简谐运动及其图象(习题)

简谐运动及其图象(习题)
简谐运动及其图象(习题)

简谐运动及其图象

一、选择题

1.弹簧上端固定在O 点,下端连结一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,下列说法正确的是( ). A .球的最低点为平衡位置

B .弹簧原长时的位置为平衡位置

C .球速为零的位置为平衡位置

D .球原来静止的位置为平衡位置

2.如图所示为某物体做简谐运动的图像,下列说法中正确的是( ). A .由P→Q 位移在增大 B .由P→Q 速度在增大

C .由M→N 速度是先减小后增大

D .由M→N 位移始终减小

3.如图所示为质点P 在0~4 s 内的振动图像,下列叙述正确的是( ). A .再过1 s ,该质点的位移是正的最大值 B .再过1 s ,该质点回到平衡位置 C .再过1 s ,该质点的速度方向向上 D .再过1 s ,该质点的速度方向向下

4.一水平弹簧振子的振动周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ).

A .正在向右做减速运动

B .正在向右做加速运动

C .正在向左做减速运动

D .正在向左做加速运动

5.一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到2

A x =处所经最短时间为t 1,第一次从最大正位移处运动到2

A

x =

处所经最短时间为t2(如图).关于t 1与t 2,以下说法正确的是( ).

A .t 1=t 2

B .t 1<t 2

C .t 1>t 2

D .无法判断

6.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( ). A .3

810sin(4)m 2x t π

π-=?+

B .3810sin(4)m 2

x t π

π-=?-

C .13810sin()m 2x t ππ-=?+

D .1810sin()m 42

x t ππ-=?+ 7.一弹簧振子在振动过程中,振子经a 、b 两点的速度相同,若它从a 到b 历时0.2 s ,从b 再回

到a 的最短时间为0.4 s ,则振子的振动频率为( ). A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz

8.一个质点在平衡位置O 点附近做简谐运动,如图所示,若从O 点开始计时,经过3 s 质点第一次经过M 点,再继续运动,又经过2 s 它第二次经过M 点,则该质点第三次经过M 点还需的时间是( ). A .8 s B .4 s C .14 s D .

10

s 3

9.如图(a )是演示简谐运动图像的装置,当盛沙漏斗下面的薄木板N 被匀速地拉出时,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO '代表时间

轴.如图(b)是两个摆中的沙在各自木板上形成的曲线.若板N1和板N2的速度v1和v2的关系为v2=2v1.当两板匀速拉出的距离相同时,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为().

A.T2=T1B.T2=2T1C.T2=4T1D.T2=1

4

T1

10.弹簧振子在t1时刻速度为v,t2时刻速度也为v,且方向相同,已知(t2-t1)小于周期T,则(t2-t1)(t≠0)().

A.可能大于四分之一周期B.可能小于四分之一周期

C.一定小于二分之一周期D.可能等于二分之一周期

二、填空题

12.如图甲所示的频闪照片中,取小球在中心位置O(平衡位置)时为t=0,此时小球向右运动,设水平向右的位移为正,每次曝光的时间间隔为Δt.请你用图中刻度尺测量小球在不同时刻的位移(刻度尺最小刻度为mm),记录在你设计的表格中,根据记录的数据在图乙所示的坐标平面上描绘出振子做简谐运动的位移一时间图像.

13.如图所示是某质点做简谐运动的振动图像,根据图中的信息,回答下列问题.

(1)质点离开平衡位置的最大位移是多少?

(2)在1.5 s和2.5 s两个时刻,质点向哪个方向运动?

(3)质点在第2秒末的位移是多少?在前4秒内的路程是多少?

14.甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.

(1)甲开始观察时,振子正好在平衡位置并向下运动,试在图(a)中画出甲观察到的弹簧振子的振动图像.已知经过1 s后,振子第一次回到平衡位置,振子振幅为5 cm(设平衡位置上方为正方向,时间轴上每格代表0.5 s).

(2)乙在甲观察3.5 s后,开始观察并记录时间,试画出乙观察到的弹簧振子的振动图像.画在图(b)上.

15.如图所示为A、B两个简谐运动的位移一时间图像.

请根据图像写出:

(1)A、B两个简谐运动的振幅及周期分别是多少?

(2)这两个简谐运动的位移随时间变化的关系式.

(3)在时间t=0.05 s时两质点的位移分别是多少?

【答案与解析】

一、选择题

1.【答案】D

【解析】平衡位置是振动系统不振动时,振子处于平衡状态时所处的位置,故D项正确.

2.【答案】A

【解析】简谐运动位移是以平衡位置为初始位置的,P→Q的过程位移在增大,速度在减小,故A 项正确,B项错误;由M→N速度先增大后减小,故C项错误;M→N位移先减小后增大,故D项错误.

3.【答案】A

4.【答案】B

【解析】0.17 s=6.8T ,振予经6T ,回到原位置,只考虑0.8T 时的位置,此时振子在平衡位置左侧,正向平衡位置做加速运动.故B 选项正确.

5.【答案】B

【解析】从0到2A 过程振子的平均速度大,从A 到2

A

过程振子的平均速度小,所以t 1<t 2. 6.【答案】A

【解析】A=0.8×10-

2 m ;T=0.5 s ;24T

π

ωπ=

=;初时刻具有负方向的最大加速度,即初相位2

π

?=

,则3

810sin 4m 2x t ππ-??

=??+

??

?

. 7.【答案】B

【解析】振子经a 、b 两点的速度相同,根据振子做周期性运动的特点可知,a 、b 两点是关于平衡位置O (如图所示)对称的.

又由从b 回到a 的最短时间为0.4 s 知,振子振动到b 点后是第一次回到a 点,且a 、b 两点不是振子的最大位移.设图中c 、d 为最大位移处,则振子b→c→b 历时0.2 s .同理振子由a→d→a 也应历时0.2 s ,故振予的振动周期应为0.8 s ,由周期和频率关系不难确定频率为1.25 Hz ,故选B .

8.【答案】C 、D 【解析】设题图中a 、b 两点为质点振动过程中最大位移处,若开始计时时质点从O 点向右运动.从O 到M 过程历时3 s .再M→b→M 的过程历时2 s ,则有

4s 4

T

=,即T=16 s .质点第三次经过M 点还需时间为Δt=16 s -2 s=14 s ,故C 正确.

若开始计时时质点从O 点向左运动,则O→a→O→M 运动经历3 s ,从M→b→M 历时2 s ,显然

4s 24T T +=得16s 3T =,质点第3次再经过M 点还需时间1610

s 2s s 33

t ?=-=,故D 正确. 9.【答案】D

【解析】因N 2板和N 1板匀速拉过的距离相同,故两板运动时间之比

12

21

2t v t v ==. 在这段距离内N 1板上方的摆只完成一个全振动,N 2板上方的摆已完成两个全振动,即t 1=T 1,t 2=2T 2. 故211

4

T T =

,D 项正确。 10.【答案】A 、B

【解析】如图所示弹簧振子在AA '间做简谐运动,O 为平衡位置,C 、C '分别是OA 和OA '间的以O 对称的两位置,根据对称性,从C→O→C '过程中,C 、C '两位置均有向右的速度v . 若C 对应t 1时刻,C '对应t 2时刻,则t 2-t 1=nT+Δt (n=0,1,2,3,…).

其中Δt 为t 2-t 1的最小值,对应的运动过程是C→O→C ',由图所示:02

T

t

;根据题意有,t 2-t 1<T ,即21702t t <-<.进一步观察:C 、C '可无限靠近0,因此Δt 可无限短,即Δt 可小于1

4

T ,

也可大于1

4

T ,故A 、B 正确.

若C '对应t 1时刻,C 对应t 2时刻,则t 2-t 1=nT+Δt '(n=0,1,2,3,…),其中Δt '为t 2-t 1

的最小值,对应的运动过程是:C '→A '→C '→O→C→A→C ,由图可知:

'2

T

t T

T

t t T <-<,所以C 、D 不正确. 二、填空题

11.【答案】见解析

三、解答题

12.【答案】见解析

13.【答案】(1)10 cm . (2)1.5 s 向着平衡位置运动,2.5 s 背离平衡位置运动. (3)0. (4)40 cm .

【解析】由题中图像上的信息可知,

(1)质点离开平衡位置的最大距离就是x 的最大值10 cm .

(2)在1.5 s 以后的时间质点位移减少,因此在1.5 s 时是指向平衡位置运动,在2.5 s 以后的时间位移增大,因此在2.5 s 时是背离平衡位置运动.

(3)质点在2 s 末时在平衡位置,因此位移为零.质点在前4 s 内的路程为4×10 cm=40 cm .

14.【答案】见解析 【解析】(1)由题意知,振子的振动周期T=2 s ,振幅A=5 cm .根据正方向的规定,甲观察时,振子从平衡位置向一-y 方向运动,经t=0.5 s ,到达负向最大位移.画出的甲观察到的振子的振动图像如图(a )所示. (2)因为t=3.5 s=3

1

4

T ,根据振动的周期性,这时振子的状态跟经过时间3'4t T =的状态相同,

所以乙开始观察时,振子正好处于正向最大位移处.画出的乙观察到的振子的振动图像如图(b )所示.

15.【答案】见解析 【解析】(1)由图像知A 的振幅是0.5 cm ,周期是0.4 s ;B 的振幅是0.2 cm 。周期是0.8 s .

(2)由图像知,A :说明振动的质点从平衡位置沿负方向已振动了1

2

周期,0?π=,由T=0.4 s 得2T

π

ω=

=5π。则简谐运动的表达式:0.5sin(5)A x t ππ=+ B :说明振动的质点从平衡位置沿正方向已振动了

14周期,02

π?=,由T=0.8 s ,得

2 2.5T πωπ=

=,则简谐运动的表达式:0.2sin(2.5)2

B x t ππ=+。 (3)将t=0.05 s 分别代入两个表达式中得:

5

0.2sin(2.50.05)cm 0.2sin cm 28

B x πππ=?+=?,即x B =0.18 cm 。

【方法技巧】(1)简谐运动的表达式0sin()x A t ω?=+,要由图像写出表达式,首先要弄清楚振幅A ,周期T ,还有初相位0?。由公式2T

π

ω=

得出ω。 (2)由质点的振动图像我们可以得到很多信息,如振幅、周期、质点在不同时刻的位移,速度大小变化及方向、位移大小的比较和方向的判断等等。

机械简谐运动的两种典型模型

● 基础知识落实 ● 1、弹簧振子: 2.单摆 (1).在一条不可伸长、不计质量的细线下端系一质点所形成的装置.单摆是实际摆的理想化物理模型. (2).单摆做简谐运动的回复力 单摆做简谐运动的回复力是由重力mg 沿圆弧切线的分力F =mgsin θ提供(不是摆球所受的合外力),θ为细线与竖直方向的夹角,叫偏角.当θ很小时,圆弧可以近似地看成直线,分力F 可以近似地看做沿这条直线作用,这时可以证明F =- t mg x =-kx .可见θ很小时,单摆的振动是 简谐运动 . (3).单摆的周期公式 专题二 简谐运动的两种典型模型

①单摆的等时性:在振幅很小时,单摆的周期与单摆的 振幅 无关,单摆的这种性质叫单摆的等时性,是 伽利略 首先发现的. ②单摆的周期公式 π2 g l T =,由此式可知T ∝g 1,T 与 振幅 及 摆球质量 无关. (4).单摆的应用 ①计时器:利用单摆的等时性制成计时仪器,如摆钟等,由单摆的周期公式知道调节单摆摆长即可调节钟表快慢. ②测定重力加速度:由g l T π 2=变形得g =2 2 π4T l ,只要测出单摆的摆长和振动周期,就可以求 出当地的重力加速度. ③秒摆的周期秒 摆长大约M (5).单摆的能量 摆长为l ,摆球质量为m ,最大偏角为θ,选最低点为重力势能零点,则摆动过程中的总机械能为: E =mgl (1-cos θ) ,在最低点的速度为v = ) cos 1(2 θ-gl . 知识点一、弹簧振子: 1、定义:一根轻质弹簧一端固定,另一端系一质量为m 的小球就构成一弹簧振子。 2、回复力:水平方向振动的弹簧振子,其回复力由弹簧弹力提供;竖直方向振动的弹簧振子,其回复力由重力和弹簧弹力的合力提供。 3、弹簧振子的周期:k m T π 2= ① 除受迫振动外,振动周期由振动系统本身的性质决定。

知识讲解 简谐运动及其图象

简谐运动及其图象 编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.

(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件 (1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性 如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有: (1)时间的对称: 4 OB BO OA AO T t t t t ==== , OD DO OC CD t t t t ===,

高中物理《机械波》典型题(精品含答案)

《机械波》典型题 1.(多选)某同学漂浮在海面上,虽然水面波正平稳地以1.8 m/s 的速率向着海滩传播,但他并不向海滩靠近.该同学发现从第1个波峰到第10个波峰通过身下的时间间隔为15 s .下列说法正确的是( ) A .水面波是一种机械波 B .该水面波的频率为6 Hz C .该水面波的波长为3 m D .水面波没有将该同学推向岸边,是因为波传播时能量不会传递出去 E .水面波没有将该同学推向岸边,是因为波传播时振动的质点并不随波迁移 2.(多选)一振动周期为T 、振幅为A 、位于x =0点的波源从平衡位置沿y 轴正向开始做简谐运动.该波源产生的一维简谐横波沿x 轴正向传播,波速为v ,传播过程中无能量损失.一段时间后,该振动传播至某质点P ,关于质点P 振动的说法正确的是( ) A .振幅一定为A B .周期一定为T C .速度的最大值一定为v D .开始振动的方向沿y 轴向上或向下取决于它离波源的距离 E .若P 点与波源距离s =v T ,则质点P 的位移与波源的相同 3.(多选)一列简谐横波从左向右以v =2 m/s 的速度传播,某时刻的波形图如图所示,下列说法正确的是( ) A .A 质点再经过一个周期将传播到D 点 B .B 点正在向上运动 C .B 点再经过18T 回到平衡位置

D.该波的周期T=0.05 s E.C点再经过3 4T将到达波峰的位置 4.(多选)图甲为一列简谐横波在t=2 s时的波形图,图乙为媒质中平衡位置在x=1.5 m处的质点的振动图象,P是平衡位置为x=2 m的质点,下列说法中正确的是( ) A.波速为0.5 m/s B.波的传播方向向右 C.0~2 s时间内,P运动的路程为8 cm D.0~2 s时间内,P向y轴正方向运动 E.当t=7 s时,P恰好回到平衡位置 5.(多选)一列简谐横波沿x轴正方向传播,在x=12 m处的质点的振动图线如图甲所示,在x=18 m处的质点的振动图线如图乙所示,下列说法正确的是( ) A.该波的周期为12 s B.x=12 m处的质点在平衡位置向上振动时,x=18 m处的质点在波峰 C.在0~4 s内x=12 m处和x=18 m处的质点通过的路程均为6 cm D.该波的波长可能为8 m E.该波的传播速度可能为2 m/s 6.(多选)从O点发出的甲、乙两列简谐横波沿x轴正方向传播,某时刻两列波分别形成的波形如图所示,P点在甲波最大位移处,Q点在乙波最大位移处,

简谐运动典型例题

简谐运动典型例题 一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在s 40-内的振动图象,下列正 确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6)cm 则该振子振动的振幅和周期为( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=1.5s 开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) -

简谐运动典型例题精析

简谐运动?典型例题精析 [ 例题1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N 两点时速度v(v工0)相同,那么,下列说法正确的是 A.振子在M N两点受回复力相同 B.振子在M N两点对平衡位置的位移相同 C.振子在M N两点加速度大小相等 D.从M点到N点,振子先做匀加速运动,后做匀减速运动 [ 思路点拨] 建立弹簧振子模型如图9-1 所示.由题意知,振子第一 次先后经过M N两点时速度v相同,那么,可以在振子运动路径上确定M N两点,M N 两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的).建立起这样的物理模型,这时问题就明朗化了. [ 解题过程] 因位移速度加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A B选项错误.振

子在M N 两点的加速度虽然方向相反,但大小相等,故 C 选项正确?振子由 M RO 速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运 动.振子由O HN 速度越来越小,但加速度越来越大,振子做减速运动,但不 是匀减速运动,故D 选项错误.由以上分析可知,该题的正确答案为 C. [小结](1)认真审题,抓住关键词语.本题的关键是抓住“第一次先 后经过M N 两点时速度v 相同”. (2) 要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而 确定各物理量及其变化情况. (3) 要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解 决. [例题2] 一质点在平衡位置0附近做简谐运动,从它经过平衡位置起 开始计时,经0.13 s 质点第一次通过M 点,再经0.1s 第二次通过M 点,则 质点振动周期的可能值为多大? [思路点拨] 将物理过程模型化,画出具体的图景如图 9-2所示.设 质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为0.13 s , 再由M 经最右端A 返回M 经历时间为0.1 s ;如图9-3所示. 另有一种可能就是M 点在0点左方,如图9-4所示,质点由0点经最右 方A 点后團^-3

高中物理总复习简谐运动

简谐运动 一、本周内容: 1、简谐运动 2、振幅、周期和频率 二、本周重点: 1、简谐运动过程中的位移、回复力、加速度和速度的变化规律 2、简谐运动中回复力的特点 3、简谐运动的振幅、周期和频率的概念 4、关于振幅、周期和频率的实际应用 二、知识点要点: 1、机械振动 (1)定义:物体在平衡位置附近所做的往复运动,叫做机械振动,简称振动。 (2)产生振动的条件: ①物体受到的阻力足够小 ②物体受到的回复力的作用 手施力使水平弹簧振子偏离平衡位置,感到振子受到一指向平衡位置的力,它总要使振子返回平衡位置,所以叫做回复力。回复力是根据力的作用效果命名的。回复力可以是弹力,也可以是其他的力,或几个力的合力,或某个力的分力。 (3)机械振动是一种普遍的运动形式,大至地壳振动,小至分子、原子的振动。 2、简谐运动 (1)定义:物体在跟位移的大小成正比,并且总指向平衡位置的回复力作用下的运动,叫简谐运动 (2)条件:物体做简谐运动的条件是F=-kx,即物体受到的回复力F跟位移大小成正比,方向跟位移方向相反。 (3)对F=-kx的理解:对一般的简谐运动,k是一个比例常数,不同的简谐运动,K值不同,k是由振动系统本身结构决定的物理量,在弹簧振子中,k是弹簧的劲度系数。 3、简谐运动的特点 (1)回复力:物体在往复运动期间,回复力的大小和方向均做周期性的变化,物体处在最大位移处时的回复力最大,物体处于平衡位置时的回复力最小(为零),物体经过平衡位置时,回复力的方向发生改变。 (2)加速度:由力与加速度的瞬时对应关系可知,回复力产生的加速度也是周期性变化的,且与回复力的变化步调相同。 (3)位移:物体做简谐运动时,它的位移(大小和方向)也是周期性变化的,为研究问题方便,选取平衡位置位移的起点,物体经平衡位置时位移的方向改变。 (4)速度:简谐运动是变加速运动,速度的变化也具有周期性(包括大小和方向),物体经平衡位置时的速度最大,物体在最大位移处的速度为零,且物体的速度方向改变。 4、振幅(A) (1)定义:振动物体离开平衡位置的最大距离,单位:m (2)作用:描述振动的强弱。 (3)振幅和位移的区别:对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的,位移是矢量,振幅是标量,它等于最大位移的大小。

简谐运动典型例题

一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在内的振动图象,下列正确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6 )cm 则该振子振动的振幅和周期为 ( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 1 2 3 4 5 x/cm t/s 1 2 4 -2

6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) A .mg +k A B .mg -Ka C .kA D .kA -mg 4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以某时刻作为计时起点,即t =0,其振动图象如图所示,则( ) A .t =14T 时,货物对车厢底板的压力最大 B .t =1 2T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =3 4T 时,货物对车厢底板的压力最小 5.弹簧振子的质量为,弹簧劲度系数为,在振子上放一质量为m 的木块,使两者一起振动,如图。木块的回复力是振子对木块的摩擦力,也满足,是弹簧的伸长(或压缩)量,那么为( ) A . B . C . D . 6、一个弹簧振子,第一次被压缩x 后释放做自由振动,周期为T 1,第二次被压缩2x 后释放做自由振动,周期为T 2,则两次振动周期之比T 1∶T 2为 ( ) A .1∶1 B .1∶2 C .2∶1 D .1∶4

简谐运动教学难点的分析与突破

简谐运动教学难点的分析与突破 江苏省溧阳中学彭建武 简谐运动是一种变加速运动,对高一学生来说比前面学过的各种运动要复杂,是高中物理教学的难点之一。本文就这一教学难点形成的原因进行分析,并运用建构主义理论的某些观点,结合自己的教学实践,提出一些突破教学难点的思路和方法,供同行参考斧正。 1、难点形成原因分析 1.1从教学内容本身看,简谐运动是一种较复杂的变加速运动,而且要综合分析各种物理量之间的变化关系,学生难以形成比较深刻的理解,客观上有一定的难度。 1.2从教材结构看,教材处理的流程为:例举实例指出什么是机械振动,然后由弹簧振子引出简谐运动。其中对一次全振动的表述方法是由实例来说明,而不是用精辟的物理语言来下定义。这样学生的理解只能是肤浅的,对学生的继续学习带来困难。 1.3从学生的认识结构和能力水平来看,学生在此之前对位移的定义有很深的印象,他们对振子的位移是指偏离平衡位置的位移很难接受,这种思维定势绝不是通过几次讲解就能逆转的;学生对复杂运动的分析能力也是一个薄弱环节,给新授内容的理解和掌握造成了不可忽视的困难。 1.4从教学方法上看,有些教师在教学时省去了实验或很草率的做一下,缺少启发性,学生对规律缺乏正确的、深刻的理解,结果一旦遇到新的问题、新的情境,就无从下手,学生的能力得不到培养和发展,在主观上增加了教学难度。 2、突破难点的理论依据和教学思路 建构主义理论认为,学习过程不是学习者被动的接受知识,而是积极的建构知识的过程;在学校里,学习不是教师向学生传递知识的过程,而是学生建构自己的知识和能力的过程。只有充分发挥学生的主体作用,让学生积极参与教与学的整个活动,才能以其已有的知识和经验去过滤和解释新知识、新信息,并对新知识构建起自己的正确理解。因此教师在教学设计时,首先要考虑的不是将课本上的知识灌输给学生,而是为学生建构知识创造良好的环境。基于这种指导思想,我在进行教学设计时,首先通过实验,由此提出一些问题让学生去观察、思考,激发学生探索新知识的兴趣和动机,为突破难点提供良好的情境。其次,充分考虑学生的认知特点,激励学生积极思维,尽可能让学生去思考,教师只在适当的时候再做点拨、启发、整理归纳。这样,既有利于学生主动构建新知识,又利于学生创新精神的培养。第三,针对教学内容和物理学科之特点,借助多媒体,形象直观的展示物理过程及各物理量之间的变化关系,让学生对所学内有深层次的理解。第四加强对学生的学法指导,在学生对简谐运动有较深刻理解之后,通过典型问题的解释分析,达到巩固提搞的目的,这也是分解教学难点的具体方法。 3、突破难点的教学设计 3.1创造学生主动建构的情景 让学生观察下列实验:单摆的摆动、竖直弹簧振子的振动、水平弹簧振子的振动,且用标志物指示它们的中心位置。敏锐的学生会发现它们有共同的特征:以某位置为中心位置作往复运动,这样不但激起学生学习的动机,又把本节课的第一个学习任务——什么是机械振动,置于一个有利于

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

简谐运动及其图象(习题)

简谐运动及其图象 一、选择题 1.弹簧上端固定在O 点,下端连结一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,下列说法正确的是( ). A .球的最低点为平衡位置 B .弹簧原长时的位置为平衡位置 C .球速为零的位置为平衡位置 D .球原来静止的位置为平衡位置 2.如图所示为某物体做简谐运动的图像,下列说法中正确的是( ). A .由P→Q 位移在增大 B .由P→Q 速度在增大 C .由M→N 速度是先减小后增大 D .由M→N 位移始终减小 3.如图所示为质点P 在0~4 s 内的振动图像,下列叙述正确的是( ). A .再过1 s ,该质点的位移是正的最大值 B .再过1 s ,该质点回到平衡位置 C .再过1 s ,该质点的速度方向向上 D .再过1 s ,该质点的速度方向向下 4.一水平弹簧振子的振动周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ). A .正在向右做减速运动 B .正在向右做加速运动 C .正在向左做减速运动 D .正在向左做加速运动 5.一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到2 A x =处所经最短时间为t 1,第一次从最大正位移处运动到2 A x = 处所经最短时间为t2(如图).关于t 1与t 2,以下说法正确的是( ). A .t 1=t 2 B .t 1<t 2 C .t 1>t 2 D .无法判断 6.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( ). A .3 810sin(4)m 2x t π π-=?+ B .3810sin(4)m 2 x t π π-=?- C .13810sin()m 2x t ππ-=?+ D .1810sin()m 42 x t ππ-=?+ 7.一弹簧振子在振动过程中,振子经a 、b 两点的速度相同,若它从a 到b 历时0.2 s ,从b 再回 到a 的最短时间为0.4 s ,则振子的振动频率为( ). A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 8.一个质点在平衡位置O 点附近做简谐运动,如图所示,若从O 点开始计时,经过3 s 质点第一次经过M 点,再继续运动,又经过2 s 它第二次经过M 点,则该质点第三次经过M 点还需的时间是( ). A .8 s B .4 s C .14 s D . 10 s 3 9.如图(a )是演示简谐运动图像的装置,当盛沙漏斗下面的薄木板N 被匀速地拉出时,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO '代表时间

高中物理 波的图像 (提纲、例题、练习、解析)

波的图像 【学习目标】 1.理解波的图像的意义.知道波的图像的横、纵坐标各表示什么物理量,知道什么是简谐波.2.能在简谐波的图像中指出波长和质点的振动的振幅. 3.已知某一时刻某简谐波的图像和波的传播方向,能画出下一时刻的波的图像。并能指出图像中各个质点在该时刻的振动方向. 【要点梳理】 要点一、波的图像 1.图像的建立 用横坐标x表示在波的传播方向上介质中各质点的平衡位置,纵坐标y表示某一时刻各个质点偏离平衡位置的位移,并规定横波中位移方向向某一个方向时为正值,位移方向向相反的方向时为负 值.在xOy平面上,描出各个质点平衡位置x与对应的各质点偏离平衡位置的位移y的坐标点,),用平滑的曲线把各点连接起来就得到了横波的波形图像(如图所示). (x y 2.图像的特点 (1)横波的图像形状与波在传播过程中介质中各质点某时刻的分布相似,波形中的波峰即为图像中的位移正向的最大值,波谷即为图像中位移负向的最大值,波形中通过平衡位置的质点在图像中也恰处于平衡位置. (2)波形图像是正弦或余弦曲线的波称为简谐波.简谐波是最简单的波. (3)波的图像的重复性:相隔时间为周期整数倍的两个时刻的波形相同. (4)波的传播方向的双向性:不指定波的传播方向时,图像中波可能向x轴正方向或z轴负方向传播. 波动图像的意义:描述在波的传播方向上的介质中的各质点在某一时刻离开平衡位置的位移.3.由波的图像可以获得的信息 知道了一列波在某时刻的波形图像,如图所示,能从这列波的图像中了解到波的传播情况主要有以下几点: (1)可以直接看出在该时刻沿传播方向上各质点的位移. 图线上各点的纵坐标表示的是各质点在该时刻的位移.如图中的M点的位移是2 cm.

80巩固练习 简谐运动及其图象

【巩固练习】 一、选择题 1.弹簧上端固定在O点,下端连结一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,下列说法正确的是(). A.球的最低点为平衡位置 B.弹簧原长时的位置为平衡位置 C.球速为零的位置为平衡位置 D.球原来静止的位置为平衡位置 2.如图所示为某物体做简谐运动的图像,下列说法中正确的是(). A.由P→Q位移在增大 B.由P→Q速度在增大 C.由M→N速度是先减小后增大 D.由M→N位移始终减小 3.(2015 枣阳市期末)如图甲所示,弹簧振子以O点为平衡位置,在A、B两点之间做简谐运动.取向右为正方向,振子的位移x随时间t的变化如图乙所示,下列说法正确的是()

A .t =0.8 s 时,振子的速度方向向左 B .t =0.2 s 时,振子在O 点右侧6 cm 处 C .t =0.4 s 和t =1.2 s 时,振子的加速度完全相同 D .t =0.4 s 到t =0.8 s 的时间内,振子的速度逐渐减小 4.一水平弹簧振子的振动周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ). A .正在向右做减速运动 B .正在向右做加速运动 C .正在向左做减速运动 D .正在向左做加速运动 5.一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到2 A x =处所经最短时间为t 1,第一次从最大正位移处运动到2 A x =处所经最短时间为t2(如图).关于t 1与t 2,以下说法正确的是( ). A .t 1=t 2 B .t 1<t 2 C .t 1>t 2 D .无法判断 6.(2015 进贤县校级期中)某质点做简谐运动,其位移随时间变化的关系式为sin 4 π x A t =x ,则质点 ( ) A .第1 s 末与第3 s 末的位移相同 B .第1 s 末与第3 s 末的速度相同 C .3 s 末至5 s 末的位移方向都相同 D .3 s 末至5 s 末的速度方向都相同 7.一弹簧振子在振动过程中,振子经a 、b 两点的速度相同,若它从a 到b 历时0.2 s ,从b 再回到a 的最短时间为0.4 s ,则振子的振动频率为( ). A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 8.一个质点在平衡位置O 点附近做简谐运动,如图所示,若从O 点开始计时,经过3 s 质点第一次经过M 点,再继续运动,又经过2 s 它第二次经过M 点,则该质点第三次经过M 点还需的时间是( ).

高中物理弹簧专题典型例题

高中物理弹簧专题典型例题 例如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程 中 [ ] A.动量守恒,机械能守恒 B.动量不守恒,机械能不守恒 C.动量守恒,机械能不守恒 D.动量不守恒,机械能守恒 【错解】以子弹、木块和弹簧为研究对象。因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。又因系统只有弹力做功,系统机械能守恒。故A正确。 【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。二是规律适用条件不清。 【分析解答】以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。 例质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x ,如图3-15所示。物块从钢板正对距离为3X0的A处自 由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后

又向上运动。已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。 【错解】物块m从A处自由落下,则机械能守恒 设钢板初位置重力势能为0,则 向下运动,然后返回O点,此时速度为0,运动过之后物块与钢板一起以v 程中因为只有重力和弹簧弹力做功,故机械能守恒。 ,与钢板一起向下2m的物块仍从A处落下到钢板初位置应有相同的速度v 运动又返回机械能也守恒。返回到O点速度不为零,设为V则: 因为m物块与2m物块在与钢板接触时,弹性势能之比

简谐运动的六种图象

简谐运动的六种图象 北京顺义区杨镇第一中学范福瑛 简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征. 运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。 以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。 1.位移-时间关系式,图象是正弦曲线,如图2 2.速度-时间关系式,图象是余弦曲线,如图3

3.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图5 5.速度-位移关系式,图象是椭圆,如图6

, 整理化简得 6.能量-位移关系 弹簧和振子组成的系统能量(机械能)守恒, 总能量不随位移变化,如图7直线c 弹性势能,图象是抛物线的一部分,如图7曲线b

振子动能,图象是开口向下的抛物线的一部分,如图7曲线a 图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。 2011-12-20 人教网 【基础知识精讲】 1.振动图像 简谐运动的位移——时间图像叫做振动图像,也叫振动曲线. (1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹. (2)特点:只有简谐运动的图像才是正弦(或余弦)曲线. 2.振动图像的作图方法 用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线. 3.振动图像的运用 (1)可直观地读出振幅A、周期T以及各时刻的位移x. (2)判断任一时刻振动物体的速度方向和加速度方向 (3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 【重点难点解析】 本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况. 一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动. 所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲 线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律. 例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )

简谐运动及其图象

简谐运动及其图象 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t ,纵坐标表示振动物体运动过程中对平衡位置的位移x ,建立坐标系,如图所示. (2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件

机械振动与机械波-简谐运动及其图象

机械振动与机械波-简谐运动及其图象 要点一机械振动 1.简谐运动的平衡位置是指( ) A.速度为零的位置 B.回复力为零的位置 C.加速度为零的位置 D.位移最大的位置 答案 B 要点二简谐运动 2.一弹簧振子做简谐运动,周期为T,以下说法正确的是( ) A.若t时刻和(t+?t)时刻振子运动位移的大小相等、方向相同,则?t一定等于T的整数倍 B.若t时刻和(t+?t)时刻振子运动速度的大小相等、方向相反,则?t一定等于T/2的整数倍 C.若?t =T,则在t时刻和(t+?t)时刻振子运动的加速度一定相等 D.若?t =T/2,则在t时刻和(t+?t)时刻弹簧的长度一定相等 答案 C 要点三简谐运动的图象 3.一个质点经过平衡位置O,在A、B间做简谐运动,如图(a)所示,它的振动图象如图(b)所示,设向右为正方向,则 (1)OB= cm. (2)第0.2 s末质点的速度方向是 ,加速度大小为 .

(3)第0.4 s 末质点的加速度方向是 . (4)第0.7 s 时,质点位置在 点与 点之间. (5)质点振动的周期T = s. (6)在4 s 内完成 次全振动. 答案 (1)5 (2)O →A 0 (3)A →O (4)O B (5)0.8 (6)5 题型1 简谐运动的多解性问题 【例1】一质点在平衡位置O 附近做简谐运动,从它经过平衡位置起开始计时,经过3 s 质点第一次通过M 点,再经过2 s 第二次通过M 点,则该质点第三次经过M 点还需多长的时间. 答案 14 s 或 3 10s 题型2 振动图象的应用 【例2】如图所示为一沿水平方向振动的弹簧振子的振动图象.求: (1)从计时开始,什么时刻第一次达到动能最大? (2)在第2 s 末到第3 s 末这段时间内振子的加速度、速度、动能、弹性势能各怎样变化? (3)该振子在前100 s 内总位移是多少?总路程是多少? 答案 (1)0.5 s 末 (2)加速度先减小后增大,速度和动能先增大后减小,弹性势能先减小后增大(3)0 100 cm 题型3 振动模型 【例3】如图所示,两木块的质量为m 、M ,中间弹簧的劲度系数为k ,弹簧下端与M 连接,m 与弹簧不连接,现将m 下压一段距离释放,它就上下做简谐运动,振动过程中,m 始终没有离开弹簧.试求: (1)m 振动的振幅的最大值. (2)m 以最大振幅振动时,M 对地面的最大压力.

简谐运动·典型题剖析

简谐运动·典型题剖析 例1如图5-2所示,在光滑水平面上,用两根劲度系数分别为k1、k2的轻弹簧系住一个质量为m的小球.开始时,两弹簧均处于原长,后使小球向左偏离x后放手,可以看到小球将在水平面上作往复振动.试问小球是否作简谐运动? 分析为了判断小球的运动性质,需要根据小球的受力情况,找出回复力,确定它能否写成F=-kx的形式. 解答以小球为研究对象,竖直方向处于力平衡状态,水平方向受到两根弹簧的弹力作用.设小球位于平衡位置O左方某处时,偏离平衡位置的位移为x,则 左方弹簧受压,对小球的弹力大小为 f1=k1x,方向向右. 右方弹簧被拉伸,对小球的弹力大小为 f2=k2x,方向向右. 小球所受的回复力等于两个弹力的合力,其大小为 F=f1+f2=(k1+k2)x,方向向右. 令k=k1+k2,上式可写成

F=kx. 由于小球所受回复力的方向与位移x的方向相反,考虑方向后,上式可表示为 F=-kx. 所以,小球将在两根弹簧的作用下,沿水平面作简谐运动. 说明由本题可归纳出判断物体是否作简谐运动的一般步骤:确定研究对象(整个物体或某一部分)→分析受力情况→找出回复力→表示成F=-kx的形式(可以先确定F的大小与x的关系,再定性判断方向). 例2物体做简谐运动时,下列判断中正确的是 [ ] A.在平衡位置加速度最大. B.在平衡位置速度最大. C.在运动路径两端速度最大. D.在运动路径两端加速度最小. 分析物体做简谐运动时受到的回复力为 F=-kx.

根据牛顿第二定律,物体在振动过程中的加速度为 即加速度的大小与位移成正比,加速度的方向与位移方向相反. 物体在平衡位置时,位移x=0,加速度a=0.在运动路径两端时,位移最大(x m=A),加速度也最大.所以A、D都错. 物体在运动路径两端时,速度都等于零,C错.从两端向平衡位置运动时,物体作加速度大小在变小、速度大小在变大的变加速运动,至平衡位置时速度达最大.B正确. 答B. 讨论 判断物体是否作简谐运动,也可根据加速度的表达式得出.由F=-kx和F=ma得: 即物体作简谐运动时,其加速度的大小与位移大小成正比,方向与位移相反.所以,振动过程中的加速度也时刻指向平衡位置. 必须注意:物体在振动过程中的任何时刻,一定同时遵循F=-kx和F=ma的关系.

简谐运动的六种图象

简谐运动的六种图象 Last updated at 10:00 am on 25th December 2020

简谐运动的六种图象北京顺义区杨镇第一中学范福瑛 简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征. 运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。 以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。 1.位移-时间关系式,图象是正弦曲线,如图2 2.速度-时间关系式,图象是余弦曲线,如图3 3.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图5 5.速度-位移关系式,图象是椭圆,如图6 ,

整理化简得 6.能量-位移关系 弹簧和振子组成的系统能量(机械能)守恒, 总能量不随位移变化,如图7直线c 弹性势能,图象是抛物线的一部分,如图7曲线b 振子动能,图象是开口向下的抛物线的一部分,如图7曲线a 图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。 2011-12-20?人教网 【基础知识精讲】 1.振动图像 简谐运动的位移——时间图像叫做振动图像,也叫振动曲线. (1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹. (2)特点:只有简谐运动的图像才是正弦(或余弦)曲线. 2.振动图像的作图方法

相关文档
最新文档