高中数学解析几何解答题专题训练 (1)(有解析)

高中数学解析几何解答题专题训练 (1)(有解析)
高中数学解析几何解答题专题训练 (1)(有解析)

高中数学解析几何解答题专题训练 (1)

一、解答题(本大题共30小题,共360.0分) 1. 已知椭圆E :x 2

a 2+

y 2b 2

=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为√

2

2,斜率为k 的直线

l 过F 1且与椭圆E 相交于A ,B 两点,△ABF 2的周长为8√2. (1)求椭圆E 的标准方程;

(2)设线段AB 的中垂线m 交x 轴于N ,在以NA ,NB 为邻边的平行四边形NAMB 中,顶点M 恰好在椭圆E 上,求直线l 的方程.

2. 如图,设抛物线方程为x 2=2py(p >0),M 为直线y =?2p 上任

意一点,过M 引抛物线的切线,切点分别为A ,B . (Ⅰ)设线段AB 的中点为N ; (ⅰ)求证:MN 平行于y 轴;

(ⅰ)已知当M 点的坐标为(2,?2p)时,|AB|=4√10,求此时抛物线的方程;

(Ⅱ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线x 2=2py(p >0)上,其中,点C 满足OC ????? =OA ????? +OB ?????? (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.

3. 已知椭圆C :x 2

a

2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,过点F 1的直线l 的倾斜角为锐角,P 为椭圆的上顶点,且PF 1⊥PF 2. (Ⅰ)求椭圆C 的方程;

(Ⅱ)若直线l与椭圆C交异于点P的两点A,B,且直线PA,PB与直线x+y?2=0分别交于不同两点M、N,当|MN|最小时,求直线l的方程.

4.已知椭圆M:x2

a +y2

b

=1(a>b>0)的一个焦点与短轴的两端点组成一个正三角形的三个顶点,

且椭圆经过点N(√2,√2

2

).

(1)求椭圆M的方程;

(2)若斜率为?1

2

的直线l1与椭圆M交于P,Q两点(点P,Q不在坐标轴上);证明:直线OP,PQ,OQ的斜率依次成等比数列.

(3)设直线l2与椭圆M交于A,B两点,且以线段AB为直径的圆过椭圆的右顶点C,求ABC面积的最大值.

5.如图所示,在平面直角坐标系xOy中,已知椭圆E:x2

a +y2

b

=1(a>b>0)的离心率为√3

2

,A为

椭圆E上位于第一象限上的点,B为椭圆E的上顶点,直线AB与x轴相交于点C,|AB|=|AO|,△BOC的面积为√3.

(1)求椭圆E的标准方程;

(2)设直线l过椭圆E的右焦点,且与椭圆E相交于M,N两点(M,N在直线OA的同侧),若∠CAM=∠OAN,求直线l的方程.

6. 已知椭圆C :

x 2a 2

+y 2

b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆C 短轴两顶点和两焦点

构成的四边形为正方形,且周长为4√2,经过F 2与坐标轴不垂直的直线l 交椭圆于M ,N 两点. (1)求椭圆C 的标准方程;

(2)若椭圆C 短轴上的点T(0,t),满足|TM|=|TN|,求实数t 的取值范围. 7. 已知椭圆

x 2a

2+

y 2b 2

=1(a >b >0)的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率

为√22

,且△TFO 面积的最大值为1

2. (1)求椭圆的方程;

(2)设点A(0,1),直线l :y =kx +t(t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM|?|ON|=2,求证:直线l 经过定点.

8. 已知过点M(0,m)(m >0)的直线l 与抛物线C :x 2=4y 交于A ,B 两点.

(1)分别以A ,B 为切点作抛物线的两条切线PA ,PB ,交点为P ,当m =1时,求点P 的轨迹方程;

(2)若1

|AM|2+1

|BM|2为定值,求m 的值. 9. 已知椭圆

x 24

+y 25

=1的上焦点为F ,

曲线C 1上动点M(x,y)(y ≥0)到F 的距离|MF|比点M 到x 轴的距离长1个单位. (1)求曲线C 1的方程;

(2)若直线L :y =kx +t 与曲线C 1相交于A 、B 两点,过A 、B 分别作曲线C 1的切线相交于点P ,直线PA 、PB 分别与x 轴相交于C 、D ,若AB 与y 轴相交于点Q . ①四边形PCQD 是否为平行四边形?说明理由.

②四边形PCQD 能否为矩形?若能,求出点Q 的坐标;若不能,请说明理由.

10. 在平面直角坐标系xOy 中,已知点P 是椭圆E :

x 24

+y 2=1上的动点,不经过点P 的直线l 交

椭圆E 于A ,B 两点.

(1)若直线l 经过坐标原点,证明:直线PA 与直线PB 的斜率之积为定值;

(2)若OA ????? +OB ?????? +OP ????? =0? ,直线l 与直线PO 交于点Q ,试判断动点Q 的轨迹与直线PA 的位置关系,并说明理由.

11.已知直线y=2p与抛物线C:x2=2py(p>0)交于P,Q两点,且|PQ|=8.

(1)求抛物线C的方程;

(2)斜率为k(k≠0)的直线l经过C的焦点F,l与C交于A,B两点,线段AB的垂直平分线与y

为定值,求点E的坐标.

轴交于点D,点E在y轴上,|AB|

|DE|

12.在平面直角坐标系xOy中,设m≥1,过点(m,0)的直线l与圆P:x2+y2=1相切,且与抛物

线Q:y2=2x相交于A,B两点.

(1)当m在区间[1,+∞)上变动时,求AB中点的轨迹;

(2)设抛物线焦点为F,求△ABF的周长(用m表示),并写出m=2时该周长的具体取值.

13.如图,抛物线x2=2py(p>0)的焦点为F,过焦点F的直线l抛物线交于A、B两点,点A到x

轴的距离等于|AF|?1.

(1)求抛物线方程;

(2)过F与AB垂直的直线和过B与x轴垂直的直线相交于点M,AM与y轴交于点N,求点N

的纵坐标的取值范围.

14.如图,设F是椭圆C:x2

a2+y2

b2

=1(a>b>0)的左焦点,直线:x=

?a2

c

与x轴交于P点,AB为椭圆的长轴,已知|AB|=8,且|PA|= 2|AF|,过P点作斜率为k直线l与椭圆相交于不同的两点M、N,

(1)当k=1

4

时,线段MN的中点为H,过H作HG⊥MN交x轴于点G,求|GF|;

(2)求△MNF面积的最大值.

15.已知:抛物线C1:y=x2+2,过C1外点P作C1的两条切线,切点分别为A、B.

(Ⅰ)若P(2,0),求两条切线的方程;

(Ⅱ)点P是椭圆C2:x2

4

+y2=1上的动点,求△PAB面积的取值范围.

16. 如图,O 为坐标原点,椭圆C :

x 2a

2+

y 2b 2

=1(a >b >0)的右顶点和

上顶点分别为A ,B ,|OA|+|OB|=3,△OAB 的面积为1. (1)求C 的方程;

(2)若M ,N 是椭圆C 上的两点,且MN//AB ,记直线BM ,AN 的斜率分别为k 1,k 2(k 1k 2≠0),证明:k 1?k 2为定值.

17. 椭圆E 的方程为

x 2a 2

+y 2=1,(a >1),A ,B 为椭圆E 的短轴端点,P 为椭圆E 上除A 、B 外一

点,且直线PA 、PB 斜率积为?1

2,直线l :x =my +t 与圆O :x 2+y 2=2

3相切,且与椭圆E 交于M 、N 两点. (1)求椭圆E 的方程; (2)证明OM ??????? ?ON ?????? 为定值.

18.已知椭圆C:x2

a2+y2

b2

=l(a>b>0),四点P1(1,1)、P2(0,1)、P3(?1,√3

2

)、P4(1,√3

2

)中恰有三点在

椭圆C上.

(Ⅰ)求C的方程.

(Ⅱ)设直线l不经过点P2且与C相交于A、B两点,已知直线P2A与直线P2B的斜率的和为3.试问:直线l是否

过定点?如过定点,求出定点坐标;如不过定点,说明理由.

19.如图,在平面直角坐标系xOy中,已知椭圆C:x2

a2+y2

b2

=1?(a>b>0)的右焦点为F,左顶点

为A,下顶点为B,连结BF并延长交椭圆于点P,连结PA,AB.记椭圆的离心率为e.(1)若e=1

2

,AB=√7,求椭圆C的标准方程;

(2)若直线PA与PB的斜率之积为1

6

,求e的值.

20. 已知椭圆C :

x 2a

2+

y 2b 2

=1(a >b >0)的上顶点M 与左、右焦点F 1,F 2构成一个面积为1的直角

三角形.

(1)求C 的标准方程;

(2)过点M 分别作直线MA ,MB 交C 于A ,B 两点,这两条直线的斜率分别记为k 1,k 2,且k 1+k 2=2,证明直线AB 过定点,并求出定点的坐标.

21. 已知A(1,2)为抛物线y 2=2px(p >0)上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE

的斜率与直线AF 的斜率互为相反数. (1)求直线EF 的斜率;

(2)设直线l 过点M(m,0)并交抛物线于P ,Q 两点,且PM ?????? =λMQ ??????? (λ>0),直线x =?m 与x 轴交于点N ,试探究MN ??????? 与NP ?????? ?λNQ ?????? 的夹角是否为定值,若是则求出定值,若不是,说明理由.

22. 已知椭圆E :

x 2a

2+

y 2b 2

=1(a >b >0)一个焦点和抛物线了y 2=4x 的焦点重合,且过点(1,?3

2),

椭圆E 的长轴的两端点为A 、B . (1)求椭圆E 的;

(2)点P 为椭圆上异于A ,B 的动点,定直线x =4与直线PA ,PB 分别交于M ,N 两点以MN 为直径的圆是否经过x 轴上的定点?若存在,求定点坐标;若不存在,说明理由.

23. 已知椭圆C :

x 2a

2+

y 2b 2

=1(a >b >0)的左右焦点分别为F 1,

F 2,若点B(0,√3)在椭圆上,且△BF 1F 2为等边三角形.

(1)求椭圆C 的标准方程;

(2)过点F 1的直线l 与椭圆C 交于M 、N 两点,若点F 2在以MN 为直径的圆外,求直线l 斜率k 的取值范围.

24. 如图,在平面直角坐标系xOy 中,已知椭圆Γ:x 2

a 2+

y 2b 2=1(a >b >

0),其右焦点F 到其右准线的距离为1,离心率为√22

,A ,B 分别为椭圆Γ的上、下顶点,过点F 且不与x 轴重合的直线l 与椭圆Γ交于C ,D 两点,与y 轴交于点P ,直线AC 与BD 交于点Q . (1)求椭圆Γ的标准方程;

(2)当CD =8

5√2时,求直线l 的方程; (3)求证:OP ????? ?OQ ?????? 为定值.

25.已知抛物线C1:y2=2px(p>0)的准线与半椭圆C2:x2

4

+y2=1(x≤0)相交于A,B两点,且|AB|=√3.

(Ⅰ)求抛物线C1的方程;

(Ⅱ)若点P是半椭圆C2上一动点,过点P作抛物线C1的两条切线,切点分别为C,D,求△PCD 面积的取值范围.

26.如图,已知椭圆C:x2

a2+y2

b2

=1经过(2,0)和(0,√2),过原点的一条直线l交椭圆于A,B两点(A在

第一象限),椭圆C上点D满足AD⊥AB,连直线BD与x轴、y轴分别交于M、N两点,△ABD的重心在直线x=13

21

的左侧.

(1)求椭圆的标准方程;

(2)记△AOM、△OMN面积分别为S1、S2,求S1?S2的取值范围.

27.如图所示,在直角坐标系xOy中,A,B是抛物线C1:y2=2px(p>0)上两点,M,N是椭圆C2:

x2 6+y2

3

=1两点,若AB与MN相交于点E(2,0),OA

????? ?OB

?????? =?p2.

(Ⅰ)求实数p的值及抛物线C,的准线方程.

(Ⅱ)设△OMN的面积为S,△OMN、△OAB的重心分别为G,T,当GT平行于x轴时,求|GT|+S2

的最大值.

28.已知圆C经过坐标原点O和点G(?2,2),且圆心C在直线x+y?2=0上.

(1)求圆C的方程;

(2)设PA、PB是圆C的两条切线,其中A、B为切点.

①若点P在直线x?y?2=0上运动,求证:直线AB经过定点;

②若点P在曲线y=1

4

x2(其中x>4)上运动,记直线PA、PB与x轴的交点分别为M、N,求△PMN 面积的最小值.

29.如图,已知点M(1,1),N(2,1),Q(4,1)抛物线y2=2px过点M,过点Q的直线与抛物线交于A,

B两点,直线AN,BN与抛物线的另一交点分别为C,D,记△ABN,△CDN的面积分别为S1,S2.

(1)求抛物线的方程;

(2)S1

S2

是否为定值?并说明理由.

30.已知椭圆C:x2

a2+y2

b2

=1(a>b>0)的两个焦点是F1(?1,0),F2(1,0),且离心率e=1

2

.(1)求椭圆

C的标准方程;

(2)过点(0,t)作椭圆C的一条切线l交圆O:x2+y2=4于M,N两点,求△OMN面积的最大值.

-------- 答案与解析 --------

1.答案:解:(1)由△ABF 2的周长为8√2,则有4a =8√2,所以a =2√2,

又椭圆E 的离心率e =√2

2,

则c =2,b =2,故椭圆E 的标准方程为:x 28

+

y 24

=1.

(2)由题意可知,直线l 的斜率k ≠0,

设直线l :y =k(x +2),A(x 1,y 1),B(x 2,y 2),

由{y =k(x +2)x 2+2y 2=8可得(1+2k 2)x 2+8k 2x +8k 2?8=0, 显然△>0,x 1+x 2=?8k 21+2k

2

,x 1x 2=8k 2?81+2k 2

则AB 中点Q(?4k 2

1+2k 2,2k

1+2k 2

),AB 中垂线m 方程为:y ?2k

1+2k 2=?1

k (x +4k 2

1+2k 2), 所以N(?2k 21+2k 2,0),由四边形NAMB 为平行四边形,则NM ??????? =NA ?????? +NB

?????? , 即(x M +

2k 21+2k 2

,y M )=(x 1+2k 2

1+2k 2,y 1)+(x 2+2k 2

1+2k 2,y 2),

所以x M =x 1+x 2+2k 2

1+2k 2=?6k 2

1+2k 2,y M =y 1+y 2=4k

1+2k 2 由M(?

6k 2

1+2k 2,4k

1+2k 2

)在椭圆E 上,则36k 4

8(1+2k 2)2+16k 2

4(1+2k 2)2=1, 解得k 4=2,即k =±√24, 故直线l 的方程为y =±√24(x +2).

解析:(1)由△ABF 2的周长为8√2,以及椭圆的离心率求解a ,b 得到椭圆方程.

(2)直线l 的斜率k ≠0,设直线l :y =k(x +2),A(x 1,y 1),B(x 2,y 2),由{y =k(x +2)

x 2+2y 2=8可得(1+

2k 2)x 2+8k 2x +8k 2?8=0,利用韦达定理,求出中点坐标,得到中垂线方程,结合向量关系,推出M 坐标,代入椭圆方程求解即可.

本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题.

2.答案:(Ⅰ)(ⅰ)证明:由题意设A(x 1,x 122p ),B(x 2,x 2

22p ),x 1

由x 2=2py 得y =x

2

2p ,则y′=x

p ,所以k MA =

x 1

p ,k MB

=

x 2

p .

因此直线MA 的方程为y +2p =x 1p

(x ?x 0),

直线MB 的方程为y +2p =

x 2p

(x ?x 0).

所以x 1

2

2p

+2p =x 1p (x 1?x 0),①x 2

2

2p +2p =

x 2p

(x 2?x 0).②

由①、②得

x 1+x 2

2

=x 1+x 2?x 0,因此x 0=x 1+x 22

,即2x 2=x 1+x 2=2x 3.

所以MN平行于y轴.

(ⅰ)解:由(ⅰ)知,当x0=2时,将其代入①、②并整理得:x12?4x1?4p2=0,x22?4x2?4p2=0,

所以x1,x2是方程x2?4x?4p2=0的两根,

因此x1+x2=4,x1x2=?4p2,又k

AB =

x22

2p

?x1

2

2p

x2?x1

=x1+x2

2p

=x0

p

所以k AB=2

p

由弦长公式的|AB|=√1+k2√(x1+x2)2?4x1x2=√1+4

p2

√16+16p2.又|AB|=4√10,所以p=1或p=2,

因此所求抛物线方程为x2=2y或x2=4y.

(Ⅱ)解:设D(x3,y3),由题意得C(x1+x2,y1+y2),

则CD的中点坐标为Q(x1+x2+x3

2,y1+y2+y3

2

),

设直线AB的方程为y?y1=x0p(x?x1),

由点Q在直线AB上,并注意到点(x1+x2

2,y1+y2

2

)也在直线AB上,

代入得y3=x0p x3.

若D(x3,y3)在抛物线上,则x32=2py3=2x0x3,

因此x3=0或x3=2x0.

即D(0,0)或D(2x0,2x02

p

).

(1)当x0=0时,则x1+x2=2x0=0,此时,点M(0,?2p)适合题意.

(2)当x0≠0,对于D(0,0),此时C(2x0,x12+x22

2p ),k

CD

=

x12+x22

2p

2x0

=x12+x22

4px0

又k AB=x0p,AB⊥CD,所以k AB?k CD=x0

p ?x12+x22

4px0

=x12+x22

4p2

=?1,

即x12+x22=?4p2,矛盾.

对于D(2x0,2x02

p ),因为C(2x0,x12+x22

2p

),此时直线CD平行于y轴,

又k AB=x0p≠0,

所以直线AB与直线CD不垂直,与题设矛盾,所以x0≠0时,不存在符合题意得M点.

综上所述,仅存在一点M(0,?2p)适合题意.

解析:(Ⅰ)(ⅰ)设A(x1,x12

2p ),B(x2,x22

2p

),x1

函数的导数求解切线方程,转化推出中点横坐标,判断结果即可.

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

(推荐)高中数学新课标测试题及答案

新课程标准考试数学试题 一、填空题(本大题共10道小题,每小题3分,共30分) 1、数学是研究(空间形式和数量关系)的科学,是刻画自然规 律和社会规律的科学语言和有效工具。 2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。 3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。 4、高中数学课程应注重提高学生的数学(思维)能力。 5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。 6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。 7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。 8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。 9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、

几何与(三角函数)的一种工具。 10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。 二、判断题(本大题共5道小题,每小题2分,共10分) 1、高中数学课程每个模块1学分,每个专题2学分。(错)改:高中数学课程每个模块2学分,每个专题1学分。 2、函数关系和相关关系都是确定性关系。(错) 改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。 3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。(对) 4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。(对) 5、教师应成为学生进行数学探究的领导者。(错) 改:教师应成为学生进行数学探究的组织者、指导者和合作者。 三、简答题(本大题共4道小题,每小题7分,共28分) 1、高中数学课程的总目标是什么? 使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学解析几何解答题专题训练 (1)(有解析)

高中数学解析几何解答题专题训练 (1) 一、解答题(本大题共30小题,共360.0分) 1. 已知椭圆E :x 2 a 2+ y 2b 2 =1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为√ 2 2,斜率为k 的直线 l 过F 1且与椭圆E 相交于A ,B 两点,△ABF 2的周长为8√2. (1)求椭圆E 的标准方程; (2)设线段AB 的中垂线m 交x 轴于N ,在以NA ,NB 为邻边的平行四边形NAMB 中,顶点M 恰好在椭圆E 上,求直线l 的方程. 2. 如图,设抛物线方程为x 2=2py(p >0),M 为直线y =?2p 上任 意一点,过M 引抛物线的切线,切点分别为A ,B . (Ⅰ)设线段AB 的中点为N ; (ⅰ)求证:MN 平行于y 轴; (ⅰ)已知当M 点的坐标为(2,?2p)时,|AB|=4√10,求此时抛物线的方程; (Ⅱ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线x 2=2py(p >0)上,其中,点C 满足OC ????? =OA ????? +OB ?????? (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 3. 已知椭圆C :x 2 a 2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,过点F 1的直线l 的倾斜角为锐角,P 为椭圆的上顶点,且PF 1⊥PF 2. (Ⅰ)求椭圆C 的方程;

(Ⅱ)若直线l与椭圆C交异于点P的两点A,B,且直线PA,PB与直线x+y?2=0分别交于不同两点M、N,当|MN|最小时,求直线l的方程. 4.已知椭圆M:x2 a +y2 b =1(a>b>0)的一个焦点与短轴的两端点组成一个正三角形的三个顶点, 且椭圆经过点N(√2,√2 2 ). (1)求椭圆M的方程; (2)若斜率为?1 2 的直线l1与椭圆M交于P,Q两点(点P,Q不在坐标轴上);证明:直线OP,PQ,OQ的斜率依次成等比数列. (3)设直线l2与椭圆M交于A,B两点,且以线段AB为直径的圆过椭圆的右顶点C,求ABC面积的最大值. 5.如图所示,在平面直角坐标系xOy中,已知椭圆E:x2 a +y2 b =1(a>b>0)的离心率为√3 2 ,A为 椭圆E上位于第一象限上的点,B为椭圆E的上顶点,直线AB与x轴相交于点C,|AB|=|AO|,△BOC的面积为√3. (1)求椭圆E的标准方程; (2)设直线l过椭圆E的右焦点,且与椭圆E相交于M,N两点(M,N在直线OA的同侧),若∠CAM=∠OAN,求直线l的方程.

高中数学解析几何答题全攻略,2020高考生必看!

高中数学解析几何答题全攻略,2020高考生必看! 解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。对此清华附中数学老师有针对性的回答了同学们的共性问题。下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。 1 考试时间分配 问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题 老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要! 问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢? 老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。这个过程比做新题更重要。

问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢? 老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步! 问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我 老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。还有就是如果正视侧视和俯视都和正方形或者等腰直角三角形有关,那么可以画一个正方体,去找这个立体图形的可能性。 2 解析几何如何把握

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

相关文档
最新文档