容栅传感器说明书

容栅传感器说明书
容栅传感器说明书

一、概述

1、用途:

JCQ-203型十六点位移测试仪是专为需要多点位移测试的有关检测部门研制的一种智能化仪器。它配合容栅式位移传感器可进行多点位移测试及单点位移显示(可换点),并可随时打印十六点位移数据。也可以通过仪器上的RS-232串行口将数据传到PC机由PC机全屏显示全部十六点位移数据。

2、特点:

本仪器具有十六个独立的位移测试通道,可直接显示各测试通道的位移值。仪器与传感器间用电缆连接,测试人员可远距离操作,既提高了工作效率,又大大提高了测试精度。

本仪器位移测试通道使用本所研制的容栅式位移传感器,具有高精度、大量程、无时漂、温漂等优点,完全满足了野外昼夜连续观测对时漂、温漂的严格要求。

仪器具有标准打印机接口,可随时打印原始数据不需人工记录。

因为本仪器使用环境恶劣,电源电压波动大,昼夜、季节温差大。为了保证仪器的高精度、高稳定和可靠性,采取了一系列技术措施予以保证。仪器面板采用封闭式轻触面板,操作简便,性能可靠,结构牢固,体积小巧,便于安装、携带。机内采用进口工业级超低漂移集成电路芯片及计算机处理技术,具有良好的抗干扰性能及适应恶劣环境的能力。

二、主要技术指标

1、测试通道:位移16个

2、量程:位移0—50mm

3、精度:位移≤0.1 %(含传感器)

4、显示:8位液晶显示屏

5、功能键:2个

6、输出接口:标准打印机接口1个

7、串行口:标准RS-232接口1个

8、电源:AC 220V(-20% —+10%)

9、功率:交流≤10V A

10、环境温度:0℃—+40℃允许长时间连续工作

11、体积:335×325×115mm

12、重量:约4.2 kg

三、仪器功能键

仪器具有3个功能键。

1、位移上下换点键

按上面的换点键时显示下一个位移通道号及位移值,按下面的换点键时显示上一个位移通道号及位移值,显示通道范围在1-16之间,位移单位为mm。

2、打印键

该键用于数据的随时打印。每按一次此键,打印机打印1-16点各点位移值。

四、现场试验的操作使用

1、仪器系统配套性

(1)JCQ-203十六点位移测试仪1台

(2)容栅式位移传感器16个

(3)打印机1台

(4)传感器屏蔽电缆1套

(5)RS-232串口通信电缆1根

(6)仪器电源线1根

2、开机前的准备

(1)仪器接入单相交流220V电源,并可靠接地。

(2)位移传感器就位后,将各自的屏蔽电缆插入仪器后面板对应插座。

(3)将打印机与本仪器后面板打印机插座联通。

(4)如需由PC机全屏显示全部位移数据需将RS-232串口通信线连接仪器及PC机上串口插座。

3、系统设备的检查

(1)打开仪器电源开关,显示器应显示JCQ-203,按换点键应依次显示各点位移值。(2)若接有打印机可按打印键,检查打印机是否打印(打印机电源应先打开)。(3)在位移传感器端按清零键,对位移传感器清零。

4、主机程序操作

(1)进入监控后系统首先提示是否删除历史记录,如选择“是”则清除历史记录,否则系统将恢复上次试验的数据设置,并在原有数据后继续追加数据。当进行新的试验时应选择清除历史记录,防止上次试验的数据设置影响本次试验。数据自动保存在系统程序所在目录下,文件名为WYDAT.dat。WYDAT.bak为上次试验的备份数据。

(2)从通道选择中选择使用的位移通道(应将不使用的位移通道关闭)。

(3)设定定时记录时间,系统根据定时自动记录。如定时为0,则不作自动记录。另外随时可使用保存命令来保存当前数据。

(4)根据使用的串口来选择进行通讯的串口号。如选择正确应该能在位移显示区看到相应的位移值。否则应检查串口或连线是否正确,直到能够看到位移值为止。然后即可进入正常测试工作。

(5)选择打印命令时将打印采集的所有数据。

(6)记录的数据可在文字处理系统处理如WORD、写字板、Excel中打开使用。(7)如果位移量程不足,可以通过数据设置来扩大量程,方法如下:

A、记下需要调整位移通道的位移值。

B、调整该位移表并将它清零。

C、选择“数据设置”命令,在该位移的修改值中输入第一步记下的位移值,确

定即可。

五、注意事项

1、系统应具有可靠的安全接地以确保人身安全。

2、如遇停电应关闭电源开关,以免突然来电时的冲击损坏仪器。

3、系统安装完毕后仪器应加电预热30分钟再使用以保证测试精度。

4、仪器发生故障,请首先检查传感器连线和插头是否有短路或断路现象,若排除后

仍不正常,请不要自行拆卸可送回我所维修。

H009 AHKC-BS系列20A-500A闭口式霍尔电流传感器参数说明书V1.0

H009AHKC-BS系列闭口式霍尔电流传感器V1.0 1.产品概述 AHKC-BS系列电流传感器的初、次级之间是绝缘的,可用于测量直流、交流和脉冲电流。 2.技术参数及外形尺寸 参数指标 额定输入电流±50~±500A 额定输出电压±5V/±4V 准确级 1.0 电源电压DC±15V(允许波动±20%) 零点失调电压±20mV 失调电压漂移≤±1.0mV/℃ 线性度≤0.2%FS 响应时间≤5us 频宽0~20kHz 绝缘电压 2.5kV/50Hz/1min 工作温度-40℃~85℃ 储存温度-40℃~85℃ 功耗≤0.5W

3.安装方式 4.接线方式 +15V——电源+15V -15V——电源-15V(注意电源正极与负极不可接反) M ——信号输出端正极G ——电源地与信号输出端负极 注:具体接线按实物外壳上的端子编号为准。 5.注意事项 1、霍尔传感器在使用时,为了得到较好的动态特性和灵敏度,必须注意原边线圈和副边线圈之间的耦合,建议使用单根导线且导线完全填满霍尔传感器模块过线孔; 2、霍尔传感器在使用时,在额定输入电流值下才能得到最佳的测量精度,当被测电流远低于额定值时,若要获得最佳精度,原边可使用多匝,即:IpNp=额定安匝数。另外,原边馈线温度不应超过80℃; 3、霍尔电流传感器正常工作时的辅助电源不应超过标定值的±20%; 底板螺钉M4(垫片)安装+15V -15V M G +15V GND -15V 辅助电源信号输出 AO GND

4、霍尔电流传感器在安装使用过程中严禁从高处摔落(≥1m); 5、不能调节零点、满度调节电位器; 6、辅助电源需要自行配置; 7、电源正负极不能接反。 6.订货范例(0510-********) 例1:AHKC-BS霍尔电流传感器 辅助电源:DC±15V 输入:200A 输出:5V 精度:1级 7、霍尔电流传感器适用场合 霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集,广泛应用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制,具有响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强等优点。

容栅位移传感器

第17卷 第1期 桂 林 电 子 工 业 学 院 学 报V o l .17,N o .1 1997年3月JOURNAL OF GU I L IN INSTITUTE OF EL ECTRON I C TECHNOLOG Y M ar .1997  1996-08-26收稿,1997-01-07修改定稿 作者 男 32岁 大学本科 工程师 桂林 541004 容栅位移传感器 郝卫东 (电子机械工程系) 摘 要 通过对容栅专用集成电路78102的内部结构的分析,得出实际数显卡尺位移测量的工作原 理和实际测量数据的取得过程,依此推导出容栅的栅条宽度尺寸和对动栅、定栅的具体要求, 最后对串行数据输出口扩展应用作了探讨。 关 键 词 电子数显卡尺;容栅传感器;专用集成电路 中图法分类 TN 454 引 言 目前许多文章和教科书都提到容栅的工作原理,但不论是调幅式还是调相式,介绍都不深入,离实际应用还有很大距离。对于容栅研究者来说,想设计专用容栅集成块完全不可能,如果用一般硬件,如单片机、PC 机和数字电路来设计容栅位移传感器,由于杂散电容影响也无法实现。现有的数显卡尺芯片对栅条的宽度有固定而严格的要求,这一点在设计滚动式容栅直线位移传感器时,作者有较深的体会。 对容栅的研究是从1989年容栅数显卡尺开始的。当时查阅了大量资料并请人帮助查找各国专利资料,收集到的有价值的资料有限,无法帮助解开其中之谜,于是便开始了对容栅数显卡尺的测试分析实验。在研究过程中内部资料RCL SE M I CONDU CTOR S L I M IT ED 给予了很大帮助。 1 工作原理 容栅数显卡尺动尺和定尺的结构和安装示意图如图1所示。图中动尺上排列一系列尺寸相同、宽度为l 0的发射极片1,2,3…8,用E 表示,公共接收极为R ,定尺上均匀排列着一系列尺寸相同、宽度和间隙各为4l 0的反射电极片M 1,M 2,…电极片间互相电绝缘。动尺和定尺的电极片面相对,平行安装。当发射电极片1,2,…8分别加以激励电压E 1,E 2,…E 8时,通过电容耦合在反射极片上产生电荷,再通过电容在公共接收极上产生电荷输出。

霍尔电流传感器说明书

'4 &, ????????????FS500EK1 Hall-effect Current Sensor Series ??????????????????????????????????ф????????????ǎ Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mi. ?????1,+15V 2,-15V 3,V out 4,0V(???) OFS,????GIN,???? Elucidation: 1:+15V 2:–15V 3: VOUT 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment ????/Remarks 1???????????????ǎ????????????????????????????????????ǎ2???????????????????????ǎ 3??????????????К???????????ǎ·Incorrect connection may lead to the damage of the sensor. ·VOUT is positive when the IP flows in the direction of the arrow. ???/Electrical characteristics ??Type ?????К?? Primary nominal input current ???????? Measuring range of primary current ????????Nominal output voltage ???? Supply voltage ???? Current consumption ???? Insulation voltage ???Linearity ??????Offset voltage ?????Residual voltage ??????Thermal drift of V0???? Response time ????(-3dB) Frequency bandwidth(-3dB) ?????? Ambient operating temperature ?????? Ambient storage temperature ???? Load resistance ?юStandard FS050EK1FS100EK1 FS200EK1 FS300EK1FS400EK1 FS500EK1 50 100 200 300 400 5000~±100 0~±200 0~±400 0~±600 0~±800 0~±1000 4±1%±12~±15(±5%) V C =±15V <25 ??????????2 .5KV ???/50Hz/1?? <1 T A =25℃ I PN ? I P =0 T A =-25?+85?  <±1 DC ?20-25?+85 .GI/FS-0105 -40?+100A A V V mA %FS mV mV mV/℃?V kHz ℃℃??????mm ?/Dimensions of drawing (mm) I PN I P V OUT V C I C V d ?L V 0V OM V OT Tr f T A T S R L 5 electronics

容栅传感器简介

容栅传感器 Capacitive 容栅传感器是一种新型位移数字式传感器,它是一种基于变面积工作原理的电容传感器。因为它的电极排列如同栅状,故称此类传感器为容栅传感器。与其他大位移传感器,如光栅、磁栅等相比,虽然准确度稍差,但体积小、造价低、耗电省和环境使用性强,广泛应用于电子数显卡尺、千分尺、高度仪、坐标仪和机床行程的测量中。 11.5.1 结构及工作原理 根据结构形式,容栅传感器可分为三类,即直线容栅、圆容栅和圆筒容栅。其中,直线容栅和圆筒容栅用于直线位移的测量,圆容栅用于角位移的测量,直线型容栅传感器结构简图如图11-25所示。 图11-23 直线型容栅传感器结构简图 a)定尺、动尺上的电极b)定尺、动尺的位置关系c)发射电极和反射电极的相互关系 1-反射电极2-屏蔽电极3-接收电极4-发射电极 容栅传感器由动尺和定尺组成,两者保持很小的间隙δ,如图11-23b所示。动尺上有多个发射电极和一个长条形接收电极;定尺上有多个相互绝缘的反射电极和一个屏蔽电极

(接地)。一组发射电极的长度为一个节距W,一个反射电极对应于一组发射电极。在图11-23中,若发射电极有48个,分成6组,则每组有8个发射电极。每隔8个接在一起,组成一个激励相,在每组相同序号的发射电极上加一个幅值、频率和相位相同的激励信号,相邻序号电极上激励信号的相位差是45°(360°/8)。设第一组序号为1的发射电极上加一个相位为0°的激励信号,序号为2的发射电极上的激励信号相位则为45°,以次类推,则序号为8的发射电极上的激励信号相位就为315°;而第二组序号为9的发射电极上的激励信号相位与第一组序号为1的相位相同,也为0°,以次类推,直到第6组的序号48为止。 发射电极与反射电极、反射电极与接收电极之间存在着电场。由于反射电极的电容耦合和电荷传递作用,使得接收电极上的输出信号随发射电极与反射电极的位置变化而变化。 当动尺向右移动x距离时,发射电极与反射电极间的相对面积发生变化,反射电极上的电荷量发生变化,并将电荷感应到接收电极上,在接收电极上累积的电荷Q与位移量x成正比。经运算器处理后进行公/英制转换和BCD码转换,再由译码器将BCD码转变成七段码,送显示驱动单元,容栅测量转换电路框图如图11-24所示。 图11-24 容栅测量转换电路框图 一般用于数显卡尺的容栅的节距W=0.635mm(25毫英寸),最小分辨力为0.01mm,非线性误差小于0.01mm,在150mm范围内的总测量误差为0.02~0.03mm。 直线型容栅传感器还有一种梳状结构,能接近衍射光栅和激光干涉仪的测量准确度,但造价远比它们低。 11.5.2 容栅传感器在数显尺中的应用 普通测量工具,如游标卡尺、千分尺等在读数时存在视差。随着容栅技术在测量工具中的应用及性能/价格比的不断提高,数显卡尺、千分尺应运而生,并在生产中越来越多地替代了传统卡尺。数显卡尺示意图如图11-25所示。

位移传感器(中英对照)

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 简介 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。 信号处理 辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之

霍尔电流传感器的种类及工作原理

霍尔电流传感器的种类及工作原理 1.简介 霍尔电流传感器可以分为很多种,如果按照原理可以分为开环霍尔电流传感器(Open Loop Hall Effect)和闭环霍尔电流传感器(Close Loop Hall Effect)。基于开环原理的电流传感器结构简单,可靠性好,过载能力强,体积较小,但也有很多缺点,如温度影响大,精度低,反应时间不够快,频带宽度窄等。而闭环霍尔电流传感器等特点是精度高,响应快,频带宽,但同时也有缺点,即过载能力差,体积较大,工艺比较复杂,同时价格也偏高。 1原理图如下: 开环原理霍尔电流传感器示意图 闭环原理霍尔电流传感器示意图 2 霍尔电流传感器的工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。 1图片来自PAS 网站

2.1 电流传感 器的输出信号 2当原边导线经过电 流传感器时,原边电流IP 会产生磁力线,原边磁力 线集中在磁芯气隙周围, 内置在磁芯气隙中的霍尔 电片可产生和原边磁力线 成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP。其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS —副边圈匝数;NP / NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2.2 电流传感器供电电压V A V A指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压V A又分为正极供电电压V A+和负极 供电电压V A-。要注意单相供电的传感器,其供电电压V Amin是双相供电电压V Amin 的2倍,所以其测量范围要高于双相供电的传感器。 2.3 测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围 一般高于标准额定值I 。 2.4霍尔电流传感器工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 直放式电流传感器(开环式):当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 磁平衡式电流传感器(闭环式):磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 2董高峰《浅析霍尔电流传感器的应用》

DIT系列高精度数字电流传感器使用说明书

DIT系列 高精度数字电流传感器 使用说明书 V1.5 成立于2017年的航智精密,坐落于最具创新精神的深圳。凭借强大的研发团队,秉承以技术创新为动力,以市场结果为导向的理念,航智精密立足高精度直流传感器领域,打破国外企业该领域市场垄断的现状,力争发展成为国际领先的直流系统领域精密电子的领军企业。 基于技术集成与创新,航智精密研发了业界第一款高精度数字电流传感器及高精度、低成本、全量程为主要特点的模拟电流传感器。该产品在降低行业成本、提高行业效率和增强用户体验体验上具备行业领先定位,并在创新创业赛事中屡获佳绩,赢得社会各界广泛关注和支持。 航天品质,匠心制造。让高精度直流传感器进入普及时代,这是航智精密人孜孜以求的梦想。作为一家有强烈责任感、使命感的企业,航智精密正在以服务型的品牌营销及定制化的产品理念发力市场,并成功通过资本融资助力运营质量,为建设一个不断创新的分享型企业而奋斗!

目录 1前言 (3) 1.1装箱内容确认 (3) 1.2附件 (3) 2概述 (5) 2.1产品概要 (5) 2.2核心技术 (5) 2.3性能特点 (5) 2.4应用领域 (5) 3产品选型及技术参数 (6) 3.1产品选型表 (6) 3.2技术参数(RG-量程值) (7) 4接口说明 (8) 4.1DB9接线端子定义(DB9公头) (8) 4.2凤凰端子定义 (8) 4.3运行指示灯 (8) 5尺寸说明 (9) 5.1DIT1、DIT5、DIT60、DIT200、DIT300、DIT400型号 (9) 5.2DIT600、DIT1000型号 (10) 附录1 通信协议 (11)

霍尔电流传感器电源消耗电流计算方案

霍尔电流传感器电源消耗电流计算方案 霍尔电流传感器由于具有精度高、线性好、频带宽、响应快、过载能力强和无插入损耗等诸多优点,因而被广泛应用于变频器、逆变器、电源、电焊机、变电站、电解电镀、数控机床、微机监测系统、电网监控系统和需要隔离检测的大电流、电压等各个领域中。霍尔传感器需用到直流电源供电才可正常工作,在做产品设计时需要考虑其功率消耗,本文基于传统的霍尔电流传感器,精确计算其电流消耗,并利用LTspice软件进行仿真,所推导的理论计算公式可为产品设计提供参考。 霍尔电流传感器工作原理 从工作原理上,霍尔电流传感器可以分为霍尔开环电流传感器和霍尔闭环电流传感器。 ●霍尔开环电流传感器 图1 霍尔开环电压传感器的工作原理 霍尔传感器的磁芯使用软磁材料,原边电流产生磁场通过磁芯聚磁,在磁芯切开一个均匀的切口,磁芯气隙处磁感应强度与原边电流成正比,霍尔元件两端感应到的霍尔电压的大小与原边电流及流过霍尔元件电流的乘积成正比,霍尔电压经过放大后作为传感器的输出。其输出关系式满足: VOUT=K*IP*IHall 其中K为固定的常数,其大小通常与磁芯的尺寸,材料性质,气隙开口的宽度,以及处理电路的放大倍数有关。 ●霍尔闭环电流传感器的工作原理: 闭环电流传感器在开环的基础上增加了反馈线圈,霍尔元件两端感应到的霍尔电流经过放大后控制后端的三极管电路产生补偿电流,补偿电路流过缠绕在磁芯上的线圈,产生的磁场与原边电流产生的磁场方向相反,当磁芯气隙处的磁场强度补偿为0时,传感器的输出满足IS=IP/KN,其中KN为补偿线圈的匝数。

图2 霍尔闭环电压传感器的工作原理 传感器的功耗计算 ●开环电流传感器的功耗计算 对于开环电流传感器,因为其输出信号为电压,所以其功耗相对较为稳定。通常霍尔电流传感器的电流设计为采用正负电源供电,其额定输出电压一般为几伏,一般不超过10伏。输出端对负载的要求一般为大于10KΩ,所以流过负载的电流一般小于1个mA。通常开环传感器的电流消耗小于15mA。电流消耗主要是霍尔元件消耗的电流,流入霍尔元件两端的电流通常要求小于20mA,LEM 的产品霍尔电流通常在10mA左右。另外在调压支路还有几mA的电流消耗。这样开环传感器的电流消耗可以维持在十几mA的水平内,通常说明书上标的都是不超过15mA。 ●闭环电流传感器的功耗计算 闭环传感器输出信号为电流,其功耗相对于开环传感器多很多,下面以LF 205-S为例来分析闭环电流传感器的电流消耗。 图3为LF 205-S的原理示意 图4为LF205-S原理图

简单易懂的霍尔电流传感器使用原理及相关霍尔型号

1、开环(直放式)霍尔电流传感器 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件(如HG-302C)进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。开环霍尔电流传感器的优点是结构简单,可靠性好,过载能力强,体积较小,开环式霍尔电流传感器一般线性度角差,且原边信号在上升和下降过程中副边输出会有不同。开环式霍尔电流传感器精度通常劣于1%。?一般开环电流传感器采用的霍尔是 HG-106A,HG-106C,HG-166A,HG-302A,HG-302C,HG-362A,SS495A,SS495A1。 2、闭环(磁平衡式)霍尔电流传感器 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件(如HW-300B,HW-302B)处于检测零磁通的工作状态。 当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件(HW-300B,HW-302B)就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不

容栅式传感器的原理

容栅式传感器 容栅式传感器是在变面积型电容传感器的基础上发展起来的一种新型传感器。它在具有电容式传感器优点的同时,又具有多极电容带来的平均效应,而且采用闭环反馈式等测量电路减小了寄生电容的影响、提高了抗干扰能力、提高了测量精度(可达5?m)、极大地扩展了量程(可达1m),是一种很有发展前途的传感器。现已应用于数显卡尺、测长机等数显量具。 将电容传感器中的电容极板刻成一定形状和尺寸的栅片,再配以相应的测量电路就构成了容栅测量系统。正是特定的栅状电容极板和独特的测量电路使其超越了传统的电容传感器,适宜进行大位移测量。 一、工作原理及转换电路 (一) 开环调幅式测量原理 传感器电容极板的基本结构示于图4-23。在图中左侧,一个极板由均匀排列电极的长栅(定栅)组成,另一个极板由一对相同尺寸的交错对插电极梳(动栅对)组成。运行时,传感器的两个电极栅片相对按装如图中右侧,其中暗区域是两个电极栅的重叠面积,从而形成一对随位移反向变化的差动电容器C1和C2。传感器仍采用传统差动变压器测量电路,但通过将电容极板刻成栅状提高了测量精度并实现了大位移测量。 (二) 闭环调幅式测量原理 其测量原理如图4-24所示,其中左侧是系统原理图、右侧是电极栅片原理结构。图中A、B为动尺上的两组电极片,P为定尺上的一片电极片,它们之间构成差动电容器CA、CB。两组电极片A和B各由四片小电极片组成,在位置a时,一组为小电极片1~4,另一组为5~8。方波脉冲控制开关S1和S2,轮流将参考直流电压±U0和测量转换系统的直流输出电压Um 分别接入两个小电极组A和B。 若系统保证电容极板P为虚地,则在一个周期内,激励信号通过差动电容CA和CB在电容极板P上产生的电荷量QP为(CAU0-CBU0+CAUm+CBUm)。当QP为零时,测量转换电路保证Um不变;否则导致测量转换电路使Um改变,并保证其变化使QP的值减小,直至为零。这时,由上面可推导出 (4-20) 则输出直流电压与位移成线性关系。 当相对位移量超过l0(小电极片的间距)即L0/4时,由控制电路自动改变小电极片组的接线,见图中位置b,这时电极片组由小电极片2~5构成;电极片组由小电极片6~9构成。这样,在电极片P相对移动的过程中,能保证始终与不同的小电极片形成同样的差动电容器,重复前述过程,而得到与位移成线性关系的输出电压。 该测量系统由输出电压来调节激励电压,形成闭环反馈式测量系统。因而具有下节所述闭环反馈系统的优点,而且还使寄生电容的影响大为减小。电路复杂是其主要缺点。 (三) 调相式测量原理 调相式测量原理如图4-25所示。容栅传感器一个极板K由数个发射极片组形成,每个极片组中有八个宽度均为l0的发射极片,分别加以八个幅值为Um、 频率为w 、相位依次相差p /4的正弦激励电压;另一个极板由许多反射极片M和接地的屏蔽极片S形成;还有一个接受极片R。图中给出其中一组来说明测量原理,当两个极板处于相对位置a时,每个发射极片与反射极片完全覆盖,所形成的电容均为C0。当两个极板相对移动x(< ?l0)而处于位置b时,若将反射极片的电压记为UM、接受极片的电压记为UR,反射极片与接受极片之间的电容记为CMR、接受极片与地之间的电容记为CRG,则有

对位移传感器的认识

对位移传感器的认识 桥梁试验是指应用测试手段,对桥梁结构的整体或主要部件进行检测,了解桥梁结构及其部件的工作状态和承载能力,以验证桥梁结构的设计计算理论,检验施工质量和发现运用中存在的问题等。 桥梁试验用的设备可分为机械式测试仪器,电测仪器和光测仪器三大类。桥梁常使用的机械式测试仪器,主要有应变计、位移计和振动仪等三大类。电测仪器一般由传感器、电子测量仪器(主机)和指示记录装置组成。 一,概述 传感器。根据其测试内容的不同,可分为应变传感器、反力传感器、位移传感器、振动传感器等。根据其转换的原理不同,可分为电阻式传感器、电感式传感器、电容式传感器、磁电式传感器、压电式传感器等。其中电阻应变片是在桥梁电测中应用最广泛的一种传感器,它是利用一些金属丝的电阻随其在长度方向的应变,在一定范围内保持线性关系的原理制成的。为了增大电阻的变化量和减少应变片的长度,通常采用高电阻率的电阻丝绕制成栅状,做成应变片。测试时,把它牢固地粘贴在测点上,当测点处的基材发生应变时,电阻应变片随之发生应变,其电阻值也作相应的改变,这就达到了非电量向电量的转换。电阻应变片不但可以测量应变,而且在加上一些附件之后,可以对位移和振动等进行测量。 位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 二,各种传感器的特点 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 光电式位移传感器利用激光三角反射法进行测量,对被测物体材质没有任何要求,主要影响为环境光强和被测面是否平整。比如公路测量用到真尚有的激光位移传感器,就对传感器进行了特殊配置,与普通情况不一样。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 三,辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。 . .

容栅传感器说明书

一、概述 1、用途: JCQ-203型十六点位移测试仪是专为需要多点位移测试的有关检测部门研制的一种智能化仪器。它配合容栅式位移传感器可进行多点位移测试及单点位移显示(可换点),并可随时打印十六点位移数据。也可以通过仪器上的RS-232串行口将数据传到PC机由PC机全屏显示全部十六点位移数据。 2、特点: 本仪器具有十六个独立的位移测试通道,可直接显示各测试通道的位移值。仪器与传感器间用电缆连接,测试人员可远距离操作,既提高了工作效率,又大大提高了测试精度。 本仪器位移测试通道使用本所研制的容栅式位移传感器,具有高精度、大量程、无时漂、温漂等优点,完全满足了野外昼夜连续观测对时漂、温漂的严格要求。 仪器具有标准打印机接口,可随时打印原始数据不需人工记录。 因为本仪器使用环境恶劣,电源电压波动大,昼夜、季节温差大。为了保证仪器的高精度、高稳定和可靠性,采取了一系列技术措施予以保证。仪器面板采用封闭式轻触面板,操作简便,性能可靠,结构牢固,体积小巧,便于安装、携带。机内采用进口工业级超低漂移集成电路芯片及计算机处理技术,具有良好的抗干扰性能及适应恶劣环境的能力。 二、主要技术指标 1、测试通道:位移16个 2、量程:位移0—50mm 3、精度:位移≤0.1 %(含传感器) 4、显示:8位液晶显示屏 5、功能键:2个 6、输出接口:标准打印机接口1个 7、串行口:标准RS-232接口1个 8、电源:AC 220V(-20% —+10%) 9、功率:交流≤10V A 10、环境温度:0℃—+40℃允许长时间连续工作 11、体积:335×325×115mm 12、重量:约4.2 kg

容栅旋转编码器

容栅旋转编码器原理及应用[图] https://www.360docs.net/doc/4c18067256.html, ( 2012/1/13 13:46 ) 摘要:以旋转容栅编码器为例,简述容栅传感器的测量原理及其结构,分析容栅自身以及容栅芯片的特点,通过机械机构设计和容栅编码器后续电路设计,提高其工作可靠性,并应用于实际工程中。 一、引言 电容传感器具有测量分辨力和测量准确度高等特点,在很多场合被作为高精测量仪器使用,但因其自身缺陷,只能使用在微小位移的测量中,无法满足大位移测量的要求。80年代容栅传感器的出现,彻底的改变了这种情况。借鉴了光栅的结构形式,工程师把电容做成栅型,大大提高了测量的精度和范围,实现了大位移高精度测量。 容栅传感器相对于其他类型的传感器有许多突出的优点: 1)量程大、分辨率高。在线位移测量时,分辨率为2μm时,量程可达到20m,在角位移测量时,分辨率为0.1°时,量程为4096圈。其测量速度也比较高,测量线速度可达到 1.5m/s。 2)容栅测量属非接触式测量,因此容栅传感器具有非接触传感器的优点,诸如测量时摩擦阻力可以减到最小,不会因为测量部件的表面磨损而导致测量精度下降。 3)结构简单。容栅传感器的敏感元件主要由动栅和静栅组成,信号线可以全部从静栅上引出,作为运动部件的动栅可以没有引线,为传感器的设计带来很大的方便。 4)配用专用集成电路的容栅传感器是一种数字传感器,和计算机的接口方便,便于长距离传送信号,几乎无数据传输误差。数据更新速率可以达到每秒50 次。 5)功耗极小。正常工作电流小于10μA,传感器敏感元件可以长期工作,一粒钮扣电池可以连续工作1 年以上。利用这个特点,可以设计出准绝对式的位移传感器。 6)在价格上有很大优势,其性能价格比远高于同类传感器。 容栅传感器有最主要的问题是稳定性和可靠性,环境潮湿和外界电磁干扰的影响尤为显著,其次作为准绝对式传感器在长期断电工作时,需要定期更换电池,所以难于作为传感器用于长期自动测量。 容栅编码器是以脉冲数字量来表示容栅传感器敏感元件间相对位置信息,本文研究的容栅旋转编码器将容栅全部的结构密封在金属壳内,大大提高了容栅传感器的电磁兼容性和抗环境污染能力,为容栅原理用于自动测量奠定了基础。 二、容栅旋转编码器的结构和测量原理 1 容栅旋转编码器的结构组成 容栅旋转编码器分动栅和静栅二部分,都为精密加工的印刷电路板。动栅上有发射极和接收极,在发射极和接收极之间有屏蔽极,避免发射极到接收极之间的直接电容耦合。静栅上有反射极和屏蔽极,反射极与屏蔽极的宽度一致,屏蔽极需可靠接地。动栅上共有48个

H006 AHKC-HB系列开口式霍尔电流传感器2000A-8000A使用说明V1.0

H006AHKC-HB系列开口式霍尔电流传感器V1.0 1.产品概述 AHKC-HB系列开口式霍尔电流传感器是应用霍尔效应原理开发的新一代电流传感器,能在电隔离条件下测量直流、交流、脉冲以及各种不规则波形的电流。 2.技术参数及外形尺寸 参数指标 额定输入电流±2000~±20000A 额定输出电压±5V/±4V 准确级 1.0 电源电压DC±15V(允许波动±20%) 零点失调电压±20mV 失调电压漂移≤±1.0mV/℃ 线性度≤0.2%FS 响应时间≤5us 频宽0~20kHz 绝缘电压 2.5kV/50Hz/1min 工作温度-40℃~85℃ 储存温度-40℃~85℃ 功耗≤0.5W

3.安装方式 4.接线方式 +15V——电源+15V -15V——电源-15V(注意电源正极与负极不可接反) M ——信号输出端正极G ——电源地与信号输出端负极 注:具体接线按实物外壳上的端子编号为准。 5.注意事项 1、霍尔传感器在使用时,为了得到较好的动态特性和灵敏度,必须注意原边线圈和副边线圈之间的耦合,建议使用单根导线且导线完全填满霍尔传感器模块过线孔; 2、霍尔传感器在使用时,在额定输入电流值下才能得到最佳的测量精度,当被测电流远低于额定值时,若要获得最佳精度,原边可使用多匝,即:IpNp=额定安匝数。另外,原边馈线温度不应超过80℃; 3、霍尔电流传感器正常工作时的辅助电源不应超过标定值的±20%;螺丝固定在母排上+15V -15V M G +15V GND -15V 辅助电源信号输出 AO GND

4、霍尔电流传感器在安装使用过程中严禁从高处摔落(≥1m); 5、不能调节零点、满度调节电位器; 6、辅助电源需要自行配置; 7、电源正负极不能接反。 6.订货范例 例1:AHKC-HB霍尔电流传感器 辅助电源:DC±15V 输入:5000A 输出:5V 精度:1级 7、霍尔电流传感器适用场合 霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集,广泛应用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制,具有响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强等优点。

基于Ansoft的容栅传感器边缘效应分析

2016年 第2期 仪表技术与传感器 Instrument Technique and Sensor 2016 No畅2  基金项目:山西省回国留学人员科研资助项目(2011070);中北大学第十 一届研究生科技基金(20141153,20141155);动态测试技术重点实验室基金(2015-2)收稿日期:2015-07-07 基于Ansoft的容栅传感器边缘效应分析 武嘉俊,陈昌鑫,马铁华,刘 莉 (中北大学,电子测试技术国家重点实验室,仪器科学与动态测试教育部重点实验室,山西太原 030051) 摘要:针对提高容栅传感器精度需要减小边缘效应问题,利用AnsoftMaxwell有限元分析软件对其电磁场模型进行仿真,通过对容栅传感器的极板间距、栅极对数、栅极厚度这3个参数进行仿真,得到对应的电容值,并对这个电容值的大小和趋向进行分析,为传感器选择最优参数提供依据。仿真结果表明:容栅传感器受边缘效应影响且影响不可忽略,通过减小极板间距和极板厚度、控制栅极对数可以减小边缘效应的影响,对于提高容栅传感器精度具有重要意义。关键词:容栅传感器;电容;边缘效应;AnsoftMaxwell软件 中图分类号:TP212.1 文献标识码:A 文章编号:1002-1841(2016)02-0001-03 EdgeEffectAnalysisofCapacitiveGridSensorBasedonAnsoft WUJia-jun,CHENChang-xin,MATie-hua,LIULi (NorthUniversityofChina,NationalKeyLaboratoryforElectronicMeasurementTechnology,KeyLaboratoryof InstrumentationScience&DynamicMeasurementofMinistryofEducation,Taiyuan030051,China) Abstract:Inviewofimprovingtheprecisionofcapacitivegridsensorbyreducingedgeeffect,thesensor摧selectromagneticfieldmodelwassimulatedbythefiniteelementanalysissoftwareofAnsoftMaxwell.Accordingtosimulatedthethreeparametersofdistancebetweengridplate,numberofgridplate,andthicknessofgridplate,thecorrespondingvaluesofcapacitanceweregot.Anditprovidedthebasisforselectingoptimalparametersofsensorbyanalyzingsizeandtrendofthevaluesofcapacitance.Theresultsofsimulationshowthatcapacitivegridsensorisinfluencedbytheedgeeffect,andthisinfluencecannotbeignored.Therefore,bymeansofreducingthicknessanddistanceofthegridplate,controllingnumberofgridplate,itcanminimizetheedgeeffect,thesim- ulationissignificancetoachieveimprovingtheprecisionofcapacitivegridsensor.Keywords:capacitivegridsensor;capacitive;edgeeffect;AnsoftMaxwell0 引言 容栅传感器是一种变面积型电容传感器,具有结构简单、体积小、耗能少、环境适应性强和测量精度较高的优点,成功地在量具、量仪和机床数显装置等方面得到应用[1] 。容栅技术在 基本位移测量的基础上,可以拓展到液面测量、力矩测量、压强 测量等多个领域 [2] ;在利用容栅传感器测量旋转轴扭矩时,由 于边缘效应等因素的影响,容栅传感器的灵敏度下降,产生非线性失真,噪声叠加在有用信号上不利于信号的有效提取 [3-4] 。 本文针对这一问题,利用有限元分析软件AnsoftMaxwell对容栅传感器的极板间距、栅极对数、栅极厚度进行边缘效应分析。1 容栅传感器及边缘效应1.1 容栅传感器的结构 容栅传感器的极板是由柔性线路板腐蚀而成的一种栅状电极,由栅条均匀分布的静栅和动栅平行相对构成,其中静栅由极板A片和B片组成(A片栅极个数和B片栅极个数相等,静栅栅极个数是动栅栅极个数的2倍),两片刻蚀的容栅极板如图1所示 [5] ,静栅极板A与动栅极板形成一个电容C1,静栅 极板B与动栅极板形成另一个电容C2。把刻蚀的动栅极板贴在设计的内套筒上,内套筒(动筒)固定在测试的旋转轴上,随 旋转轴同速转动,静栅贴在外套筒(静筒)上,固定在试验台的支架上。安装的结构如图2所示 [6] 。 图1 刻蚀的容栅极板 对于交叉式容栅传感器,当栅极对数较多时,可以将动静栅形成的电容近似为平行板电容,忽略边缘效应,平行板电容器电容公式 [7] 为 C= εrε0S (1) 式中:C为电容值;S为极板正对面积;d为两极板之间的距离;ε0为真空介电常数,ε0近似为8畅854×10-12 F/m;εr为极板间介 质的相对介电常数,与电介质的性质有关,空气的相对介电常 数近似为1。

相关文档
最新文档