗裂性好的钢材

从冶炼技术上提高母材的性能:多元微合金画;尽可能降低钢中有害杂质(S、P、O、H、N等)

(2)焊接材料的选用

选用低氢或超低氢焊条:应强调焊条的烘干和防潮问题

选用低强焊条:对低碳合金钢,适当降低焊缝强度可以降低拘束应力而减轻熔合区的负担,对防止冷裂纹有用。

选用奥氏体焊条:既可避免预热又能防止冷裂纹的产生。

特殊微量元素的应用:Te、Se、Re,Te的降氢效果最好。

(3)选用低氢的焊接方法:CO2气体保护焊。

焊接工艺方面:

合理选择焊接线能量

正确选择预热和后热温度

多层焊层间温度和时间间隔的控制

采用低匹配焊缝

合理的焊缝分布和施焊次序

38、焊接接头中出现冷裂纹(延迟裂纹)主要与哪些因素有关?通常将工件预热到一定温度可以防止产生冷裂纹,试分析预热的作用?

延迟裂纹的影响因素:钢种的淬硬倾向、焊接接头的含氧量及其分布、接头所受的拘束应力状态。

预热的作用:预热可以降低冷却速度,从而避免出现淬硬组织,降低残余应力,有利于扩散氢的逸出。

材料连接原理复习大纲

材料连接原理与工艺复习大纲 一、熔化焊连接原理 1、熔化焊是最基本的焊接方法,根据焊接能源的不同,熔化焊可分为电弧焊、气焊、电渣焊、电子束焊、激光焊和等离子焊等。 2、获得良好接头的条件:合适的热源、良好的熔池保护、焊缝填充金属。 3、理想的焊接热源应具有:加热面积小、功率密度高、加热温度高等特点。 4、焊件所吸收的热量分为两部分:一部分用于熔化金属而形成焊缝;另一部分使母材近缝区温度升高,形成热影响区。 5、热能传递的基本方式是传导、对流和辐射,焊接温度场的研究是以热传导为主,适当考虑对流和辐射的作用。熔化焊温度场中热能作用有集中性和瞬时性。 6、当恒定功率的热源作用在一定尺寸的焊件上并作匀速直线运动时,经过一段时间后,焊件传热达到饱和状态,温度场会达到暂时稳定状态,并可随热源以同样速度移动,这样的温度场称为准温度场。 7、在焊接热源的作用下,焊件上某点的温度随时间的变化过程称为焊接热循环。决定焊接热循环的基本参数有四个:加热速度、最高加热温度、在相变温度以上的停留时间和冷却速度。常用某温度范围内的冷却时间来表示冷却速度,冷却速度是决定热影响区组织和性能的最重要参数。 8、焊接热循环的影响因素:材质、接头形状尺寸、焊道长度、预热温度和线能量。 9、正常焊接时,焊条金属的平均熔化速度与焊接电流成正比。 10、熔滴:焊条端部熔化形成滴状液态金属。药皮焊条焊接时熔滴过渡有三种形式:短路过渡、颗粒过渡和附壁过渡。其中碱性焊条:短路过渡和大颗粒过渡;酸性焊条:细颗粒过渡和附壁过渡。 11、药皮溶化后的熔渣向熔池过渡形式:①薄膜形式,包在熔滴外面或夹在熔滴内;②直接从焊条端部流入熔池或滴状落入。 12、熔池形成: ①熔池为半椭球,焊接电流I、焊接电压U与熔池宽度B和熔池深度H的关系:I↑,H↑,B↓;U↑,H↓,B ↑。 ②熔池温度不均匀,熔池中部温度最高,其次为头部和尾部。 ③焊接工艺参数、焊接材料的成分、电极直径及其倾斜角度等都对熔 池中的运动状态有很大的影响。 ④为提高焊缝金属质量,必须尽量减少焊缝金属中有害杂质的含量和 有益合金元素的损失,因此要对熔池进行保护。保护方式:熔渣保护、 气体保护、熔渣气体联合保护、真空保护和自保护。 13、熔化焊焊接接头的形成过程:焊接热过程、焊接化学冶金过程和 熔池凝固和相变过程。 14、在一定范围内发生组织和性能变化的区域称为热影响区或近缝区。故焊接接头主要由焊缝和热影响区构成,其间窄的过渡区称为熔合区。如下图所示: 1——焊缝区(熔化区) 2——熔合区(半熔化区) 3——热影响区 4——母材 15、熔化焊接头形式:对接、角接、丁字接和搭接接头等。待焊部位预先加工成一定形状,称为坡口加工。 16、熔合比:局部熔化母材在焊缝金属中的比例。用来计算焊缝的化学成分。 17、金属的可焊性属于工艺性能,是指被焊金属材料在一定条件下获得优质焊接接头的难易程度。包括接合性能和使用性能。金属的可焊性主要与下列因素有关:①材料本身的成分组织;②焊接方法;③焊接工艺条件。 18、焊接热过程贯穿整个焊接过程,对焊接接头的形成过程(化学冶金、熔池凝固、固态相变、缺陷)以及接头性能具有重要的影响。 19、焊接材料的类型:焊条、焊剂、焊丝、保护气。焊条由焊芯和药皮组成,焊芯起到导电和填充金属的作用,药皮作用为①机械保护作用;②冶金处理作用;③工艺性能良好。药皮的组成分为稳弧剂、造渣剂、造气剂、

材料成型工艺

材料成型工艺 (Material Molding Process) 课程代码:(07310060) 学分:6 学时:90(其中:讲课学时78:实验学时:12) 先修课程:材料成型原理、金属学及热处理、机械设计基础 适用专业与培养计划:材料成型及控制工程专业2012年修订版培养计划 教材:《金属材料液态成型工艺》、贾志宏主编、化学工业出版社、第一版; 《金属材料焊接工艺》、雷玉成主编、化学工业出版社、第一版; 《冲压工艺与模具设计》、姜奎华主编、机械工业出版社、第一版开课学院:材料科学与工程学院 课程网站:(选填) 一、课程性质与教学目标 (一)课程性质与任务(需说明课程对人才培养方面的贡献) 《材料成型工艺》是材料成型及控制工程专业的主干课程之一。该课程主要任务是学习液态成型、塑性成型及焊接成型的工艺原理、方法、特点、质量影响因素及其规律、质量控制、适用范围等。学习过程中侧重于实际经验、工程技术及其理论知识的综合应用。通过系统学习,在掌握成型工艺过程基本规律及其物理本质的基础上,学生能够根据不同的零件需求,灵活选择和全面分析成型工艺、完成合理的工艺设计;同时,针对成型过程中出现的质量问题进行科学分析,找到解决措施,消除和减少工件质量缺陷; 本课程以数学、物理、化学、物理化学、力学、金属学与热处理、材料成型原理等作为理论基础,主要应用物理冶金、化学冶金、成形力学理论,系统阐述金属材料成型工艺过程的相关现象及其影响因素、规律、形成机制;同时,还汇总了大量的工程技术经验和实用技术。 通过本课程的学习,可以为材料成型工艺课程设计、金属综合性实验、毕业设计等后续课程学习奠定必要的基础知识。 (二)课程目标(需包括知识、能力与素质方面的内容,可以分项写,也可以合并写) 1. 掌握铸造成型、冲压成型和焊接成型工艺过程所涉及的主要物理原理; 2. 掌握各种成型方法的工艺特点及应用范围,能够根据实际产品需要选择高效、优质低成本的成型工艺方法;

最新材料连接原理课后答案全..

1.焊接热源有哪些共同要求?描述焊接热源主要用什么指标?(简05.07.09) 答:能量密度高、快速实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。 主要指标:最小加热面积、最大功率密度和正常焊接规范条件下的温度。 2.试述焊接接头的形成过程及对焊接质量的影响。 答:(1)预压阶段;(2)通电加热阶段;(3)冷却结晶阶段。 对焊接质量的影响: 3.溶滴比表面积的概念及对焊接化学冶金过程的影响? 答:熔滴的表面积Ag 与其质量 之比称为熔滴的比表面积S 。 熔滴的比表面积越大,熔滴与周围介质的平均相互作用时间越长,熔滴温度越高,越有利于加强冶金反应。 4.焊条熔化系数、熔敷系数的物理意义及表达式?真正反映焊接生产率的指标是什么? 答:焊条金属的平均融化速度 :在单位时间内熔化的焊芯质量或长度; 损失系数 :在焊接过程中由于飞溅、氧化和蒸发而损失的金属质量与熔化的焊芯质量之比; 平均熔敷系数 (真正反映焊接生产率的指标),由于损失系数不等于零,单位时间内真正进入焊接熔池的金属质量称为平均熔敷速度。 5.试简述不锈钢焊条药皮发红的原因?有什么解决措施?(简05.08.10) 答:药皮发红的原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。 解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。 6.熔合比的表达式和影响因素?多层焊时,如果各层间的熔合比是恒定的,试推导第n 层焊缝金属的成分? 答:表达式: 影响因素:焊接方法、焊接工艺参数、接头尺寸形状、坡口形状、焊道数目、母材热物理性能等。 7.从传热学角度说明临界板厚δcr 的概念?某16Mn 钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr ? 答:由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc 增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc 和t8/5不再变化,此时板厚即为临界板厚δcr 。 00 1.952c -T 800-T cr E cm δρ==11(+)500 8.手工电弧焊接厚12mm 的MnMoNbB 钢,焊接线能量E=2kj/cm,预热温度为50度,求t8/5?附λ=0.29J/(cm s ℃) CP=6.7 J/(cm s ℃)

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

电子材料与元器件论文

CMOS图像传感器工作原理和应用 姓名: 学院: 班级: 组号: 日期:2014年12月9日

摘要 随着集成电路制造工艺技术的发展和集成电路设计水平的不断提高,基于CMOS集成电路工艺技术制造的CMOS图像传感器由于其集成度高、功耗低、体积小、工艺简单、成本低且开发周期较短等优势,目前在诸多领域得到了广泛的应用,特别是数码产品如数码相机、照相手机的图像传感器应用方面,市场前景广泛,因此对CMOS图像传感器的研究与开发有着非常高的市场价值。 本文首先介绍了CMOS图像传感器的发展历程和工作原理及应用现状。随后叙述了CMOS图像传感器的像元、结构及工作原理,着重说明了成像原理和图像信号的读取和处理过程,以及在数字摄像机,数码相机,彩信手机中的应用方式。 一、CMOS图像传感器的发展历史 上世纪60年代末期,美国贝尔实验室提出固态成像器件概念: 互补金属氧化物半导体图像传感器CMOS —Complementary Metal Oxide Semiconductor 电荷耦合器件图像传感器(CCD) CMOS与CCD图像传感器的研究几乎是同时起步,固体图像传感器得到了迅速发展。 CMOS图像传感器: 由于受当时工艺水平的限制,图像质量差、分辨率低、噪声降不下来,因而没有得到重视和发展。 CCD图像传感器: 光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。 由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 1970年,CMOS图像传感器在NASA的喷气推进实验室JPL制造成功, 80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件, 1995年像元数为(128×128)的高性能CMOS 有源像素图像传感器由喷气推进实验室首先研制成功。 1997年英国爱丁堡VLSI Version公司首次实现了CMOS图像传感器的商品化。 2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS,

专升本《钢结构设计原理》考试答案

[试题分类]:专升本《钢结构设计原理》_08017550 [题型]:单选 [分数]:2 1形截面所示的拉弯构件强度计算最不利点为()。 A.截面上边缘“1”点 B.截面下边缘“3”点 C.截面中和轴处“2”点 D.可能是“1”点,也可能是“3”点 答案 2.验算型钢梁正常使用极限状态的挠度时,用荷载的()。 A.组合值 B.最大值 C.标准值 D.设计值 答案 3.应力集中越严重钢材(). A.弹塑性越高 B.变形越大 C.强度越低 D.变得越脆 答案 4.下列最适合动力荷载作用的连接是() A.高强螺栓摩擦型连接 B.焊接结构 C.普通螺栓连接 D.高强螺栓承压型连接 答案

5.梁上作用较大固定集中荷载时,其作用点处应() A.设置纵向加劲肋 B.减少腹板厚度 C.设置支承加劲肋 D.增加翼缘的厚度 答案 6.某排架钢梁受均布荷载作用,其中永久荷载的标准值为80,可变荷载只有1个,其标准值为40,可变荷载的组合值系数是0.7,计算梁整体稳定时采用的荷载设计值为() A.120 B.147.2 C.152 D.164 答案 h 7.在焊接工字形组合梁中,翼缘与腹板连接的角焊缝计算长度不受60的限制,是因为() A.截面形式的关系 B.焊接次序的关系 C.梁设置有加劲肋的关系 D.内力沿侧面角焊缝全长分布的关系 答案 8.减小焊接残余变形和焊接残余应力的方法是() A.采取合理的施焊次序 B.常温放置一段时间 C.施焊前给构件相同的预变形 D.尽可能采用不对称焊缝 答案 9.下图所示简支梁,除截面和荷载作用位置不同外,其它条件均相同,则以哪种情况的整体稳定性最好?()

材料成型原理-7 凝固金属的组织结构

液态金属成型原理
0、概论 1、液态金属的结构和性质 2、凝固的热力学基础 3、界面 4、凝固的结晶学基础 5、凝固的传热基础 6、凝固过程的流体流动 7、凝固金属的组织结构 8、凝固过程的缺陷和对策
第七章 凝固金属的组织结构

第七章 凝固金属的组织结构
? 第一节 凝固金属的组织结构 第二节 偏析(Segregation) 第三节 金属凝固组织形态控制
第七章 凝固金属的组织结构
2

一、凝固铸态组织的含义
z 铸态组织,即铸件的晶粒组 织,包括晶粒的形状、尺寸 和取向。广义讲,还包括合 金元素的分布(偏析)和凝 固过程形成的缺陷。
第七章 凝固金属的组织结构
3

二、晶粒组织(Grain Structure)
? 典型铸态组织:表面细晶粒、柱状晶粒、等轴晶粒
z激冷晶区的晶粒细小;
内部等轴晶区 表层急冷晶区
z柱状晶区的晶粒垂直 于型壁排列,且平行 于热流方向.
z内部等轴晶区的晶粒 较为粗大;
中间柱状晶区
第七章 凝固金属的组织结构
4

几种不同类型的铸件宏观组织示意图
(a)只有柱状晶;(b)表面细等轴晶加柱状晶;(c)三个晶区都有;(d)只有等轴晶
第七章 凝固金属的组织结构
5

三、铸态组织形成原因
? 1. 表面细晶粒
z 型壁激冷,大量生核; z 三维散热,生长迅速,
相互抑制; z 生长无方向性。
第七章 凝固金属的组织结构
6

材料连接原理课后答案全

答:能量密度高、快速实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。 主要指标:最小加热面积、最大功率密度和正常焊接规范条件下的温度。 2.试述焊接接头的形成过程及对焊接质量的影响。 答:(1)预压阶段;(2)通电加热阶段;(3)冷却结晶阶段。 对焊接质量的影响: 3.溶滴比表面积的概念及对焊接化学冶金过程的影响? 答:熔滴的表面积Ag与其质量之比称为熔滴的比表面积S。 熔滴的比表面积越大,熔滴与周围介质的平均相互作用时间越长,熔滴温度越高,越有利于加强冶金反应。 4.焊条熔化系数、熔敷系数的物理意义及表达式?真正反映焊接生产率的指标是什么?答:焊条金属的平均融化速度:在单位时间内熔化的焊芯质量或长度; 损失系数:在焊接过程中由于飞溅、氧化和蒸发而损失的金属质量与熔化的焊芯质量之比; 平均熔敷系数(真正反映焊接生产率的指标),由于损失系数不等于零,单位时间内真正进入焊接熔池的金属质量称为平均熔敷速度。 5.试简述不锈钢焊条药皮发红的原因?有什么解决措施?(简) 答:药皮发红的原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。 解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。 6.熔合比的表达式和影响因素?多层焊时,如果各层间的熔合比是恒定的,试推导第n层焊缝金属的成分? 答:表达式: 影响因素:焊接方法、焊接工艺参数、接头尺寸形状、坡口形状、焊道数目、母材热物理性能等。 7.从传热学角度说明临界板厚δcr的概念?某16Mn钢焊件,采用手工电弧焊,能量E=15KJ/cm求δcr? 答:由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc和t8/5不再变化,此时板厚即为临界板厚δcr。 8.手工电弧焊接厚12mm的MnMoNbB钢,焊接线能量E=2kj/cm,预热温度为50度,求t8/5?附λ=(cms℃) CP= J/(cms℃) 9.直流正接为何比直流反接时焊缝金属熔氢量高? 答:(1)直流正接:工件接正极。直流反接:工件接负极。

题库---微电子工艺原理

微电子工艺原理复习知识点与题库 一、绪论微电子工艺的概述 知识点:集成度、摩尔定律、微电子系统的概念 1集成电路的制作可以分成三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。 2评价发展水平:最小线宽,硅晶圆片直径,DRAM容量 二、晶体结构和晶体生长 知识点: 5金刚石结构特点:共价四面体,内部存在着相当大的“空隙” 6面心立方晶体结构是立方密堆积,(111)面是密排面。 7金刚石结构可有两套面心立方结构套购而成,面心立方晶格又称为立方密排晶格。 8双层密排面的特点:在晶面内原子结合力强,晶面与晶面之间距离较大,结合薄弱。两个双层面间,间距很大,而且共价键稀少,平均两个原子才有一个共价键,致使双层密排面之间结合脆弱 9金刚石晶格晶面的性质:由于{111}双层密排面本身结合牢固,而双层密排面之间相互结合脆弱,在外力作用下,晶体很容易沿着{111}晶面劈裂。 由{111}双层密排面结合牢固,化学腐蚀就比较困难和缓慢,所以腐蚀后容易暴露在表面上。因{111}双层密排面之间距离很大,结合弱,晶格缺陷容易在这里形成和扩展。 {111}双层密排面结合牢固,表明这样的晶面能量低。由于这个原因,在晶体生长中有一种使晶体表面为{111}晶面的趋势。 10肖特基缺陷:如果一个晶格正常位置上的原子跑到表面,在体内产生一个晶格空位,称肖特基缺陷。 11弗伦克尔缺陷:如果一个晶格原子进入间隙,并产生一个空位,间隙原子和空位是同时产生的,这种缺陷为弗伦克尔缺陷。 12堆垛层错:在密堆积的晶体结构中,由于堆积次序发生错乱 13固溶体:当把一种元素B(溶质)引入到另一种元素A(溶剂)的晶体中时,在达到一定浓度之前,不会有新相产生,而仍保持原来晶体A的晶体结构,这样的晶体称为固溶体。 14固溶度:在一定温度和平衡态下,元素B能够溶解到晶体A内的最大浓度,称为这种杂质在晶体中的最大溶解度 15固溶体分类:替位式固溶体,间隙式固溶体 16某种元素能否作为扩散杂质的一个重要标准:看这种杂质的最大固溶度是否大于所要求的表面浓度,如果表面浓度大于杂质的最大固溶度,那么选用这种杂质就无法获得所希望的分布。 题目 三扩散工艺 知识点:

材料成型原理复习题

综合测试题一 模具寿命与材料成形加工及材料学 一、填空题(每小题2分,共20分) 1. 目前铸造成形技术的方法种类繁多按生产方法分类,可分为砂型铸造和特种铸造。 2. 在铸造生产中,细化铸件晶粒可采用的途径有增加过冷度、采用孕育处理和附加振动。 3. 铸铁按碳存在形式分灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁等。 4. 合金在铸造时的难易程度的衡量指标合金的流动性和收缩。 5. 合金的流动性主要取决于它本身的化学成分。 6. 压力加工的加工方法主要有:冲压、锻造、轧制、拉拔和 挤压等。 7. 合金的流动性常采用浇注螺旋型标准试样的方法来衡量, 8. 流动性不好的合金容易产生浇不足、冷隔、气孔、夹渣等缺陷。 9. 液态金属的充型能力主要取决于金属的流动性,还受外部条件如浇注温度、充型压力、铸型结构和铸型材料等因素的影响,是各种因素的综合反映。 10.金属由浇注温度冷却到室温经历了液态收缩、凝固收缩和固态收缩三个相互关联的收缩阶段。 11.液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。固态收缩对铸件的形状和尺寸精度影响很大,是内应力、变形和裂纹等缺陷产生的基本原因。 12.铸造中常产生的铸造缺陷有缩孔、缩松、浇不足、裂纹、内应力、夹渣和夹砂等

13. 特种铸造相对于砂型铸造的两类特点:型模的革新和充型方式的变更。 14.常用特种铸造方法金属型铸造、压力铸造、离心铸造、消失模铸造和熔模铸造、壳型铸造等。 15.衡量金属锻造性能的两个指标塑性和变形抗力。 16.自由锻造常用设备空气锤和水压机。 17.自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割、扭转和错移等。 18.镦粗的变形特点横截面积变大,长度变短普通拔长的变形特点横截面积变小,长度变长芯轴拔长的变形特点内孔直径不变,长度变长,壁厚变薄。 19.锻造温度范围是指始锻温度与终锻温度之差。后者过低易产生加工硬化现象。 20. 锤上模锻的实质金属在模膛内成形和变形阻力大,变形不均匀。 21. 模膛的分类制坯模膛和模锻模膛。 22. 板料冲压中分离工序有冲孔、落料、剪切和修整等。变形工序有拉深、弯曲、翻边和成形等。 23. 电弧燃烧实质是指电弧的产生、运动和消失的动态平衡。 24. 电弧分为阴极区、阳极区和弧柱区三个区。 25. 直流电焊机正接极是指焊件接正极,焊条接负极。 26. 焊接冶金过程的特点反应温度高、接触面积大、冷却速度快。 27. 焊接接头是指焊缝和热影响区。焊接热影响区包括熔合区、过热区、正火区、部分相变区和再结晶区。 28. 焊接应力和变形产生的原因对焊缝区不均匀的加热和冷却。

材料连接原理复习题

材料连接原理复习题 1、试简述焊条的工艺性能? 焊接电弧的稳定性;焊缝成型;各种位置焊接的适应性;飞溅;脱渣性;焊条熔化速度;焊条药皮发红;焊接烟尘。 2、试简述低氢焊条熔敷金属含氢量低的原因? (1)药皮中不含有机物,清除了一个主要氢源 (2)药皮中加入了大量的造气剂、CaCO3、降低了PH2 3)CaF2的去氢作用 (4)焊条的烘干温度高 3、试简述不锈钢焊条药皮发红的原因?有什么解决措施? 原因:不锈钢焊芯电阻大,焊条熔化系数小造成焊条熔化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红 措施:调整焊条药皮配方,使焊条金属由短路过渡转为细颗粒过渡,提高焊条的熔化系数,减少电阻热以降低焊条的表面温度。 4、CO2焊接低合金钢一般选用何种焊丝?试分析其原因? 5、试分析说明钛钙型(J422)焊条与碱性低氢型(J507)焊条,在使用工艺性和焊缝力学性能方面有哪些差别? 其他工艺性能如全位置焊接性,融化系数等差别不大 机械性能对比: 钛钙型(J422) (1)S、P、N控制较差,冷脆性、热裂纹倾向大 (2)【O】高,氧化夹杂多,韧性低 (3)【H】高,抗冷裂能力差

碱性低氢型(J507) (1)杂质S、P、N低 (2)【O】低,氧化夹杂少 (3)【H】低 故低氢型焊条的塑性,韧性及抗裂性较酸性的钛钙型大大提高,但其焊接工艺性能较差,对于铁锈,油污,水份等很敏感。 6、熔合比的表达式和影响因素? 7、直流正接为何比直流反接时焊缝金属含氢量高? 8、简述氮对低碳合金钢焊缝金属性能的影响? 1、N引起焊缝金属时效脆化,使焊缝金属强度提高,塑性、韧性降低,尤其是低温韧性; 2、使焊缝金属产生时效脆化。 3、促使焊缝产生氮气孔; 4、N有时是有益的,但必须有弥散强化元素存在并在正火条件下使用。 9、试简述氢对结构钢焊接质量的影响? 氢脆;白点;气孔;冷裂纹;组织变化。 10、试简述氧对焊接质量的影响? (1)影响焊缝机械性能:塑性、韧性下降;引起热能、冷脆,时效硬化; (2)影响焊缝金属的物理、化学性能。如降低导电性、导磁性、耐蚀性等; (3)形成CO气孔; (4)造成飞溅,影响焊接过程的稳定性; (5)焊接过程中导致合金元素的氧化损失将恶化焊接性能; (6)氧在特殊情况下是有益的,如为了改善电弧特性。降低焊缝金属中的含氢量等。11、为什么碱性焊条对铁锈和氧化皮的敏感性大?而碱性焊条焊缝含氢量比酸性焊条低? 12、用某两种焊条焊接,焊条中含硫量相同。为什么焊后渣为碱性的焊缝含硫量小于渣为酸性的焊缝含硫量?

材料成型原理

21.铸件宏观组织的控制途径与措施 1.铸件结晶组织对铸件质量和性能的影响 表面细晶粒区薄,对铸件的质量和性能影响不大。 铸件的质量与性能主要取决于柱状晶区与等轴晶区的比例以及晶粒的大小。 (1)柱状晶: 生长过程中凝固区域窄,横向生长受到相邻晶体的阻碍,枝晶不能充分发展,分枝少,结晶后显微缩松等晶间杂质少,组织致密。 但柱状晶比较粗大,晶界面积小,排列位向一致,其性能具有明显的方向性:纵向好、横向差。凝固界面前方常汇集有较多的第二相杂质气体,将导致铸件热裂。 (2)等轴晶: 晶界面积大,杂质和缺陷分布比较分散,且各晶粒之间位向也各不相同,故性能均匀而稳定,没有方向性。 枝晶比较发达,显微缩松较多,凝固后组织不够致密。 细化能使杂质和缺陷分布更加分散,从而在一定程度上提高各项性能。晶粒越细综合性能越好。 对塑性较好的有色金属或奥氏体不锈钢锭,希望得到较多的柱状晶,增加其致密度; 对一般钢铁材料和塑性较差的有色金属铸锭,希望获得较多的甚至是全部细小的等轴晶组织;对于高温下工作的零件,通过单向结晶消除横向晶界,防止晶界降低蠕变抗力。 2.铸件宏观组织的控制途径和措施 等轴晶组织的获得和细化 强化非均匀形核促进晶粒游离抑制柱状晶区 1)加入强生核剂——孕育处理 孕育——向液态金属中添加少量物质以达到增加晶核数、细化晶粒、改善组织之目的的一种方法。 变质——加入少量物质通过元素的选择性分布而改变晶体的生长形貌,如球化或细化。 A.形核剂: a)直接作为外加晶核 b)通过与液态金属的相互作用而产生非均匀晶核 能与液相中某些元素组成较稳定的化合物 通过在液相中造成大的微区富集而使结晶相提前弥散析出 B.强成分过冷元素: 通过在生长界面前沿的富集而使晶粒根部和树枝晶分枝根部产生细弱缩颈,从而促进晶粒的游离。 强化熔体内部的非均匀形核孕育剂富集抑制晶体生长

电子陶瓷工艺原理图文

电子陶瓷 第三章电子陶瓷工艺原理 1 第三章电子陶瓷工艺原理 一电子陶瓷工艺概述 二电子陶瓷原料与粉碎 三电子瓷料合成原理 四电子陶瓷成型原理 五电子陶瓷烧结原理 六电子陶瓷表面加工 2 一电子陶瓷工艺概述 1 电子陶瓷基本工艺: 通常,从性能的改进来改善陶瓷材料的功能,需要从两方面入手:①内部组成:从材料的组成上直接调节,优化其内在品质②外界条件:改变工艺条件以改善和提高陶瓷材料性能,达到获得优质电子陶瓷材料的目的。 电子陶瓷基本工艺一般包括如下过程: 原料处理和加工、电子瓷料合成、成型、烧结、表面加工等基本单元操作。 3

(a(b (c(d(e (g (f (h 一电子陶瓷工艺概述 2 电子陶瓷工业化流程: 造粒与成型 喷雾造粒干压成型 6 一电子陶瓷工艺概述

2 电子陶瓷工业化流程: 烧结与表面金属化 陶瓷烧结印刷电极 7 一电子陶瓷工艺概述 2 电子陶瓷工业化流程: 测试与包装 测试分选编带包装 8 二电子陶瓷原料与粉碎 1 电子陶瓷原料 2原料粒度与粉碎 3球磨法原理 9 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料对电子陶瓷的性能至关重要,对于电子陶瓷的粉料,必须了解下列三方面情况: ?化学成分

包括纯度、杂质的种类与含量、化学计量比 ?颗粒度 包括粉粒直径、粒度分布与颗粒外形等 ?结构 包括结晶形态、稳定度、裂纹与多孔性等 10 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料的化学成分,直接关系到电子陶瓷的各项物 理性能是否能够得到保证,而颗粒度与结构主要决定 坯体的密度及其可成型性。 粒度越细,结构越不完整,则其活性(不稳定性、可烧结性越大,越有利于烧结的进行。 电子陶瓷原料有天然原料和化工原料两类。 11 二电子陶瓷原料与粉碎 1 电子陶瓷原料 ?天然原料: 直接来源于大自然,如粘土,石英,菱镁矿,刚玉矿等。

材料连接原理

1.试简述焊条的工艺性能? 焊接电弧的稳定性;焊缝成型;各种位置焊接的适应性;飞溅;脱渣性;焊条熔化速度;焊条药皮发红;焊接烟尘。 2.试简述药芯焊丝的特性? (1) 熔敷速度快,因而生产效率高; (2) 飞溅小; (3) 调整熔敷金属成分方面; (4) 综合成本低。 3.试简述低氢焊条熔敷金属含氢量低的原因? (1)药皮中不含有机物,清除了一个主要氢源; (2)药皮中加入了大量的造气剂CaCO3、降低了PH2; (3)CaF2的去氢作用; (4)焊条的烘干温度高。 4.试简述不锈钢焊条药皮发红的原因?有什么解决措施? 药皮发红的原因:不锈钢寒心电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。 解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。 5.CO2焊接低合金钢一般选用何种焊丝?试分析其原因? 答:应选用Si、Mn等脱氧元素含量较高的焊丝,常用的如:H08Mn2SiA。 (1)CO2具有较强的氧化性,一方面使焊丝中有益的合金元素烧损,另一方面使熔池中【FeO】含量升高。 (2)如焊丝中不含脱氧元素或含量较低,导致脱氧不足,熔池结晶后极易产生CO气孔。(3)按一定比例同时加入Mn、Si联合脱氧,效果较好。 6.试分析说明钛钙型(J422)焊条与碱性低氢型(J507)焊条,在使用工艺性和焊缝力学性能方面有哪些差别? 其他工艺性能如全位置焊接性,融化系数等差别不大 机械性能对比: 钛钙型(J422) (1)S、P、N控制较差,冷脆性、热裂纹倾向大 (2)【O】高,氧化夹杂多,韧性低 (3)【H】高,抗冷裂能力差 碱性低氢型(J507)

微电子工艺原理习题

微电子工艺原理习题 一、填空题 1.传统集成电路制造工艺的发展以的出现作为大致的分界线,现代集成电路制造工艺进入超大规模集成电路后又以工艺的作为划分标志。 2.能提供多余空穴的杂质称为,P型半导体中的多子是。 3.多晶硅转变成单晶硅的实质是。 4.单晶硅拉制过程中引晶阶段的温度选择非常重要,温度过高时会造成,温度过低时会形成。 5.SiO 2 网络中氧的存在有两种形式,其中原子浓度越高,网络的强度越强;原子浓度越高,网络的强度越弱。 6.目前常用的两种掺杂技术是和。 7.完整的光刻工艺应包括和两部分,随着集成电路生产在微细加工中的进一步细分,后者又可独立成为一个工序。 8.伴随刻蚀工艺实现的图形转换发生在和之间。 9.按照功能和用途进行分类,集成电路可以分为和两类。 10.能提供多余电子的杂质称为,N型半导体中的少子是。11.固溶体分为替位式固溶体和间隙式固溶体,两类大部分施主和受主杂质都与硅形成 固溶体。 12.单晶硅的性能测试涉及到的测试、的测试和缺陷检验等多个方面。 13.SiO 2中掺入杂质的种类对SiO 2 网络强度的影响表现在:掺入Ⅲ族元素如硼时,网络强 度;掺入Ⅴ族元素如磷时,网络强度。 14.常用的芯片封装方法有、和陶瓷封装。 15.光刻胶又叫,常用的光刻胶分为和两类。

1.下列有关集成电路发展趋势的描述中,不正确的是。 (A)特征尺寸越来越小(B)晶圆尺寸越来越小 (C)电源电压越来越低(D)时钟频率越来越高 2.下面几种薄膜中,不属于半导体膜的是。 (A)SiO 2 膜(B)单晶硅膜(C)多晶硅膜(D)GaAs膜 3.下列有关芯片封装的描述中不正确是。 (A)金属封装热阻小有良好的散热性能(B)塑料封装机械性能差,导热能力弱(C)金属封装成本低,塑料封装成本高(D)陶瓷封装的气密性好,但脆性较高4.下列选项中属于光刻工艺三要素之一的是。 (A)曝光(B)光刻胶(C)显影(D)刻蚀 5.下列有关扩散的几种描述中不正确的是。 (A)扩散是一种掺杂技术。(B)扩散有气态扩散、液态扩散和固态扩散三种。(C)替位型杂质在硅中的扩散方式有替代扩散、空位扩散以及间隙扩散三种。(D)替位型杂质的掺入不会改变材料的电学性质。 6.下列关于光刻胶的描述中正确的是。 (A)负胶具有较高的固有分辨率(B)正胶成本低,适合大批量生产(C)正胶的分辨率高,抗干法腐蚀能力强(D)负胶粘附性差,抗湿法腐蚀能力弱7.硅片中同时有浅施主和浅受主时,导电类型和载流子浓度由决定。 (A)杂质浓度差(B)施主杂质(C)受主杂质(D)杂质浓度和 8.下面几种材料的薄膜中,不属于介质膜的是。 (A)SiO 2膜(B)Si 3 N 4 膜(C)多晶硅膜(D)Al 2 O 3 膜 9.下列因素中对扩散系数大小不会造成影响的是。 (A)温度(B)杂质种类(C)扩散环境(D)杂质浓度变化率10.关于干法刻蚀的正确描述是。 (A)化学性刻蚀选择比高且是各向异性刻蚀; (B)反应离子刻蚀(RIE)兼具各向异性与高选择比等优点; (C)化学性刻蚀方向性好,可获得接近垂直的刻蚀侧墙; (D)物理性刻蚀的选择性好。

材料成型原理课后题答案

第三章: 8:实际金属液态合金结构与理想纯金属液态结构有何不同 答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。液态中存在着很大的能量起伏。而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。 12:简述液态金属的表面张力的实质及其影响因数。 答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。 影响因数:熔点、温度和溶质元素。 13:简述界面现象对液态成形过程的影响。 答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。 15:简述过冷度与液态金属凝固的关系。 答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。液态金属不会在没有过冷度的情况下凝固。 16:用动力学理论阐述液态金属完成凝固的过程。 答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。 17:简述异质形核与均质形核的区别。 答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。 异质形核与固体杂质接触,减少了表面自由能的增加。 异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。 18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长 答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。 ②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。 19:简述晶体的微观长大方式及长大速率。 答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。 20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响 答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。 凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固

材料连接原理(邹家生主编)

材料连接原理课后习题答案及期末复习资料 简答: 1.焊接热源有哪些共同要求?描述焊接热源主要用什么指标? 答:能量密度高度集中、快速实现实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。 主要指标:最小的加热面积、最大功率密度和正常焊接规范条件下的温度。 5.试简述不锈钢焊条药皮发红的原因?有何解决措施? 答:原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。 解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。 7.从传热学角度说明临界板厚δcr 的概念?某16Mn 钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr ? 由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc 增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc 和t8/5不再变化,此时板厚即为临界板厚δcr 。 00 1.952c -T 800-T cr E cm δρ= =11(+)500 8.手工电弧焊接厚12mm 的MnMoNbB 钢,焊接线能量E=2kj/cm,预热温度为50度,η取0.9.求t8/5?附λ=0.29J/(cm s ℃) CP=6.7 J/(cm s ℃) 9.直流正接为何比直流反接时焊缝金属溶氢量高? 答:(1)直流正接:工件接正极。直流反接:工件接负极。 (2)带电质点H+ 在电场作用下只溶于阴极。 (3)处于阴极的熔滴不仅温度高而且比表面积大,其溶氢量大于熔池处于阴极时的溶氢量。 10简述氢对焊缝质量的影响? s T T t cm T T c E E cr cr 88.0)80015001(: ,75.0/69.0)8001 5001(20 025/80 0=-+-=>=-+-=πλ ηδδρηδ故采用厚板公式

材料成型原理第四章答案

第四章 1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。 答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的 现象。 溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。 当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示: 液相线及固相线为直线,假设 其斜率分别为m L 及m S ,虽然 C *S 、C *L 随温度变化有不同值,但 L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, — 此时,K 0与温度及浓度无关, 所以,当液相线和固相线为直 线时,不同温度和浓度下K 0为 定值。 2. 某二元合金相图如右所示。合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。温度梯度大到足以使固-液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。 解:(1)平衡分配系数K 0 的求解: 由于液相线及固相线均为直 线不同温度和浓度下K 0为 定值,所以:如右图, 当T=500℃时, K 0 =**L C C α=%60%30= K 0即为所求 α相与液相之间的 平衡分配系数. (2)凝固后共晶体的数量占试棒长度的百分数的计算: > 由固相无扩散液相均匀混合下溶质再分配的正常偏析方程 、 图 4-43 二元合金相图K 0<1C 0K 0C 0/K 0T C *S C *L C 0C T *Tm

数据库原理课后习题答案

第1章绪论 2 .使用数据库系统有什么好处? 答:使用数据库系统的优点是很多的,既便于数据的集中管理,控制数据冗余,提高数据的利用率和一致性,又有利于应用程序的开发和维护。 6 .数据库管理系统的主要功能有哪些? 答:( l )数据库定义功能;( 2 )数据存取功能; ( 3 )数据库运行管理;( 4 )数据库的建立和维护功能。 8 .试述概念模型的作用。 答:概念模型实际上是现实世界到机器世界的一个中间层次。概念模型用于信息世界的建模,是现实世界到信息世界的第一层抽象,是数据库设计人员进行数据库设计的有力工具,也是数据库设计人员和用户之间进行交流的语言。 12 .学校中有若干系,每个系有若干班级和教研室,每个教研室有若干教员,其中有的教授和副教授每人各带若干研究生;每个班有若干学生,每个学生选修若干课程,每门课可由若干学生选修。请用 E 一R 图画出此学校的概念模型。 答:实体间联系如下图所示,联系-选修有一个属性:成绩。 各实体需要有属性说明,需要画出各实体的图(带属性)或在下图中直接添加实体的属性,比如:学生的属性包括学号、姓名、性别、身高、联系方式等,此略。 13 .某工厂生产若干产品,每种产品由不同的零件组成,有的零件可用在不同的产品上。这些零件由不同的原材料制成,不同零件所用的材料可以相同。这些零件按所属的不同产品分别放在仓库中,原材料按照类别放在若干仓库中。请用 E 一R 图画出此工厂产品、零件、材料、仓库的概念模型。 答:各实体需要有属性,此略。 联系组成、制造、储存、存放都有属性:数量。

20 .试述数据库系统三级模式结构,这种结构的优点是什么? 答:数据库系统的三级模式结构由外模式、模式和内模式组成。 外模式,亦称子模式或用户模式,是数据库用户(包括应用程序员和最终用户)能够看见和使用的局部数据的逻辑结构和特征的描述,是数据库用户的数据视图,是与某一应用有关的数据的逻辑表示。 模式,亦称逻辑模式,是数据库中全体数据的逻辑结构和特征的描述,是所有用户的公共数据视图。模式描述的是数据的全局逻辑结构。外模式涉及的是数据的局部逻辑结构,通常是模式的子集。 内模式,亦称存储模式,是数据在数据库系统内部的表示,即对数据的物理结构和存储方式的描述。 数据库系统的三级模式是对数据的三个抽象级别,它把数据的具体组织留给DBMs 管理,使用户能逻辑抽象地处理数据,而不必关心数据在计算机中的表示和存储。数据库系统在这三级模式之间提供了两层映像:外模式/模式映像和模式/内模式映像,这两层映像保证了数据库系统中的数据能够具有较高的逻辑独立性和物理独立性。 22 .什么叫数据与程序的物理独立性?什么叫数据与程序的逻辑独立性?为什么数据库系统具有数据与程序的独立性? 答:数据与程序的逻辑独立性是指用户的的应用程序与数据库的逻辑结构是相互独立的。 数据与程序的物理独立性是指用户的的应用程序与存储在磁盘上的数据库中数据是相互独立的。 当模式改变时(例如增加新的关系、新的属性、改变属性的数据类型等),由数据库管理员对各个外模式/模式的映像做相应改变,可以使外模式保持不变。应用程序是依据数据的外模式编写的,从而应用程序不必修改,保证了数据与程序的逻辑独立性,简称数据的逻辑独立性。 当数据库的存储结构改变了,由数据库管理员对模式/内模式映像做相应改变,可以使模式保持不变,从而应用程序也不必改变,保证了数据与程序的物理独立性,简称数据的物理独立性。数据库管理系统在三级模式之间提供的两层映像保证了数据库系统中的数据能够具有较高的逻辑独立性和物理独立性。

相关文档
最新文档