高三数学高考导学练系列教案:平面向量

高三数学高考导学练系列教案:平面向量
高三数学高考导学练系列教案:平面向量

平面向量Array

1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.

2.掌握向量的加法和减法的运算法则及运算律.

3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.

4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握

平移公式.

向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介.

主要考查:

1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.

2.向量的坐标运算及应用.

3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.

4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的

形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.

第1课时 向量的概念与几何运算

1.向量的有关概念

⑴ 既有 又有 的量叫向量.

的向量叫零向量. 的向量,叫单位向量.

⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .⑶ 且 的向量叫相等向量.2.向量的加法与减法

⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.

⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .3.实数与向量的积

⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:① | λ |= .

② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ .⑵ λ(μ)= .

(λ+μ)= .

λ(+b )= .

⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 .

4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .

⑵ 设1e 、2e 是一组基底,=2111e y e x +,=2212e y e x +,则与共线的充要条件是 .

例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设=,b AC =,求.解:=-=4

1(+)-=-

43+4

1

变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( )A .-+2

1B .--21C .-21D .+21解:A

例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,使

b a

c μλ+=.

解:c =λ+μb ?21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ?2λ+2μ=2,且-3λ+3μ=-9?λ=2,且μ=-1

变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:

4=+++证明 +=2,+=2?+++=4例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC 和AB 的中点,若a =,b =,试用a 、b 表示和.

解:连NC ,则b AD NC ==b a CN AB CN MC MN -=+=+=4

14

1;a

b NB NC BC 2

1-=-=变式训练3:如图所示,OADB 是以向量OA =a ,OB =b 为邻边的平行四边形,又=

3

1

BC ,=

3

1

,试用、表示,,.解:=61+65b ,=32+3

2

b ,

21-6

1b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,3

1(+)三向量的终点在一条直线上?

解:设])(3

1

[t +-=-λ (λ∈R)化简整理得:)3

1()132

(=-+-t λλ∵不共线与,∴???????

==???????

?=-=-21

2303

0132t t λλλ A D B O

A

C

N M

故21=

t 时,)(3

1

,,t +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e =====,设t R ∈,如果3,2,

a c

b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?

解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD =,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-.

①若,a b 共线,则t 可为任意实数;②若,a b 不共线,则有33020

t k t k -+=??

-=?,解之得,6

5t =.

综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,6

5

t =.1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.

2.注意与O 的区别.零向量与任一向量平行.

3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.

4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.

第2课时 平面向量的坐标运算

1.平面向量的坐标表示

分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且|a |= .

2.向量的坐标表示与起点为 的向量是一一对应的关系.3.平面向量的坐标运算:

若a =(x 1、y 1),=(x 2、y 2),λ∈R ,则:

+= -=

小结归纳

基础过关

λ=

已知A(x 1、y 1),B(x 2、y 2),则AB = .

4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .

例1.已知点A

(2,3),B (-1,5),且=3

1

AB ,求点C 的坐标.解=

31=(-1,32),=+=(1,

311),即C(1, 3

11

)变式训练1.若(2,8)OA =,(7,2)OB =-,则3

1

AB = . 解: (3,2)--提示:(9,6)AB OB OA =-=--例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=5

52,求cos(α-β)的值.解:|-|=

55222552=--?)cos(βα2cos 2

2552βα--?=55

222552=--?)cos(βα?cos 2

βα-=53?cos(α-β)=257-变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b .解 =(-1,1),b =(1,0),∴+b =(0,1)

例3. 已知向量=(1, 2),=(x, 1),1e =+2,2e =2-,且1e ∥2e ,求x .解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ?3(1+2x)=4(2-x)?x =

2

1

变式训练3.设=(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),∥,求证:k≥3.

证明: k =θ

θ

sin cos 2- ∴k -3=

θ

π

θsin )

3cos(22-

-≥0 ∴k≥3

例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .

(1) 若=(3,5),求点C 的坐标;

(2) 当||=||时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),

)5,1()5,9()0,6()5,3(00--==+=+=y x

得x 0=10 y 0=6 即点C(10,6)

(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1)

∵M 为AB 的中点 ∴P 分的比为2

1 设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x

变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.

解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)

则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==

∴)5

103,510(10

32-

==

1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.

2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.

第3课时 平面向量的数量积

1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量与b 的 .当θ=0°时,与b ;当θ=180°时,与

b ;如果与b 的夹角是90°,我们说与b 垂直,记作 .

2.两个向量的数量积的定义:已知两个非零向量与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = . 3.向量的数量积的几何意义:

|b |cosθ叫做向量b 在方向上的投影 (θ是向量与b 的夹角).

·b 的几何意义是,数量·b 等于 .

小结归纳 基础过关

4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角. ⑴ e ·a =a ·e = ⑵ ⊥b ?

⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cosθ= . ⑸ |a ·b |≤ 5.向量数量积的运算律: ⑴ ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =

例1. 已知||=4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4

变式训练1.已知|a |=3,|b |=4,|a +b |=5,求|2a -3b |的值. 解:56

例2. 已知向量=(sin θ,1),b =(1,cos θ),-2

2

π

θπ

<

<.

(1) 若a ⊥b ,求θ; (2) 求|+b |的最大值. 解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2

,2(ππθ-∈,所以4

π

θ-

=

(2))4sin(223)cos (sin 23π

θθθ+

+=++=+

当4

π

θ=

时,+的最大值为12+

变式训练2:已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求证:a b + 与a b -互相垂直;

(2)若ka →

+→

b 与a k →

-→

b 的长度相等,求βα-的值(k 为非零的常数). 证明:

222222()()(cos sin )(cos sin )0a b a b a b ααββ+?-=-=+-+=

a b ∴+ 与a b -互相垂直

(2)k a →

+(cos cos ,sin sin )b k k αβαβ→

=++,

a k →

-(cos cos ,sin sin )b k k αβαβ→

=--,

2

12cos()k a b k k βα→

+=++-212cos()a kb k k βα→

-=+--,

2212cos()12cos()k k k k βαβα++-=++-cos()0βα-=,2

πβα-=

例3. 已知O 是△ABC 所在平面内一点,且满足(OB -OC )·(OB +OC -2OA )=0,判断△ABC 是哪类三角形.

解:设BC 的中点为D ,则(-)(2-+)=0?2BC ·AD =0?BC ⊥AD ?△ABC 是等腰三角形.

变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 . 解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-?=⊥ 例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=5

2

8,求cos(8

2

π

θ+

)的值.

解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25

128

化简:cos 25

7)4

(=

θ 又cos 2

25

162

)

4cos(1)8

2(=+

+=+π

θπ

θ

∵θ∈(π, 2π) ∴cos 25

16

2)

4cos(1)82(=+

+=+π

απ

θ<0

∴cos 25

162)

4

cos(1)82(=

++=+π

απθ=-54

变式训练4.平面向量13

(3,1),(,

22

a b =-=,若存在不同时为0的实数k 和t ,使2(3)x a t b =+-,,y ka tb =-+且x y ⊥,试求函数关系式()k f t =.

解:由13

(3,1),(,

22

a b =-=得0,||2,||1a b a b ?=== 2

2

222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +-?-+=-+?--?+-=

33311

(3),()(3)44

k t t f t t t =-=-

1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.

2.注意a ·b 与ab 的区别.a ·b =0≠>a =,或b =.

3.应根据定义找两个向量的夹角。对于不共起点的两个向量,通过平移,使起点重合.

第4课时 线段的定比分点和平移

1. 设P 1P 2是直线L 上的两点,点P 是L 上不同于P 1、P 2的任意一点,则存在一个实数λ使P 1=λ2PP ,λ叫做 .

2.设P 1(x 1、y 1),P 2(x 2、y 2),点P (x 、y )分21P P 的比是λ时,定比分点坐标公式为: ,中点坐标公式: 。

3. 平移公式:将点P (x 、y )按向量=(h 、k )平移得到点P'(x',y'),则 .

例1. 已知点A(-1, -4),B(5, 2),线段AB 上的三等分点依次为P 1、P 2,求P 1、P 2的坐标及A 、B 分21P P 所成的比.

解 ⑴ P 1(x -2) P 2(3, 0) (2) -2

1, -2

变式训练1.设|AB|=5,点p 在直线AB 上,且|PA|=1,则p 分所成的比为 . 解:

6

1

41-或 例2. 将函数y =2sin (2x +

65π)+3的图象C 进行平移后得到图象C',使C 上面的一点P (6

π

、小结归纳

典型例题 基础过关

2)移至点P'(

4

π

、1),求图像C'对应的函数解析式. 解: C':y =2sin(2x +

3

)+2 变式训练2:若直线2x -y +c =0按向量=(1, -1)平移后与圆x 2+y 2=5相切,则c 的值为 ( )

A .8或-2

B .6或-4

C .4或-6

D .2或-8 解: A

例3. 设=(sinx -1, cosx -1),)2

2,22(=,f (x)=?,且函数y =f (x)的图象是由y =sinx 的图象按向量平移而得,求. 解:c =(-

2,24

-+ππ

k ) (k ∈z)

变式训练3:将y =sin2x 的图象向右按作最小的平移,使得平移后的图象在[kπ+2

π

, kπ+π] (k ∈Z)上递减,则= . 解:(

4

π

,0) 例4. 已知△ABC 的顶点A(0、0),B(4、8),C(6、-4),点M 内分AB 所成的比为3,N 是AC 边上的一点,且△AMN 的面积等于△ABC 的面积的一半,求N 点的坐标. 解:由

||||||||AC AB AN AM S S ABC AMN ??=??=2

1

32||||=AC AN 2=NC

AN

∴ N(4,-3

8)

变式训练4.已知△ABC 的三个顶点为A (1,2),B (4,1),C (3,4). (1)求AB 边上的中线CM 的长及重心G 的坐标;

(2)在AB 上取一点P ,使过P 且平行于BC 的直线PQ 把△ABC 的面积分成4︰5两部分(三角形面积:四边形面积),求点P 的坐标 解:)3

4,3()3

7,38(2

26

p G CM =

1.在运用线段定比分点公式时,首先要确定有向线段的起点、终点和分点,再结合图形确定分比λ.

2.平移公式反映了平移前的点P(x 、y)和平移后的点P'(x'、y'),及向量=(h ,k)三者之间的关系.它的本质是'=.平移公式与图象变换法则,既有区别又有联系,应防止混淆.

平面向量章节测试题

一、选择题

1. 若A (2,-1),B (-1,3),则的坐标是 ( )

A.(1,2)

B.(-3,4)

C. (3,-4)

D. 以上都不对 2.与a=(4,5)垂直的向量是 ( )

A.(-5k,4k )

B. (-10,2)

C. (54

,k k

-) D.(5k, -4k )

3. △ABC 中,=a, =b,则等于 ( )

A.a+b

B.-(a+b)

C.a-b

D.b-a

4.化简

52(a -b)-31(2a+4b)+152

(2a+13b)的结果是 ( ) A.51a ±51b B.0 C. 51a+51b D. 51a -5

1b 5.已知|p|=22,|q|=3, p 与q 的夹角为4

π

,则以a=5p+2q,b=p -3q 为邻边的平行四边形的一条

对角线长为 ( )

A.15

B.15

C. 16

D.14 6.已知A(2,-2),B(4,3),向量p 的坐标为(2k-1,7)且p ∥,则k 的值为 ( ) A.109-

B.109

C.1019-

D.10

19 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( )

A. P 在△ABC 的内部

B. P 在△ABC 的外部

C. P 是AB 边上的一个三等分点

D. P 是AC 边上的一个三等分点

8.已知△ABC 的三个顶点,A (1,5),B(-2,4),C(-6,-4),M 是BC 边上一点,且△ABM 的面积是△ABC 面积的

4

1

,则线段AM 的长度是 ( )

A.5 C.

25 9.设e 1,e 2是夹角为450的两个单位向量,且a=e 1+2e 2,b=2e 1+e 2,,则|a+b|的值 ( ) A.23 B.9 C.2918+ D.223+

10.若⊥a,则a 与b 的夹角为 ( )

A.300

B.450

C.600

D.750

11.把一个函数的图象按向量a=(3π,-2)平移后,得到的图象对应的函数解析式为y=sin(x+6π

)-2,

则原函数的解析式为 ( )

A.y=sinx

B.y=cosx

C.y=sinx+2

D.y= -cosx 12.在△ABC 中,=c, BC =

a, CA =b,则下列推导中错误的是 ( )

A.若a·b<0,则△ABC 为钝角三角形

B. 若a·b=0,则△ABC 为直角三角形

C. 若a·b=b·c,则△ABC 为等腰三角形

D. 若c·( a+b+c)=0,则△ABC 为等腰三角形 二、填空题

13.在△ABC

,4==且,8=?AC AB 则这个三角形的形状是 . 14.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,则船实际航行的速度的大小和方向是 .

15. 若向量)4,7(),1,2(),2,3(-=-=-=c b a ,现用a 、b 表示c,则c= . 16.给出下列命题:①若a 2+b 2=0,则a=b=0; ②已知A ),,(11y x B ),(22y x ,则

);2

,2(21

2121y y x x AB ++= ③已知a,b,c 是三个非零向量,若a+b=0,则|a·c|=|b·c|

④已知0,021>>λλ,e 1,e 2是一组基底,a=λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线; ⑤若a 与b 共线,则a·b=|a|·|b|.其中正确命题的序号是 . 三、解答题

17.如图,ABCD 是一个梯形

,//=, M 、N 分别是,的中点,已知=a,=b,试用a 、b 表示,DC BC 和.MN

18.设两个非零向量e 1、e 2不共线.如果=e 1+e 2,=2e 1+8e 2,=3(e 1-e 2) ⑴求证:A 、B 、D 共线;

⑵试确定实数k,使ke 1+e 2和e 1+ke 2共线.

19.已知△ABC 中,A(2,4),B(-1,-2),C(4,3),BC 边上的高为AD.⑴求证:AB ⊥AC;⑵求点D 与向量的坐标.

A

B

N

M

D

C

20.已知△ABC 的三个顶点为A(1,2),B(4,1),C(3,4).⑴求AB 边上的中线CM 的长;⑵在AB 上取一点P ,使过P 且平行与BC 的直线PQ 把ABC 的面积分成4:5两部分,求P 点的坐标.

21.已知a 、b 是两个非零向量,证明:当b 与a+λb(λ∈R)垂直时,a+λb 的模取得最小值.

22.已知二次函数f(x) 对任意x ∈R ,都有f (1-x)=f (1+x)成立,设向量a=(sinx,2), b=(2sinx,2

1

), c=(cos2x,1),d=(1,2)。

(1)分别求a·b 和c·d 的取值范围;

(2)当x ∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.

平面向量章节测试题参考答案

一、BCDBA ;DDADB ;BD

二、13.等边三角形;14.大小是4km/h,方向与水流方向的夹角为600 ; 15.a -2b ; 16.①③④ 三、17.∵||=2||∴2=∴21

21==

a,=b -21a , MN =4

1a -b 18.⑴∵BD BC CD =+=5e 1+5e 2=5 , ∴//又有公共点B,∴A 、B 、D 共线 ⑵设存在实数λ使ke 1+e 2=λ(e 1+ke 2) ∴ k=λ且kλ=1 ∴k=1± 19.⑴由0=?可知⊥即AB ⊥AC

⑵设D (x,y ),∴)2,1(),5,5(),4,2(++==--=y x y x ∵BC AD ⊥ ∴5(x-2)+5(y-4)=0

∵// ∴5(x+1)-5(y+2)=0

∴???

????==2

527

y x ∴D(2

5,

27))23

,23(-=AD

20.⑴2

26

||),25,21()23,25(=--=∴M

⑵设P (x,y )

44||22

,59||33

APQ APQ BPQC ABC S S AP AP AB S S AB ???=∴=∴=∴= )1,3(32)2,1(-=

--∴y x )3

4

,3(P ∴ 21. 当

b 与a+λb(λ∈R)垂直时,b·(a+λb)=0,∴λ= -

2

a b

b 22

2)()+-a b a b a 当λ= -2

a b

b 时,| a+λb |取得最小值. ∴当b 与a+λb(λ∈R)垂直时,a+λb 的模取得最小值. 22. (1)a·b=2sin 2x+1≥1 c·d=2cos 2x+1≥1 (2)∵f(1-x)=f(1+x) ∴f(x)图象关于x=1对称 当二次项系数m>0时, f(x)在(1,+∞)内单调递增, 由f(a·b)>f(c·d)? a·b > c·d, 即2sin 2x+1>2cos 2x+1

又∵x ∈[0,π] ∴x ∈3(,)4

4

ππ

当二次项系数m<0时,f(x)在(1,+∞)内单调递减, 由f(a·b)>f(c·d)? a·b > c·d, 即2sin 2x+1<2cos 2x+1

又∵x∈[0,π] ∴x∈

3 [0,)(,]

44

ππ

π、

故当m>0时不等式的解集为

3

(,)

44

ππ

;当m<0时不等式的解集为

2.5.2向量在物理中的应用举例(教学设计)

2.5 .2向量在物理中的应用举例(教学设计) [教学目标] 一、 知识与能力: 1. 运用向量方法解决某些简单的物理问题. 二、过程与方法: 经历用向量方法解决某些简单的物理问题的过程;体会向量是一种处理物理问题的工具;发展运算能力和解决实际问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点. [教学重点] 运用向量方法解决某些简单的物理问题. [教学难点] 运用向量方法解决某些简单的物理问题. 一、新课引入 物理学家很早就在自己的研究中使用向量概念,并早已发现这些量之间可以进行某种运算。数学家在物理学家使用向量的基础上,对向量又进行了深入的研究,使向量成为研究数学和其他科学的有力工具.本节将举例说明向量在解决物理问题中的应用. 二、师生互动,新课讲解 ()() 1212122,457,020,151,2,. A B =+=-已知两个力(单位:牛)作用于同一质点,此质点在这两个力的共同作用下,由移动到(单位:米),试求: ()分别对质点所做的功; ()求的合力对质点所做的功例1f i j f i j f f f f ()()112212125,3, 13,15, ·43,23, ·20 4323AB W AB W AB W AB ==?+=-======--解:和所做功分别为焦和焦,它们的合力所做功为20所以焦.f f f f f f f f 变式训练1: ()()()12312333,42,5,. x y ==-=++=0已知三个力,,的合力, 求F F F F F F F ()33205,145051x x y y ++=?=-=-???-+=???=?解:由平面向量的加法的坐标运算,则 F .

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

最新人教版高一必修1数学教案:精品全套名师优秀教案

人教版高中数学必修1精品教案(整套) 课题:集合的含义与表示(1) 课型:新授课 教学目标: (1)了解集合、元素的概念,体会集合中元素的三个特征; (2)理解元素与集合的“属于”和“不属于”关系; (3)掌握常用数集及其记法; 教学重点:掌握集合的基本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 二、新课教学

(一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3. 思考1:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流; (3)非负奇数; (4)方程 的解; (5)某校2007级新生; (6)血压很高的人; (7)著名的数学家; (8)平面直角坐标系内所有第三象限的点 (9)全班成绩好的学生。 对学生的解答予以讨论、点评,进而讲解下面的问题。 4. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)无序性:给定一个集合与集合里面元素的顺序无关。 (4)集合相等:构成两个集合的元素完全一样。 5. 元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a A 例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A 4 A,等等。 6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。 7.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

2.5平面向量应用举例教案

2.5.1 平面向量应用举例 一.【教材分析】 前面已学习了向量的概念及向量的线性运算以及向量的数量积,本节课应用向量的知识来解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题! 二.【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究几何结论和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神. 三.【教学重难点】 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何问题. 难点:选择适当的方法,将几何问题转化为向量问题加以解决. 四.【教学过程】 (一). (二).【新课引入】 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.本节课,我们就通过几个具体实例,来研讨 建议 说明向量方法在平面几何中的运用 (三)【典例精讲】 例1. 证明:平行四边形两条对角线的平方和等于相邻两条边的平方和. 已知:平行四边形ABCD. 求证:2222 2() AC BD AB BC +=+ 证明:不妨设AB=a,AD=b,则 AC=a+b,DB=a-b,2 || AB=|a|2,2 || AD=|b|2. 得2 || AC AC AC =?=( a+b)·( a+b) = a·a+ a·b+b·a+b·b =|a|2+2a·b+|b|2.① 同理,2 || DB=|a|2-2a·b+|b|2.② ①+②得2 || AC+2 || DB=2(|a|2+|b|2)=2(2 || AB+2 || AD). 所以,平行四边形两条对角线的平方和等于四条边的平方和. 对比其他方法: 建系设坐标法和做辅助线勾股定理等方法体验向量法的优越性. 跟踪练习应用上述结论解题 引导学生归纳,用向量方法解决平面几何问题“三步曲”: ⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面 几何问题转化为向量问题; ⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ⑶把运算结果“翻译”成几何关系. 简述为: 几何问题向量化向量运算关系化向量关系几何化

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

全国名校高三数学经典压轴题100例(人教版附详解)

好题速递1 1.已知P 是ABC ?内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r ,x 、y R ∈,则2y x +的取值范围是 ___ . 解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x y x y x y +=++,知点Q 在线段 BC 上.从而1AP x y AQ +=>?? +

[精品]新高三数学第二轮专题复习概率与统计优质课教案

高三数学第二轮专题复习:概率与统计 高考要求 概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法 重难点归纳 本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差 涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维 典型题例示范讲解 例1有一容量为50的样本,数据的分组及各组的频率数如下 [10,15]4 [30,35)9 [15,20)5 [35,40)8 [20,25)10 [40,45)3 [25,30)11 (1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图和累积频率的分布图 命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法

知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法 错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别 技巧与方法本题关键在于掌握三种表格的区别与联系 解 (1)由所给数据,计算得如下频率分布表 数据段频数频率累积频率 [10,15) 4 0.08 0.08 [15,20) 5 0.10 0.18 [20,25)10 0.20 0.38 [25,30)11 0.22 0.60 [30,35)9 0.18 0.78 [35,40)8 0.16 0.94 [40,45) 3 0.06 1 总计50 1 (2)频率分布直方图与累积频率分布图如下

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

2.5 平面向量应用举例(3课时)

第一课时 2.5.1 平面几何中的向量方法 教学要求:理解向量加减法与向量数量积的运算法则;会用向量知识解决几何问题;能通过向量运算研 究几何问题中点、线段、夹角之间的关系. 教学过程: 一、复习准备: 1.提问:向量的加减运算和数量积运算是怎样的? 2.讨论:① 若o 为ABC ?的重心,则OA +OB +OC =0; ②水渠横断面是四边形ABCD ,DC =12 AB ,且|AD |=|BC |,则这个四边形为等腰梯形。类比几何元素之间的关系,你会想到向量运算之间都有什么关系? 二、讲授新课: 1.教学平面几何的向量: (1). 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来。例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB =,AD =, 则+=+= (平移) ,-=-=, 2 2 b AD ==(长度) .向量AD ,AB 的夹角为DAB ∠ (2). 讨论:①向量运算与几何中的结论“若b a =,则 =,且,所在直线平行或重合”相类比,你 有什么体会? ②由学生举出几个具有线性运算的几何实例. (3). 用向量方法解平面几何问题的步骤(一般步骤) ① 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量. ② 通过向量运算研究几何运算之间的关系,如距离、夹角等. ③ 把运算结果“翻译”成几何关系. 2.教学例题: ①例1:求证:平行四边形两条对角线的平方和等于四条边的平方和. 分析:由向量的数量积的性质,线段的长的平方可看做相应向量自身的内积. ② 例2:如图,平行四边行ABCD 中,点E 、F 分别是AD 、 DC 边的中点,BE 、 BF 分别与AC 交于R 、 T 两点,你能发现AR 、 RT 、TC 之间的关系吗? 分析:设,,,,n m ====分别 求向量,,即可。 ③ 例3、如图,在OBCA 中,b OB a OA ==,-=+,求证四边形OBCA 为矩形 分析:要证四边形OBCA 为矩形,只需证一角为直角. C F

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

高三数学立体几何经典例题

高三数学立体几何经 典例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

厦门一中 立体几何专题 一、选择题(10×5′=50′) 1.如图,设O 是正三棱锥P-ABC 底面三角形ABC 的中心, 过O 的动平面与P-ABC 的三条侧棱或其延长线的交点分别记 为Q 、R 、S ,则 PS PR PQ 1 11+ + ( ) A.有最大值而无最小值 B.有最小值而无最大值 C.既有最大值又有最小值,且最大值与最小值不等 D.是一个与平面QRS 位置无关的常量 2.在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 ( ) A.??? ??ππ-,1n n B.??? ??ππ-,2n n C.??? ??π2,0 D.? ? ? ??π-π-n n n n 1,2 3.正三棱锥P-ABC 的底面边长为2a ,点E 、F 、G 、H 分别是PA 、PB 、BC 、AC 的中点,则四边形EFGH 的面积的取值范围是 ( ) A.(0,+∞) B.???? ??+∞,332a C.??? ? ??+∞,632a D.??? ??+∞,212a 4.已知二面角α-a -β为60°,点A 在此二面角内,且点A 到平面α、β的距离分别是AE =4,AF =2,若B ∈α,C ∈β,则△ABC 的周长的最小值是 ( ) A.43 B.27 C.47 D.23 5.如图,正四面体A-BCD 中,E 在棱AB 上,F 在棱CD 上, 使得 FD CF EB AE ==λ(0<λ<+∞),记f (λ)=αλ+βλ,其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则 ( ) A.f (λ)在(0,+∞)单调增加 B.f (λ)在(0,+∞)单调减少 C.f (λ)在(0,1)单调增加,在(1,+∞)单调减少 D.f (λ)在(0,+∞)为常数 6.直线a ∥平面β,直线a 到平面β的距离为1,则到直线a 的距离与平面β的距离都等于5 4 的点的集合是 ( ) A.一条直线 B.一个平面 C.两条平行直线 D.两个平面 7.正四棱锥底面积为Q ,侧面积为S ,则它的体积为 ( ) A.)(6 122Q S Q - B. )(31 22Q S Q - C. )(2 122Q S Q - D. S Q 3 1 8.已知球O 的半径为R ,A 、B 是球面上任意两点,则弦长|AB |的取值范围为 ( ) 第1题图 第5题图

[精品]新高三数学第二轮专题复习分类讨论思想优质课教案

高三数学第二轮专题复习:分类讨论思想 高考要求 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论” 重难点归纳 分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则分类讨论常见的依据是 1由概念内涵分类如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类 2由公式条件分类如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等 3由实际意义分类如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论 在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论 典型题例示范讲解

例1已知{a n }是首项为2,公比为2 1的等比数列,S n 为它的前n 项和 (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立 命题意图 本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力 知识依托 解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质 错解分析 第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223 技巧与方法 本题属于探索性题型,是高考试题的热点题型 在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想 即对双参数k ,c 轮流分类讨论,从而获得答案 解 (1)由S n =4(1–n 21),得221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *)故只要23S k –2<c <S k ,(k ∈N *) 因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥2 3S 1–2=1 又S k <4,故要使①成立,c 只能取2或3 当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不

高一数学平面向量应用举例教案

高一数学平面向量应用举例教案 一、教学分析 1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为: 则向量方法的流程图可以简单地表述为: 这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点. 2.研究几何可以采取不同的方法,这些方法包括: 综合方法——不使用其他工具,对几何元素及其关系直接进行讨论; 解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论; 向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论; 分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等. 前三种方法都是中学数学中出现的内容. 有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化. 二、教学目标 1.知识与技能: 通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”. 2.过程与方法: 明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示. 3.情感态度与价值观: 通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段. 三、重点难点 教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”. 教学难点:如何将几何等实际问题化归为向量问题. 四、教学设想 (一)导入新课

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

相关文档
最新文档