大肠杆菌基因型手册

大肠杆菌基因型手册
大肠杆菌基因型手册

From OpenWetWare

1 Nomenclature & Abbreviations

2 Methylation Issues in E. coli

3 Commonly used strains

3.1 AG1

3.2 AB1157

3.3 BL21(AI)

3.4 BL21(DE3)

3.5 BL21 (DE3) pLysS

3.6 BNN93

3.7 BW26434, CGSC Strain # 7658

3.8 C600

3.9 C600 hflA150 (Y1073, BNN102)

3.10 CSH50

3.11 D1210

3.12 DB3.1

3.13 DH1

3.14 DH5α

3.15 DH10B (Invitrogen)

3.16 DH12S (Invitrogen)

3.17 DM1 (Invitrogen)

3.18 ER2566 (NEB)

3.19 ER2267 (NEB)

3.20 HB101

3.21 HMS174(DE3)

3.22 IJ1126

3.23 IJ1127

3.24 JM83

3.25 JM101

3.26 JM103

3.27 JM105

3.28 JM106

3.29 JM107

3.30 JM108

3.31 JM109

3.32 JM109(DE3)

3.33 JM110

3.34 JM2.300

3.35 LE392

3.36 Mach1

3.37 MC1061

3.38 MC4100

3.39 MG1655

3.40 OmniMAX2

3.41 Rosetta(DE3)pLysS 3.42 Rosetta-gami(DE3)pLysS 3.43 RR13.44 STBL2 (Invitrogen)3.45 STBL43.46 SURE (Stratagene)3.47 SURE2 (Stratagene)3.48 TOP10 (Invitrogen)3.49 Top10F' (Invitrogen)3.50 W31103.51 XL1-Blue (Stratagene)3.52 XL2-Blue (Stratagene)3.53 XL2-Blue MRF' (Stratagene)3.54 XL1-Red (Stratagene)3.55 XL10-Gold (Stratagene)3.56 XL10-Gold KanR (Stratagene)4 Other genotype information sources 5 References

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if absent. E. coli

B strains are naturally lon- and dcm-.

F - = Does not carry the F plasmid

F + = Carries the F plasmid. The cell is able to mate with F - through conjugation.

F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F - through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets.

r B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system.

m B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system.

hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded.

hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications

INV( ) = chromosomal inversion between locations indicated

ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity

ara-14 = cannot metabolize arabinose

araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism

cycA = mutation in alanine transporter; cannot use alanine as a carbon source

dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine +methionine) requirement

Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!)dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on

dcm = cytosine methylation at second C of CCWGG sites abolished

通常dam/dcm都是默认的,无需标注,只有dam -、dcm -才有必要标出来,那是被迫使用某些酶切位点时才用来扩增质粒的特殊菌株。

deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285.

dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins

dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well.

endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I

(e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains

galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of

UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or uptake of transforming DNA. galE15 is a point mutation resulting in a Ser123 -> Phe conversion near the enzyme's active site. See van Die, et al. PMID 6373734, Hanahan, et al. PMID 1943786, and EcoSal ISBN 1555811647. --Dcekiert 16:56, 23 January 2008 (CST)

galk = mutants cannot metabolize galactose and are resistant to 2-deoxygalactose. galK16 is an IS2 insertion ~170bp downstream of the galK start codon. See EcoSal ISBN 1555811647.

--Dcekiert 16:56, 23 January 2008 (CST)

galU = mutants cannot metabolize galactose

gor = mutation in glutathione reductase; enhances disulphide bond formation

glnV = suppression of amber (UAG) stop codons by insertion of glutamine; required for some phage growth

gyrA96 = mutation in DNA gyrase; conveys nalidixic acid resistance

gyrA462 = mutation in DNA gyrase; conveys resistance to ccdB colicin gene product

hflA150 = protease mutation stabilizing phage cII protein; high frequency of lysogenization by λΔ(lac)X74 = Deletion of the entire lac operon as well as some flanking DNA.

lacI q or lacI Q = overproduction of the lac repressor protein; -35 site in promoter upstream of lacI is mutated from GCGCAA to GTGCAA

lacI Q1 = overproduction of the lac repressor protein; contains a 15 bp deletion to create optimal

-35 site in promoter upstream of lacI

lacY = deficient in lactose transport; deletion of lactose permease (M protein)

lacZΔM15 = partial deletion of the lacZ gene that allows α complementation of the

β-galactosidase gene; required for blue/white selection on XGal plates. Deletes the amino portion of lacZ (aa 11-41).

leuB = requires leucine

Δlon = deletion of the lon protease

malA = cannot metabolize maltose

mcrA = Mutation eliminating restriction of DNA methylated at the sequence C m CGG (possibly

m CG). Carried on the e14 prophage (q.v.)

mcrB = Mutation eliminating restriction of DNA methylated at the sequence R m C

metB = requires methionine

metC = requires methionine

mrr = Mutation eliminating restriction of DNA methylated at the sequence C m AG or G m AC

mtlA = cannot metabilize mannitol

(Mu) = Mu prophage present. Muδ means the phage is defective.

mutS - mutation inhibits DNA repair of mismatches in unmethylated newly synthesized strands nupG = same as deoR

ompT = mutation in outer membrane protein protease VII, reducing proteolysis of expressed proteins

(P1) = Cell carries a P1 prophage. Cells express the P1 restriction system.

(P2) = Cell carries a P2 prophage. Allows selection against Red+ Gam+ λ

(φ80) = Cell carries the lambdoid prophage φ80. A defective version of this phage carrying lacZM15 deletion (as well as wild-type lacI, lacYA, and flanking sequences) is present in some strains. The φ80 attachment site is just adjacent to tonB.

pLysS = contains pLysS plasmid carrying chloramphenicol resistance and phage T7 lysozyme, effective at attenuating activity of T7 RNA polymerase, for better inhibition of expression under non-induced conditions. The sequence can be found here.

proA/B = requires proline

recA1 = For reduced occurrence of unwanted recombination in cloned DNA; cells UV sensitive, deficient in DNA repair

recA13 = as for recA1, but inserts less stable.

recBCD = Exonuclease V; mutation in RecB or RecC reduces general recombination by a factor of 100; impaired DNA repair; UV sensitive, easier propagation of inverted repeats

recJ Exonuclease involved in alternate recombination

relA = relaxed phenotype; permits RNA synthesis in absence of protein synthesis

rha = blocked rhamose metabolism

rnc = encodes RnaseIII (rnc-14 is a common null mutant)

rne = encodes RnaseE (rne-3071 is a common temperature sensitive mutant)

rpsL = mutation in ribosomal protein S12 conveying streptomycin resistance; also called strA sbcBC = ExoI activity abolished; usually present in recBC strains; recombination proficient, stable inverted repeats

sr1 = cannot metabolize sorbitol

supE = glnV

supF = tyrT

thi = requires thiamine

thyA = requires thymidine

Tn10 = transposon normally carrying Tetracycline resistance

Tn5 = transposon normally carrying Kanamycin resistance

tonA = Mutation in outer membrane protein conveying resistance to phage T1 and phage T5 traD = Mutation eliminating transfer factor; prevents transfer of F plasmid

trxB = mutation in thioredoxin reductase; enhances disulphide bond formation in the cytoplasm tsx = outer membrane protein mutation conveying resistance to phage T6 and colicin K

tryT = suppression of amber (UAG) stop codons by insertion of tyrosine; needed for some phage infection such as λgt11.

ung1 = allows uracil to exist in plasmid DNA

xyl-5 = blocked xylose metabolism

Sm R = Streptomycin resistance

Type I methylation systems:

E. coli K-12 restricts DNA which is not protected by adenine methylation at sites

AA*C[N6]GTGC or GCA*C[N6]GTT, encoded by the hsdRMS genes(EcoKI). Deletions in

these genes removes either the restriction or methylation or both of these functions.

E. coli B derivative strains contain an hsdRMS system (EcoBI) restricting and protectiing the

sequence TGA*[N8]TGCT or AGCA*[N8]TCA.

The mcrA gene (carried on the e14 prophage) restricts DNA which is methylated in C m CWGG or m CG sequences (methylation by the dcm gene product).

The mcrBC genes restrict R m C sequences.

The mrr gene product restricts adenine methylated sequences at CAG or GAC sites.

E. coli methylates the adenine in GATC (and the corresponding A on the opposite strand) with the

dam gene product.

M.EcoKII methylates the first A at the palindromic site ATGCAT (as well as the corresponding A on the opposite strand), see (Kossykh VG (2004) J. Bact 186: 2061-2067 PMID 15028690) Note that this article has been retracted; the retraction appears to center on textual plagarism, not

experimental results. The homology to AvaIII is real. I think I believe it. tk 20:28, 9 December 2005 (EST). Rich Roberts reports: "We have tried ourselves to detect activity with this gene product and cannot detect any methyltransferase activity. In our case we used antibodies able to detect

N6-methyladenine or N4 methylcytosine in DNA. The ones we have are very sensitive and should have been able to detect 5 methyl groups in the whole E. coli chromosome. Nothing was detected in an over expressing strain."

For additional information see E. coli restriction-modification system and the NEB technical

information on methylation.

AG1

endA1 recA1 gyrA96 thi-1 relA1 glnV44 hsdR17(r K- m K+)

AB1157

thr-1, araC14, leuB6(Am), Δ(gpt-proA)62, lacY1, tsx-33, qsr'-0, glnV44(AS), galK2(Oc), LAM-, Rac-0, hisG4(Oc), rfbC1, mgl-51, rpoS396(Am), rpsL31(strR), kdgK51, xylA5, mtl-1, argE3(Oc), thi-1 Bachmann BJ: Derivation and genotypes of some mutant derivatives of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Edited by: F C Neidhardt J L Ingraham KB Low B Magasanik M Schaechter H E Umbarger). Washington, D.C., American Society for Microbiology 1987, 2:1190-1219.

See CGSC#1157

BL21(AI)

F– ompT gal dcm lon hsdS B(r B- m B-) araB::T7RNAP-tetA

an E. coli B strain with carrying the T7 RNA polymerase gene in the araB locus of the araBAD operon q.

Transformed plasmids containing T7 promoter driven expression are repressed until L-arabinose induction of T7 RNA polymerase.

Derived from BL21.

See the product page for more information.

BL21(DE3)

F– ompT gal dcm lon hsdS B(r B- m B-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) an E. coli B strain with DE3, a λ prophage carrying the T7 RNA polymerase gene and lacI q

Transformed plasmids containing T7 promoter driven expression are repressed until IPTG

induction of T7 RNA polymerase from a lac promoter.

Derived from B834 (Wood, 1966) by transducing to Met+.

See the original Studier paper or the summary in Methods in Enzymology for more details.

BL21 (DE3) pLysS

F- ompT gal dcm lon hsdS B(r B- m B-) λ(DE3) pLysS(cm R)

pLysS plasmid chloramphenicol resistant; grow with chloramphenicol to retain plasmid

Chloramphenicol resistant

The pLysS plasmid encodes T7 phage lysozyme, an inhibitor for T7 polymerase which reduces and almost eliminates expression from transformed T7 promoter containing plasmids when not induced.

see Moffatt87 for details of pLysS and pLysE plasmids

BNN93

F- tonA21 thi-1 thr-1 leuB6 lacY1 glnV44 rfbC1 fhuA1 mcrB e14-(mcrA-) hsdR(r K m K) λ-Some C600 strains are really BNN93

BW26434, CGSC Strain # 7658

Δ(araD-araB)567, Δ(lacA-lacZ)514(::kan), lacIp-4000(lacI q), λ-, rpoS396(Am)?, rph-1, Δ(rhaD-rhaB)568, hsdR514

This information is from a printout sent by the E. coli Genetic Stock Center with the strain.

B.L. Wanner strain

rph-1 is a 1bp deletion that results in a frameshift over last 15 codons and has a polar effect on pyrE leading to suboptimal pyrimidine levels on minimal medium. (Jensen 1993 J Bact. 175:3401)Δ(araD-araB)567 was formerly called ΔaraBAD AH33 by Datsenko and Wanner

Am = amber(UAG) mutation

Reference: Datsenko and Wanner, 2000, PNAS, 97:6640

NOTE:

This promoter driving the expression of lacI was sequenced in this strain using a primer in mhpR (upstream of lacI) and a primer in the opposite orientation in lacI. The lac promoter was found to be identical to wildtype. Thus, the -35 sequence was GCGCAA not GTGCAA as expected with lacI q. Therefore this strain (or at least the version obtained from the E. coli Genetic Stock Center) does NOT appear to be lacI q. According to Barry Wanner, this is an unexpected result. -Reshma 13:19, 5 May 2005 (EDT)

"We have now confirmed that BW25113, BW25141, and BW26434 are all lacI+, and not lacI q. We thank you for alerting us to the error with respect to BW26434. Apparently, the lacI region was restored to wild-type in a predecessor of BW25113." (from Barry Wanner November 18, 2005)

The genotype has been corrected at the CGSC

C600

F- tonA21 thi-1 thr-1 leuB6 lacY1 glnV44 rfbC1 fhuA1 λ-

There are strains circulating with both e14+(mcrA+) and e14-(mcrA-)

General purpose host

See CGSC#3004

References: Appleyard, R.K. (1954) Genetics 39, 440; Hanahan, D. (1983) J. Mol. Biol. 166, 577. C600 hflA150 (Y1073, BNN102)

F- thi-1 thr-1 leuB6 lacY1 tonA21 glnV44 λ- hflA150(chr::Tn10)

host for repressing plaques of λgt10 when establishing cDNA libraries

Reference Young R.A. and Davis, R. (1983) Proc. Natl. Acad. Sci. USA 80, 1194.

Tetracycline resistance from the Tn10 insertion

CSH50

ara Δ(lac-pro) rpsL thi supD+ fimE::IS1

Reference: Blomfeld et al., J.Bact. 173: 5298-5307, 1991.

D1210

HB101 lacI q lacY+

DB3.1

F- gyrA462 endA1 glnV44 Δ(sr1-recA) mcrB mrr hsdS20(r B-, m B-) ara14 galK2 lacY1 proA2 rpsL20(Sm r) xyl5 Δleu mtl1

useful for propagating plasmids containing the ccdB operon.

gyrA462 enables ccdB containing plasmid propagation

streptomycin resistant

appears to NOT contain lacI (based on a colony PCR) --Austin Che 16:16, 18 June 2007 (EDT) 1.

Bernard P and Couturier M. Cell killing by the F plasmid CcdB protein involves poisoning of

DNA-topoisomerase II complexes. J Mol Biol 1992 Aug 5; 226(3) 735-45. pmid:1324324. PubMed HubMed [Bernard-JMolBiol-1992]

2.

Miki T, Park JA, Nagao K, Murayama N, and Horiuchi T. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J Mol Biol 1992 May 5; 225(1) 39-52. pmid:1316444. PubMed HubMed [Miki-JMolBiol-1992]

All Medline abstracts: PubMed HubMed

DH1

endA1 recA1 gyrA96 thi-1 glnV44 relA1 hsdR17(r K- m K+) λ-

parent of DH5α

An Hoffman-Berling 1100 strain derivative (Meselson68)

more efficient at transforming large (40-60Kb) plasmids

nalidixic acid resistant

Reference: Meselson M. and Yuan R. (1968) Nature 217:1110 PMID 4868368.

DH5α

F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80d lacZΔM15 Δ(lacZYA-argF)U169,

hsdR17(r K- m K+), λ–

An Hoffman-Berling 1100 strain derivative (Meselson68)

Promega also lists phoA

nalidixic acid resistant

References:

FOCUS (1986) 8:2, 9.

Hanahan, D. (1985) in DNA Cloning: A Practical Approach (Glover, D.M., ed.), Vol. 1, p. 109,

IRL Press, McLean, Virginia.

Grant, S.G.N. et al. (1990) Proc. Natl. Acad. Sci. USA 87: 4645-4649 PMID 2162051.

Meselson M. and Yuan R. (1968) Nature 217:1110 PMID 4868368.

DH10B (Invitrogen)

F- endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 Φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC) λ-

suitable for cloning methylated cytosine or adenine containing DNA

an MC1061 derivative (Casadaban80). Prepare cells for chemical transformation with CCMB80 buffer

blue/white selection

While DH10B has been classically reported to be galU galK, the preliminary genome sequence for DH10B indicates that DH10B (and by their lineage also TOP10 and any other MC1061

derivatives) is actually galE galK galU+. Dcekiert 16:37, 23 January 2008 (CST)

Genome sequence indicates that DH10B is actually deoR+. Presumably TOP10 and MC1061 are also deoR+.

Streptomycin resistant

References:

Casdaban, M. and Cohen, S. (1980) J Mol Biol 138:179 PMID 6997493.

Grant, S.G.N. et al. (1990) Proc. Natl. Acad. Sci. USA 87: 4645-4649 PMID 2162051.

E. coli Genetic Stock Center, MC1061 Record

DH10B Genome Sequencing Project, Baylor College of Medicine

Complete sequence is available, see Durfee08, PMID 18245285.

DH12S (Invitrogen)

mcrA Δ(mrr-hsdRMS-mcrBC) φ80d lacZΔM15 ΔlacX74 recA1 deoR Δ(ara, leu)7697 araD139 galU galK rpsL F' [proAB+ lacI q ZΔM15]

host for phagemid and M13 vectors

useful for generating genomic libraries containing methylated cytosine or adenine residues

streptomycin resistant

References: Lin, J.J., Smith, M., Jessee, J., and Bloom, F. (1991) FOCUS 13, 96.; Lin, J.J.,

Smith, M., Jessee, J., and Bloom, F. (1992) BioTechniques 12, 718.

DM1 (Invitrogen)

F- dam-13::Tn9(Cm R) dcm- mcrB hsdR-M+ gal1 gal2 ara- lac- thr- leu- tonR tsxR Su0

Host for pBR322 and other non-pUC19 plasmids; useful for generating plasmids that can be cleaved with dam and dcm sensitive enzymes

Chloramphenicol resistant

Promega lists as F' not F-

Reference: Lorow-Murray D and Bloom F (1991) Focus 13:20

ER2566 (NEB)

F- λ- fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ(mcrC-mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-210::Tn10)(TetS) endA1 [dcm]

Host strain for the expression of a target gene cloned in the pTYB vectors.

Carry a chromosomal copy of the T7 RNA polymerase gene inserted into lacZ gene and thus under the control of the lac promoter. In the absence of IPTG induction expression of T7 RNA polymerase is suppressed by the binding of lac I repressor to the lac promoter.

Deficient in both lon and ompT proteases.

ER2267 (NEB)

F′ proA+B+ lacIq Δ(lacZ)M15 zzf::mini-Tn10 (KanR)/ Δ(argF-lacZ)U169 glnV44 e14-(McrA-) rfbD1? recA1 relA1? endA1 spoT1? thi-1 Δ(mcrC-mrr)114::IS10

Commonly used for titering M13 phage because of the strain's F' plasmid, which carries KanR, and its slow growth, which promotes easy visualization of plaques.

HB101

F- mcrB mrr hsdS20(r B- m B-) recA13 leuB6 ara-14 proA2 lacY1 galK2 xyl-5 mtl-1 rpsL20(Sm R) glnV44λ-

Please note that different sources have different genotypes so treat this information with caution.

From a GIBCO BRL list of competent cells.

Hybrid of E. coli K12 and E. coli B (but 98% K strain AB266 according to Smith et al.)

Host for pBR322 and many plasmids

Sigma lists the deletion Δ(gpt,proA). Check this.

Promega does not list F-, mcrB, or mrr

Streptomycin resistant

References:

Boyer, H.W. and Roulland-Dussoix, D. (1969) J. Mol. Biol. 41, 459.

Smith, M., Lorow, D., and Jessee, J. (1989) FOCUS 11, 56 - pdf version from Invitrogen

Lacks S and Greenberg JR (1977) J Mol Biol 114:153.

HMS174(DE3)

F- recA1 hsdR(rK12- mK12+) (DE3) (Rif R)

HMS174 strains provide the recA mutation in a K-12 background. Like BLR, these strains may stabilize certain target genes whose products may cause the loss of the DE3 prophage.

DE3 indicates that the host is a lysogen of lDE3, and therefore carries a chromosomal copy of the T7 RNA polymerase gene under control of the lacUV5 promoter. Such strains are suitable for

production of protein from target genes cloned in pET vectors by induction with IPTG.

IJ1126

E. coli K-12 recB21 recC22 sbcA5 endA gal thi Su+ Δ(mcrC-mrr)102::Tn10

See Endy:IJ1126

IJ1127

IJ1126 lacUV5 lacZ::T7 gene1-Knr

See Endy:IJ1127

JM83

rpsL ara Δ(lac-proAB) Φ80dlacZΔM15

Sigma lists thi. Check this.

streptomycin resistant

JM101

glnV44 thi-1 Δ(lac-proAB) F'[lacI q ZΔM15 traD36 proAB+]

host for M13mp vectors

recA+, r K+

original blue/white cloning strain

has all wt restriction systems

References: Messing, J. et al. (1981) Nucleic Acids Res. 9, 309; Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Gene 33, 103.

JM103

endA1 glnV44 sbcBC rpsL thi-1 Δ(lac-proAB) F'[traD36 proAB+ lacI q lacZΔM15]

streptomycin resistant

References: Hanahan, D. (1983) J. Mol. Biol. 166:557-80.

NEB says this strain encodes a prophage encoded EcoP1 endonuclease.

Sigma lists (P1) (r K-m K+ rP1+ mP1+)

JM105

endA1 glnV44 sbcB15 rpsL thi-1 Δ(lac-proAB) [F' traD36 proAB+ lacI q lacZΔM15] hsdR4(r K-m K+) Sigma lists sbcC

streptomycin resistant

References: Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Gene 33, 103.

JM106

endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac-proAB) F- hsdR17(r K-m K+)

References: Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Gene 33, 103.

JM107

endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac-proAB) [F' traD36 proAB+ lacI q lacZΔM15] hsdR17(R K- m K+) λ-

host for M13mp vectors

recA+, r K+

Sigma lists e14- (McrA-)

nalidixic acid resistant

References: Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Gene 33, 103.

JM108

endA1 recA1 gyrA96 thi-1 relA1 glnV44 Δ(lac-proAB) hsdR17 (r K- m K+)

nalidixic acid resistant

JM109

endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+Δ(lac-proAB) e14- [F' traD36 proAB+ lacI q lacZΔM15] hsdR17(r K-m K+)

From NEB

Partly restriction-deficient; good strain for cloning repetitive DNA (RecA–).

Suppresses many amber mutations when glutamine is acceptable but not the S100 or S7

mutations of λ, e.g., λgt11.

Can also be used for M13 cloning/sequencing and blue/white screening.

Sigma lists e14-

nalidixic acid resistant

From C. Yanisch-Perron, J. Vieira, and J. Messing. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33(1):103–19, 1985.

Some information from Mary Berlyn at the E. coli Genetic Stock Center: One of the reasons the original curator of this collection did not accession the JM109, JM103, etc. strains was because she found it impossible to be sure of the derivation and therefore the details of the genotype. But I think it's safe to assume that the F' in this strain is derived from or similar to F128 which extends from the proBA region through the lac operon. It thus carries the wildtype genes for all loci in that region except those indicated as mutant for the genotype of the F'. So it carries the lacZ (alpha-complementation) deletion lacZ58(M150 and the lacI mutation lacIq, but it has the lacY+ gene also on the F-prime. On the chromosome it lacks all the lac operon genes.

NOTE: The promoter driving the expression of lacI was sequenced in this strain using a primer in mhpR (upstream of lacI) and a primer in the opposite orientation in lacI. The lac promoter was found to be identical to wildtype. Thus, the -35 sequence was GCGCAA not GTGCAA as expected with lacI Q. Therefore this strain (or at least the version we have) does NOT appear to be lacI Q unless there is another copy of lacI elsewhere. This result is somewhat confirmed by the fact that a lacI regulated promoter driving expression of YFP on a medium copy vector does not repress completely. -Reshma

13:48, 5 May 2005 (EDT)

JM109(DE3)

JM109 + λ(DE3)

DE3 prophage carrying T7 polymerase expression cassette

Same cassette as BL21(DE3) carrying a lac inducible T7 RNA polymerase and lacI q

nalidixic acid resistant

JM110

rpsL thr leu thi lacY galK galT ara tonA tsx dam dcm glnV44 Δ(lac-proAB) e14- [F' traD36 proAB+ lacI q lacZΔM15] hsdR17(r K-m K+)

Sigma fails to list tonA tsx e14 fhuA hsdR17

(e14-) status uncertain

streptomycin resistant

JM2.300

lacI22, LAM-, e14-, rpsL135(strR), malT1(LamR), xyl-7, mtl-1, thi-1

Some folks have been using this strain (i.e., Elowitz, Gardner) and it took me too long to find the CGSC#.

This strain is no longer available from the CGSC

LE392

glnV44 supF58 (lacY1 or ΔlacZY) galK2 galT22 metB1 trpR55 hsdR514(r K-m K+)

Sigma lists F- e14-

Mach1

ΔrecA1398 endA1 tonA Φ80ΔlacM15 ΔlacX74 hsdR(r K- m K+)

From Invitrogen

Doubling time approx. 50 min and supposedly fastest growing chemically competent cloning strain available

Mach1 cells are derivatives of E. coli W strains (ATCC 9637, S. A. Waksman), rather than E. coli K-12. This may have implications for BL-1 status for some facilities (apparently not for MIT).

See Bloom04 patent for details on the construction and properties of this strain.

MC1061

hsdR2 hsdM+ hsdS+ araD139 Δ(ara-leu)7697 Δ(lac)X74 galE15 galK16 rpsL (StrR) mcrA mcrB1

Streptomycin resistant

Parent of DH10B/TOP10 and derived strains

References:

E. coli Genetic Stock Center, MC1061 Record

Casdaban, M. and Cohen, S. (1980) J Mol Biol 138:179 PMID 6997493.

Complete DH10B sequence is available, see Durfee08, PMID 18245285.

MC4100

F- araD139 Δ(argF-lac)U169* rspL150 relA1 flbB5301 fruA25? deoC1 ptsF25 e14-

This paper compares MC4100 to MG1655 and describes the significant deletions.

*The paper referenced above showed that this deletion was larger than previously known. The deletion now covers ykfD-b0350.

?The fruA25 allele is attributed to the deletion of fruB-yeiR. This means fruA is present but its promoter has been deleted.

The paper also shows that the e14 element is deleted in MC4100. One of the genes removed by this deletion is mcrA, which encodes an enzyme that restricts DNA containing methylcytosine. However, other E. coli K-12 restriction/modification systems are still present in MC4100. MC4100 still encodes the McrBC 5-methylcytosine=specific restriction enzyme and the HsdR/HsdS/HsdM type I restriction-modification complex.

Table three of the paper lists all genes believed to be deleted in MC4100. The methods used in the paper can detect deletions but not loss of function mutations.

The current genotype at the CGSC is as follows:

[araD139], Δ(argF-lac)169, LAM-, e14-, flhD5301, Δ(fruK-yeiR)725(fruA25), relA1, rpsL150(strR),

rbsR22, Δ(fimB-fimE)632(::IS1), deoC1

The araD139 allele is in brackets because it was transduced from an E. coli B strain in an early step of strain derivation.

MG1655

F-λ- ilvG- rfb-50 rph-1

This is the "wild type" K-12 strain which was sequenced, and should be used when PCRing genes from the sequenced genome. It also looks very healthy under the microscope -- a dramatic difference from most of the cloning strains, which appear sick.

See CGSC#6300

See ATCC 700926

3.

Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, and Shao Y. The complete genome sequence of Escherichia coli K-12. Science 1997 Sep 5;

277(5331) 1453-74. pmid:9278503. PubMed HubMed [Blattner-Science-1997]

More accurate sequence correcting 243 errors in the original sequencing[4]. New Genbank

accession number U00096.2

OmniMAX2

From Invitrogen: "This strain overexpresses the Lac repressor (lacIq gene). For blue/white screening, you will need to add IPTG to induce expression from the lac promoter. Strain is resistant to T1 bacteriophage."

F′ {proAB+ lacIq lacZΔM15 Tn10(TetR) Δ(ccdAB)} mcrA Δ(mrr-hsdRMS-mcrBC) φ80(lacZ)ΔM15

Δ(lacZYA-argF) U169 endA1 recA1 supE44 thi-1 gyrA96 relA1 tonA panD

Rosetta(DE3)pLysS

F- ompT hsdS B(R B- m B-) gal dcm λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) pLysSRARE (Cam R) an E. coli B strain with DE3, a λ prophage carrying the T7 RNA polymerase gene and lacI q

Transformed plasmids containing T7 promoter driven expression are repressed until IPTG

induction of T7 RNA polymerase from a lac promoter.

Chloramphenicol resistant

pLysSRARE contains tRNA genes argU, argW, ileX, glyT, leuW, proL, metT, thrT, tyrU, and thrU.

The rare codons AGG, AGA, AUA, CUA, CCC, and GGA are supplemented.

The pLysS plasmid encodes T7 phage lysozyme, an inhibitor for T7 polymerase which reduces and almost eliminates expression from transformed T7 promoter containing plasmids when not induced.

see Moffatt87 for details of pLysS and pLysE plasmids

Novagen strain manual

Rosetta-gami(DE3)pLysS

Δ(ara-leu)7697 ΔlacX74 ΔphoA PvuII phoR araD139 ahpC galE galK rpsL (DE3) F'[lac+ lacI q pro]

gor522::Tn10 trxB pLysSRARE (Cam R, Str R, Tet R)

an E. coli K-12 strain with DE3, a λ prophage carrying the T7 RNA polymerase gene and lacI q Transformed plasmids containing T7 promoter driven expression are repressed until IPTG

induction of T7 RNA polymerase from a lac promoter.

ahpC mutation allows trxB/gor double mutants to grow in the absence of reducing medium

pLysSRARE contains tRNA genes argU, argW, ileX, glyT, leuW, proL, metT, thrT, tyrU, and thrU.

The rare codons AGG, AGA, AUA, CUA, CCC, and GGA are supplemented.

The pLysS plasmid encodes T7 phage lysozyme, an inhibitor for T7 polymerase which reduces and almost eliminates expression from transformed T7 promoter containing plasmids when not induced.

see Moffatt87 for details of pLysS and pLysE plasmids

Chloramphenicol resistant

Kanamycin resistant

Tetracycline resistant

Streptomycin resistant

Novagen strain manual

RR1

HB101 recA+

STBL2 (Invitrogen)

F- endA1 glnV44 thi-1 recA1 gyrA96 relA1 Δ(lac-proAB) mcrA Δ(mcrBC-hsdRMS-mrr) λ-host for unstable sequences such as retroviral sequences and direct repeats

nalidixic acid resistant

References: Trinh, T., Jessee, J., Bloom, F.R., and Hirsch, V. (1994) FOCUS 16, 78.

STBL4

endA1 glnV44 thi-1 recA1 gyrA96 relA1 Δ(lac-proAB) mcrA Δ(mcrBC-hsdRMS-mrr) λ- gal F'[ proAB+ lacI q lacZΔM15 Tn10]

Tetracycline resistant (from Tn10 insertion)

STBL2 + blue/white selection

SURE (Stratagene)

endA1 glnV44 thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 uvrC e14- Δ(mcrCB-hsdSMR-mrr)171 F'[ proAB+ lacI q lacZΔM15 Tn10]

uncertain status of TraD36 in F plasmid

increased stability for inverted repeats and Z-DNA

nalidixic acid resistant

kanamycin resistant

tetracycline resistant

SURE2 (Stratagene)

endA1 glnV44 thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 uvrC e14- Δ(mcrCB-hsdSMR-mrr)171 F'[ proAB+ lacI q lacZΔM15 Tn10 Amy Cm R]

increased stability for inverted repeats and Z-DNA

nalidixic acid resistant

kanamycin resistant

tetracycline resistant

chloramphenicol resistant for < 40 μg/ml, sensitive for > 100 μg/ml

TOP10 (Invitrogen)

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(Str R) endA1 λ-

这组基因型标注只是顺序与DH10B不同,内容其实是一样的!

Very similar to DH10B

I actually emailed Invitrogen and asked if DH10B and TOP10 are the same strain or what.

Their response: "Thank you for contacting Invitrogen Technical Support.TOP10 and DH10B

competent cells are closely related. They have the same genotypes and can used for the

same applications. You can also choose from those that are Chemically competent or

electrocomp cells. I hope this information answers your questions." So either there is a

difference that they don't want to put out there, or they have rebranded DH10B as TOP10

for marketing purposes... --Dcekiert 18:55, 23 January 2008 (CST)

While DH10B has been classically reported to be galU galK, the preliminary genome sequence for DH10B indicates that DH10B (and by their lineage also TOP10 and any other MC1061

derivatives) is actually galE galK galU+. --Dcekiert 16:45, 23 January 2008 (CST)

Previously reported to be deoR, but genome sequence indicates that DH10B is actually deoR+.

Presumably TOP10 and MC1061 are also deoR+.

Streptomycin resistant

an MC1061 derivative [5]

Streptomycin resistant

Prepare cells for chemical transformation with CCMB80 buffer Here

Contain lacI based on a colony PCR (even though lacX74 supposedly deletes the lac operon) --Austin Che 16:16, 18 June 2007 (EDT)

φ80lacZΔM15 actually contains the entire lac operon, including lacI q --Dcekiert 16:45, 23

January 2008 (CST)

Analysis of the published DH10B sequence (Genbank CP000948) suggests the

φ80lacZΔM15 insertion has the wild-type lacI -35 sequence, not the lacI q -35

sequence (gtgcaa) --BC 15:01, 29 March 2008 (EDT)

References:

E. coli Genetic Stock Center, MC1061 Record

DH10B Genome Sequencing Project, Baylor College of Medicine

Casadaban MJ and Cohen SN. Analysis of gene control signals by DNA fusion and cloning in 5.

Escherichia coli. J Mol Biol 1980 Apr; 138(2) 179-207. pmid:6997493. PubMed HubMed

[Casadaban-JMolBiol-1980]

6.

Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Cs?go B, P?fai G, Weinstock GM, and Blattner FR. The complete

genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 2008 Apr; 190(7) 2597-606. doi:10.1128/JB.01695-07 pmid:18245285. PubMed HubMed [Durfee]

Complete DH10B sequence is available

7.

Grant SG, Jessee J, Bloom FR, and Hanahan D. Differential plasmid rescue from transgenic

mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 1990 Jun; 87(12) 4645-9. pmid:2162051. PubMed HubMed [Grant-PNAS-1990]

All Medline abstracts: PubMed HubMed

Top10F' (Invitrogen)

F'[lacI q Tn10(tet R)] mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 deoR nupG recA1 araD139

Δ(ara-leu)7697 galU galK rpsL(Str R) endA1 λ-

Very similar to DH10B with F plasmid containing lacI q and Tn10

While DH10B has been classically reported to be galU galK, the preliminary genome sequence for DH10B indicates that DH10B (and by their lineage also TOP10 and any other MC1061

derivatives) is actually galE galK galU+. --Dcekiert 16:45, 23 January 2008 (CST)

Previously reported to be deoR, but genome sequence indicates that DH10B is actually deoR+.

Presumably TOP10 and MC1061 are also deoR+.

Tetracycline resistant

Streptomycin resistant

an MC1061 derivative [5]

References:

E. coli Genetic Stock Center, MC1061 Record

DH10B Genome Sequencing Project, Baylor College of Medicine

Complete DH10B sequence is available, see Durfee08, PMID 18245285.

W3110

F-λ- rph-1 INV(rrnD, rrnE)

See CGSC#4474

See ATCC 39936

See [8]. Briefly, there are 8 site (9nt) differences between W3110 and MG1655. They reside in 7 orgs and one rRNA gene. Two are nonfunctional (rpoS and dcuA) and 5 are unknown missense mutations.

New annotation has accession number DDBJ AP009048.

XL1-Blue (Stratagene)

endA1 gyrA96(nal R) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 proAB+ lacI qΔ(lacZ)M15] hsdR17(r K- m K+)

nalidixic acid resistant

tetracycline resistant (carried on the F plasmid)

XL2-Blue (Stratagene)

endA1 gyrA96(nal R) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 proAB+ lacI qΔ(lacZ)M15 Amy Cm R]

hsdR17(r K- m K+)

nalidixic acid resistant

tetracycline resistant (carried on the F plasmid)

chloramphenicol resistant for <40 μg/ml; sensitive for >100 μg/ml

XL2-Blue MRF' (Stratagene)

endA1 gyrA96(nal R) thi-1 recA1 relA1 lac glnV44 e14- Δ(mcrCB-hsdSMR-mrr)171 recB recJ sbcC umuC::Tn5 uvrC F'[ ::Tn10 proAB+ lacI qΔ(lacZ)M15 Amy Cm R]

Minus Restriction strain (minus mcrA mcrCB mcrF mrr hsdR)

nalidixic acid resistant

kanamycin resistant

tetracycline resistant (carried on the F plasmid)

chloramphenicol resistant <40 μg/ml, sensitive >100μg/ml

XL1-Red (Stratagene)

F- endA1 gyrA96(nal R) thi-1 relA1 lac glnV44 hsdR17(r K- m K+) mutS mutT mutD5 Tn10

nalidixic acid resistant

tetracycline resistant

mutator strain, produces highly unstable DNA changes

colonies grow and mutate so quickly that the strain is sick and mutated constructs must be

moved rapidly to stable strains for plasmid isolation

XL10-Gold (Stratagene)

endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tet R F'[proAB lacI q ZΔM15 Tn10(Tet R Amy Cm R)]

Tetracycline and Chloramphenicol resistant

Nalidixic acid resistant

Hte phenotype allows high transformation with large plasmid inserts

XL10-Gold KanR (Stratagene)

endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tet R F'[proAB lacI q ZΔM15 Tn10(Tet R Amy Tn5(Kan R)]

Tetracycline and Kanamycin resistant

Nalidixic acid resistant

Hte phenotype allows high transformation with large plasmid inserts

Strains at https://www.360docs.net/doc/4c5601133.html,

Provides information about common E. coli laboratory strains, allowing for annotation of the

genotype, plasmids, phages and source information of a particular strain.

E. coli Genetic Stock Center

E. coli genotypes/Exhibit: Test of moving information on this page into a wiki database

NEB strains Other NEB strains

NEB genotype information

Teknova

Promega

EMBL

Novagen/EMD

Sigma

Escherichia coli K12 genome browser

Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, 8.

Mori H, and Horiuchi T. Highly accurate genome sequences of Escherichia coli K-12 strains

MG1655 and W3110. Mol Syst Biol 2006; 2 2006.0007. doi:10.1038/msb4100049 pmid:16738553.

PubMed HubMed [Horiuchi-MSB-2006]

9.

Novick RP, Clowes RC, Cohen SN, Curtiss R 3rd, Datta N, and Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 1976 Mar; 40(1) 168-89. pmid:1267736. PubMed HubMed [Novick-BacteriolRev-1976]

Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Ananthara-man TS, and Witkin, EM. Inherited 10.

differences in sensitivity to radiation in Escherichia coli. Proc Natl Acad Sci USA 1946 32:59-68 (the original B strain reference).

[Lim46]

Moffatt BA and Studier FW. T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 1987 11.

Apr 24; 49(2) 221-7. pmid:3568126. PubMed HubMed [Moffatt87]

All Medline abstracts: PubMed HubMed

Retrieved from "https://www.360docs.net/doc/4c5601133.html,/wiki/E._coli_genotypes"

大肠杆菌基因型及遗传符号说明系列一DXY

大肠杆菌基因型及遗传符号说明系列一 点击次数:982 作者:佚名发表于:2009-09-27 00:00转载请注明来自丁香园 来源:丁香园 实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp (基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。 利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。 分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。 大肠杆菌基因型的表示方法(Demerec, et, al. 1966): 一、一般规则: 1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。例如:D NA Adenine Methylase→dam。 2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。 3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup基因座E的44位突变)。

如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“ -”代替大写字母,如trp-31。 4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。 5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F因子为例,F-:F因子缺失;F+:自主性F因子,不携带任何遗传可识别染色体片段;F':携带有遗传可识别细菌染色体片段的自主性F因子;Hfr:整合到染色体上的F因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或”/“等以区别。例如:/F' [traD3 6、proAB、lac I q、lacZ. M 15] 6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如:lac-proAB基因缺失时它的基因型表示为(lac-proAB)。 7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Streptomycin抗性→Str +或Str r,Ampicilli n敏感性→ Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。 8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于 S20的变异而导致B株来源的hsdR和hsdM的功能缺失。 9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,UvrA、UvrB。 二、基因符号和意义(见表1)

大肠杆菌基因组DNA的提取及荧光定量PCR试验设计

大肠杆菌基因组DNA得提取 一、传统法提取大肠杆菌基因组DNA。 1、实验原理 提取DNA得一般过程就是将分散好得组织细胞在含十二烷基硫酸钠(SDS)与蛋白酶K得溶液中消化分解蛋白质,再用酚与氯仿/异戊醇抽提分离蛋白质,得到得DNA溶液经乙醇沉淀使DNA从溶液中析出。 SDS得作用机理就是由于其能结合蛋白,中与蛋白得电性,使蛋白质得非共价键受到破坏,失去二级结构,从而变形失活,蛋白酶K或链霉蛋白酶E均为光谱蛋白酶,其重要特性就是能在SDS与EDTA(乙二胺四乙酸二钠)存在得情况下保持很高得活性。在匀浆后提取DNA得反应体系中,SDS可通过失活蛋白破坏细胞膜、核膜,并使组织蛋白与DNA分离;而蛋白酶K可将蛋白质降解成小肽或氨基酸,使DNA分子完整地分离出来。用酚、酚/氯仿抽提除去蛋白质,最后用无水乙醇沉淀DNA。为获得高纯度DNA,操作过程中常加入RNaseA除去RNA。CTAB(十六烷基三乙基溴化铵)就是一种去污剂,可溶解细胞膜,它能与核酸形成复合物,在高盐溶液中(0、7 mol/L NaCl)就是可溶得,当降低溶液盐浓度到一定得程度(0、3 mol/L NaCl)时,从溶液中沉淀,通过离心就可将CTAB核酸得复合物与蛋白,多糖物质分开。最后通过乙醇或异丙醇沉淀DNA,而CTAB溶于乙醇或异丙醇而除去。 2、实验试剂与仪器 1)实验材料:大肠杆菌 2)实验试剂: LB液体培养基,TE溶液,10%SDS,蛋白酶K,5mol/L NaCl, CTAB/NaCl溶液,酚/氯仿/异戊醇,异丙醇,70%乙醇 3)实验仪器:恒温摇床、低温离心机、微量移液器、水浴锅

3、溶液配制 1)LB液体培养基:细菌培养用胶化蛋白胨10 g/L,细菌培养用酵母提取物5 g/L,NaCl 10g/L,去离子水。 (搅拌溶解后,用5mol/LNaOH调pH至7、0、用去离子水定容100ml,用20/50ml 摇瓶分装5瓶,包扎好,在121℃,1、034×105 pa高压下蒸汽灭菌20min、) 2)TE缓冲液: 1M Tris 溶液(取Tris242、2g,加ddH2O至1600ml,加热溶解) 1M trisHCl pH8、0 溶液(取 1M Tris 溶液160ml用分析纯盐酸调至Ph=8、0(需浓盐酸约8、5ml),加ddH2O定容至200ml,高压灭菌备用) TE缓冲液(10 mM TrisHCl 1Mm EDTA pH=8、0,1M TrisHCl Buffer PH=8、0 5ml 0、5M EDTA PH =8、0 1ml向烧杯中加入约400mldd H2O均匀混合;将溶液 定容到500ml后,高温高压灭菌,室温保存) 3)蛋白酶K:(20mg蛋白酶K溶于1ml无菌双蒸水,20℃备用) 4)CTAB/NaCl溶液:(5% w/v,5gCTAB溶于100ml 0、5M NaCl溶液中,需加热到 65℃使之溶解,然后室温保存) 4、实验方法步骤 1、将大肠杆菌接种到灭菌好得LB培养基中,一级培养过夜,以10%得接种量进行二级培养,培养至对数期(46h)。 2、取菌液1、5ml置于离心管中,以5000rpm冷冻离心1min,弃上清液 3、加190 ul TE悬浮沉淀,并加10 ul 10%SDS,摇匀直至溶液变粘稠 4、加入1ul蛋白酶K(20mg/ml),混匀,37℃保温1小时。 5、加30ul 5 mol/L NaCl,混匀。 6、加30ul CTAB/NaCl溶液,混匀,65℃保温20min

大肠杆菌的基因型 Takara公司

,-*+ .1/0 2TVOVSV INRTKJMQRPRLU JHTHPRL RQPNQK3X``]GFFaaaE`VYV_VEW\ZEW[cbegdfih u u @=47>< :9?\JA6_3w uqz -*~x Jv Ih EKB ^O A 2ms 4t u s ^t /c O 46msnt /c|46u E `lr >z c 1H /r H6E ~J.H w N G [J *i.p ,5/c r 9U {OH :3a Z OA_v I3/cU~{y *wshf 2~m D q {m D 3y N ^shf C/r H6_0E ~U \.H y kl ^J ~m D q {m D /c NP N:8J.H TG [C a 6T J }0{w l }0{v Je KS]r `M ^cG { v I d9^y .5`M JA6_3ynO 6fP I69:3a y i -@.5`MN C a w D a 6T JA6_3r A6_3C aS 60y *-,6y @w JP99@cG r ~xvl 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A =@ZX[ e K {/|zr v I /@BOL B 73EKB `h A y q U |6e3s Q v Ih EKB J T S`h ^O kM y u^2O R EKB Y [6mY J 7]e K r N /|zr v I J.H o 4\Jv I3`u T u HT EKB J `h 1K,5y +:2V EKB J {N 6y R EKB J d p O 8r ~xvm 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A >9ZX[ e K {/|zs v I /@BOL B 73EKQ_U lk lwQA P J A a ;v y R /|zr J EKB `h AO \b l>,k M r EKQ_U ?p h;EKB J +:l +;y k lwQA P ?pD ;EKB J >+y U EKB J `h l mY 7]^Ur `>kM r /|zs v I J.H G [N EKB `h l 7]e KX]y +Y 9ZX[ e K {/|zt v I /@j _A y xk lwQA P y BOL B 73Jk lJQA y +:A w BOL A y qB l /|zr 5/|zs o /@J A .o 0M kM y U EKB J `h wY [6mY J 7]^Ur kM r /|zt v I J.H G [EKB `h e KS]y +Y w T EKB J {N 6r 876;547>< wu{2EKB QTU[X[U ZU`WbYQ_U3 JQ]]\_X`X\[A ?

大肠杆菌实验

大肠杆菌感受态细胞制备与质粒DNA的转化 一、实验目的 1)掌握用CaCl2法制备感受态细胞的原理和方法。 2)学习和掌握质粒DNA的转化和筛选方法及操作步骤。 二、实验原理 本实验以E.coli DH 5α菌株为受体细胞,并用CaCl2处理,使其处于感受态,然后与pBS质粒共保温实现转化。由于所用pBS质粒带有长那霉素抗性基因。因此可以通过长那霉素抗性来筛选转化子。如果受体细胞没有转入pBS,则在含长那霉素的培养基上不能生长。能在长那霉素培养基上生长的受体细胞肯定已经导入了pBS。转化子扩增后,可将转化的质粒提取出,进行电泳酶切等进一步鉴定。 三、仪器及试剂 仪器:恒温摇床、CO2细胞培养箱、台式高速冷冻离心机、超净工作台、低温冰箱、恒温水浴锅、制冰机、分光光度计、移液枪、Eppendrof管。 试剂:LB培养基(在950mL水中加入10g胰蛋白胨、5g酵母提取物、10gNaCl、用1mol/L NaOH调制pH=7.2.加入至1L,121℃高压灭菌20min) 长那霉素储存液:100mg/mL 含长那霉素的LB固体培养基:(1L LB液体培养基中加入20g琼脂粉,将配好的LB固体培养基高压灭菌后,冷却至60℃左右,加入长那霉素储存液,使其终浓度为50μg/mL。摇匀后铺板,每皿倒15mL,室温放置过夜至冷凝水挥发干净) 1mol/L CaCl2储存液质粒DNA10ng/Μl 四、实验步骤 1 感受态细胞的制备 1)从LB平板上挑选新活化的E.coli DH 5α单菌株,接种于3~5mL LB液体培养基中,37℃下震荡过夜培养,12h左右,直至对数生长后期。

2)将该菌悬浮液以1:50的比例接种于5mL LB液体培养基中,37℃振荡培养2~3h至OD600为0.5左右。 3)将5mL培养液转入4个1.5mL离心管中,冰上放置10min,然后于4℃下,5000rpm离心5min。 4)弃去上清液,用预冷的1mL 0.1 mol/L CaCl2溶液轻轻悬浮细胞,冰上放置15~20min后,40℃下5000rpm离心5min。 2 铺平板 将配好灭菌的LB固体培养基加热融化,待冷却至60℃左右后,加入长那霉素储存液,使其终温度为50μg/mL,摇匀后铺板,每皿倒约15mL。室温放置过夜至冷凝水挥发干净。 3 感受态细胞的转化 1)取100μl感受态细胞悬浮液,加入5μLpBS质粒DNA溶液,轻轻摇匀,冰上放置30min。 2)42℃水浴热激70s,热激后迅速置于冰上冷却3~5min。 3)向管中加入400μl LB液体培养基(不含抗生素),混匀后37℃震荡培养1h。使细菌恢复到正常生长状态,并表达质粒编码的抗生素抗性基因。 4)将上述菌液摇匀,取200μl涂布于含长那霉素的筛选平板上,正面放置0.5h。待菌液完全被吸收后倒置培养皿,37℃培养16~24h, 5)对照实验: 对照组1:以同体积的无菌二次水代替DNA溶液,其他操作与上面相同。此组正常情况下在含抗生素的LB平板上应没有菌落出现。 对照组2:以同体积的无菌二次水代替DNA溶液,取5μl菌液,稀释100万倍,涂布于不含抗生素的LB平板上,此组正常情况下应产生大量菌落。 五、实验数据记录处理 转化后在含抗生素的平板上长出的菌落即为转化子,各培养皿中的菌落数如下表所示:

大肠杆菌染色体基因组的结构和功能

大肠杆菌染色体基因组的结构和功能 大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中8%的序列具有调控作用。大肠杆菌染色体基因组中已知的基因多是编码一些酶类的基因,如氨基酸、嘌呤、嘧啶、脂肪酸和维生素合成代谢的一些酶类的基因,以及大多数碳、氮化合物分解代谢的酶类的基因。另外,核糖体大小亚基中50多种蛋白质的基因也已经鉴定了。 除了有些具有相关功能的基因在一个操纵子内由一个启动子转录外,大多数基因的相对位置可以说是随机分布的。如控制小分子合成和分解代谢的基因,大分子合成和组装的基因分布在大肠杆菌基因组的许多部位,而不是集中在一起。再如,有关糖酵解的酶类的基因分布在染色体基因组的各个部位。进一步发现,大肠杆菌和与其分类关系上相近的其他肠道菌如志贺氏杆菌属(Shigella)、沙门氏菌属(Salmonella)等具有相似的基因组结构。伤寒沙门氏杆菌(Salmonellatyphimurium)几乎与大肠杆菌的基因组结构相同,虽然有10%的基因组序列和大肠杆菌相比发生颠倒,但是其基因的功能仍正常。这更进一步说明染色体上的基因似乎没有固定的格局,相对位置的改变不会影响其功能。 在已知转录方向的50个操纵子中,27个操纵子按顺时针方向转录,23个操纵子按反时针方向转录,即DNA两条链作为模板指导mRNA合成的机率差不多相等。在大肠杆菌染色体基因组中,差不多所有的基因都是单拷贝基因,因为多拷贝基因在同一条染色体上很不稳定,极易通过同源重组的方式丢失重复的基因序列。另外,由于大肠杆菌细胞分裂极快,可以在20分钟内完成一次分裂,因此,携带多拷贝基因的大肠杆菌并不比单拷贝基因的大肠杆菌更为有利;相反,由于多拷贝基因的存在,使E.coli的整个基因组增大,复制时间延长,因而更为不利,除非在某种环境下,需要有多拷贝基因用来编码大量的基因产物,例如,在有极少量乳糖或乳糖衍生物的培养基上,乳糖操纵子的多拷贝化可以使大肠杆菌充分利用的乳糖分子。但是,一旦这种选择压力消失,如将大肠杆菌移到有丰富的乳糖培养基上,多拷贝的乳糖操纵子便没有存在的必要,相反,由于需要较长的复制时间,这种重复的多拷贝基因会重新丢失。 大肠杆菌染色体基因组中,大多数rRNA基因集中于基因组的复制起点oriC的位置附近。这种位置有利于rRNA基因在早期复制后马上作为模板进行rRNA的合成以便进行核糖体组装和蛋白质的合成。从这一点上看,大肠杆菌基因组上的各个基因的位置与其功能的重要性可能有一定的联系。

大肠杆菌生化实验

细菌常用生理生化反应实验结果观察 一结果观察 1葡萄糖发酵实验 直接观察试管, 试管变黄者为葡萄糖发酵阳性菌,不变者为阴性菌. 左边为恶臭假单胞菌,有气泡并变为黄色;右边为大肠杆菌, 2V. P. 反应和甲基红试验: 将培养好的液体培养基分装于两个干净的小试管中,在一管中滴入2-3滴甲基红试剂, 溶液变红的为甲基红阳性菌,不变的为甲基红阴性菌. 在另一管中加入V. P. 试剂,在37℃保温15分钟, 变红者为阳性菌,不变者为阴性菌. VP,图为右边为大肠杆菌,溶液变红,为阳性菌。 3吲哚实验 在培养好的液体培养基中加入1厘米高的乙醚,振荡,静置分层,加入2-4滴吲哚试剂,在掖面交界出现红色者为吲哚反应阳性菌,不变者为阴性菌.

左边为大肠杆菌,出现红色阳性菌;右边为产气杆菌,颜色不变,阴 性菌。 4硝酸盐还原实验 在点滴板上滴入革里斯试剂A液和B液,如过溶液变红说明有亚硝酸盐,为硝酸盐还原阳性菌,如果不变色需要再倒出部分培养基在另外的小孔中再滴如耳苯胺试剂,如果变蓝,说明此菌为阴性菌;如果不变色,说明此菌为硝酸盐还原强阳性菌. 右下方恶臭假单胞菌,加入革里斯试剂A、B后不变色,再加入二苯 胺试剂后变蓝,为阴性菌;左上方大肠杆菌为红色。 5柠檬酸盐实验 直接观察斜面,斜面变兰色者为柠檬酸盐利用阳性菌,不变者为阴性菌.

左边产生蓝色,产气杆菌阳性;右边为大肠杆菌,阴性。 6明胶水解 向培养好的明胶培养基中加入酸性氯化汞或三氯乙酸溶液,并铺满平板,菌落周围出现透明圈的菌为明胶水解阳性菌,没有透明圈的菌为阴性菌. 左边为大肠杆菌,出现透明圈,阳性;右边为枯草杆菌,阴性菌。 7 淀粉水解实验 向培养好的淀粉培养基平板上加入碘液,并铺满平板,菌落周围出现透明圈的菌为淀粉水解阳性菌,没有透明圈的菌为阴性菌.

大肠杆菌的基因型

[Z]_\^a` 7T B9.W +o mirzwv p Bn A`=C:VG 470p YunJ o JU dq B b 4288Yn A j mirzwv n A`V i w b G 0K*N 15q M t .]+kD Hd 9|Fhj_`SB D H q O |*N B D HG \F n A B aE \;dn AX`L ,0B q F 4|>4n A`*G i B -c N.j 0E 9.W +n A`B OW j .J F y -V N q XF V B @|n A M Tn {m KU q 5LZ9.W +:.-<_+@B {h q OW C _+@B j P v b 9.W +B |x +c DOMSTXZUM+qu B G OW {hBn A ^0v b 9.W +Bn A+o ?MSTXZUM dj *G ~m n A+B +Y |x 3~m B j .j O |~m n A+j .B +YM n A \1B 4|d T ,V *G `OB DE t R j 9.W +n A+B |[PN G Mv q W s 1r [~n A ,u m F cE ,u B C r?/BD 9Y _Af *0O Y ~k _A.|[j 1M s =C::LMSPSM BMXOZQIWM n oms j 2r{@n A ~m q ?S Bwa {mV q E F cE waB C r?/B HO Y _A~k er R 9Y9*_A.|[J }j 1M s EMKTRJPSIXPTS n vpnd i vpne i vpnf j 3r @Yn A m @Y 7J KUV q M F n A+HA]o U 2p d ]+k *ND H q >O |U 2m ]+kD H {@m KUV q E kc dl m k /l C h\g xvmgac i uvtde i rmn i V i rmnlyj_b hj 5r FH @W n A B {@?S 9.W +-<>w _+@j P {h q G V 8E F |x +;l n A+y -|[j 1M s @|,5.BlAm PU q E Mv P Z |[s FXVMUXTRZKPS ,.n kxv ;m kxv W q :RUPKPQQPS =X .n dsu H lARsnh U 2j

基因组DNA提取步骤

基因组DNA提取步骤 1.从无水乙醇中取出少许组织(约50mg)加入干净灭菌的EP管中, 剪碎; 2.加入400ul 1%的SDS,8ul(20mg/ml)的蛋白酶K,充分浸润, 入55℃摇床(100转/分),期间振荡助溶至澄清(5-6h); 3.取出消化液,加入6mol/L的NaCl300ul,氯仿200ul,轻柔正反 颠倒,使其充分乳化,4℃13000转/分离心30min; 4.取出上清(约400ul),加入等体积氯仿抽提一次,轻柔颠倒后, 4℃13000转/分离心10min; 5.上清加入5μl RNaseA(10μg/μl), 37℃10分钟, 除去RNA(RNA对DNA的操作、分析一 般无影响,可省略该步骤)。 6.取上清加入等体积异丙醇,轻柔混匀后-20℃沉淀10min; 7.4℃13000转/分离心15min,弃上清; 8.用75%乙醇洗涤1-2次(1000ul,11000转/分离心2min),弃上 清; 9.冰冻无水乙醇洗涤1-2次(1000ul,11000转/分离心4min)弃上 清,自然晾干或烘干,DDW溶解,30-50ul。 基因组DNA的提取通常用于构建基因组文库、Southern杂交(包括RFLP)及PCR分离基因等。利用基因组DNA较长的特性,可以将其与细胞器或质粒等小分子DNA分离。加入一定量的异丙醇或乙醇,

基因组的大分子DNA即沉淀形成纤维状絮团飘浮其中, 可用玻棒将其取出,而小分子DNA则只形成颗粒状沉淀附于壁上及底部, 从而达到提取的目的。在提取过程中,染色体会发生机械断裂,产生大小不同的片段,因此分离基因组DNA时应尽量在温和的条件下操作,如尽量减少酚/氯仿抽提、混匀过程要轻缓, 以保证得到较长的DNA。一般来说,构建基因组文库, 初始DNA长度必须在100kb以上,否则酶切后两边都带合适末端的有效片段很少。而进行RFLP和PCR分析, DNA长度可短至50kb, 在该长度以上,可保证酶切后产生RFLP片段(20kb以下),并可保证包含PCR所扩增的片段(一般2kb以下)。 不同生物(植物、动物、微生物)的基因组DNA的提取方法有所不同; 不同种类或同一种类的不同组织因其细胞结构及所含的成分不同,分离方法也有差异。在提取某种特殊组织的DNA时必须参照文献和经验建立相应的提取方法, 以获得可用的DNA大分子。尤其是组织中的多糖和酶类物质对随后的酶切、PCR反应等有较强的抑制作用,因此用富含这类物质的材料提取基因组DNA时, 应考虑除去多糖和酚类物质。 本实验以水稻幼苗(禾本科)、李(苹果)叶子、动物肌肉组织和大肠杆菌培养物为材料,学习基因组DNA提取的一般方法。 从植物组织提取基因组DNA 一、材料 水稻幼苗或其它禾本科植物,李(苹果)幼嫩叶子。 二、设备 移液器,冷冻高速离心机,台式高速离心机,水浴锅,陶瓷研钵,50ml离心管(有盖)及5ml和 1.5ml离心管,弯成钩状的小玻棒。 三、试剂 1、提取缓冲液Ⅰ:100mmol/L Tris·Cl, pH8.0, 20mmol/L EDTA, 500mmol/L NaCl, 1.5% SDS。 2、提取缓冲液Ⅱ:18.6g葡萄糖,6.9g二乙基二硫代碳酸钠,6.0gPVP,240ul巯基乙醇,加水至300ml。 3、80:4:16/氯仿:戊醇:乙醇 4、RnaseA母液:配方见第一章。 5、其它试剂:液氮、异丙醇、TE缓冲液,无水乙醇、70%乙醇、3mol/L NaAc。 四、操作步骤: (一)水稻幼苗或其它禾木科植物基因组DNA提取 1. 在50ml离心管中加入20ml提取缓冲液Ⅰ, 60℃水浴预热。 2. 水稻幼苗或叶子5-10g, 剪碎, 在研钵中加液氮磨成粉状后立即倒入预热的离心管中, 剧烈摇动混匀, 60℃水浴保温30-60分钟(时间长,DNA产量高), 不时摇动。 3. 加入20ml氯仿/戊醇/乙醇溶液, 颠倒混匀(需带手套, 防止损伤皮肤),室温下静置5-10分钟, 使水相和有机相分层(必要时可重新混匀)。 4. 室温下5000rpm离心5分钟。 5. 仔细移取上清液至另一50ml离心管,加入1倍体积异丙醇,混匀,室温下放置片刻即出现絮状DNA沉淀。 6. 在1.5ml eppendorf中加入1ml TE。用钩状玻璃棒捞出DNA絮团,在干净吸水纸上吸干,转

常用大肠杆菌及其基因型

Commonly used strains https://www.360docs.net/doc/4c5601133.html,/wiki/E._coli_genotypes 1.AG1 endA1 recA1 gyrA96 thi-1 relA1 glnV44 hsdR17(r K - m K +) 2.AB1157 thr-1, araC14, leuB6(Am), Δ(gpt-proA)62, lacY1, tsx-33, qsr'-0, glnV44(AS), galK2(Oc), LAM-, Rac-0, hisG4(Oc), rfbC1, mgl-51, rpoS396(Am), rpsL31(strR), kdgK51, xylA5, mtl-1, argE3(Oc), thi-1?Bachmann BJ: Derivation and genotypes of some mutant derivatives of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Edited by: F C Neidhardt J L Ingraham KB Low B Magasanik M Schaechter H E Umbarger). Washington, D.C., American Society for Microbiology 1987, 2:1190-1219. See CGSC#1157 3.BL21 E. coli B F- dcm ompT hsdS(r B - m B -) gal [malB+] K-12 (λS) ?The "malB region" was transduced in from the K-12 strain W3110 to make the strain Mal+λS. See Studier et al. (2009) J. Mol. Biol. 394(4), 653 for a discussion of the extent of the transfer. ?Stratagene E. coli Genotype Strains 4.BL21(AI) F– ompT gal dcm lon hsdS B (r B - m B -) araB::T7RNAP-tetA ?an E. coli B strain carrying the T7 RNA polymerase gene in the araB locus of the araBAD operon q. ?Transformed plasmids containing T7 promoter driven expression are repressed until L-arabinose induction of T7 RNA polymerase.

大肠杆菌

大肠杆菌的培养和分离 ——基础知识和操作过程梳理一、大肠杆菌 细菌是单细胞的原核生物。细菌细胞的结构有细胞壁、细胞膜、细胞质等。细菌无成型的细胞核,细胞壁由肽聚糖组成。由于细菌细胞壁结构不同,细菌可分为革兰氏阳性菌和革兰氏阴性菌两类。革兰氏阳性菌细胞壁厚,无荚膜,多产生外毒素;革兰氏阴性菌细胞壁薄,有荚膜,多产生内毒素。革兰氏阳性菌对青霉素更为敏感。 大肠杆菌是革兰氏阴性、异养兼性厌氧型肠道杆菌。在肠道中一般对人无害,但任何大肠杆菌进入人的泌尿系统,都会对人体产生危害。大肠杆菌在基因工程技术中被广泛的应用,它的质粒是最常用的运载体,它也是基因工程中常用的受体细胞。 二、培养基配置 微生物生命活动过程中需要的化合物有碳源、氮源、生长因子、无机盐和水。有的化合物既是碳源又是氮源、能源。生长因子是微生物生长不可缺少的微量有机物,但不一定需要外界补充,有的微生物可以自身合成。在提供上述几种主要营养物质的基础上,培养基还需要满足微生物生长对pH、特殊营养物质以及氧气的要求。 我们一般用LB液体培养基来扩大培养大肠杆菌,培养后可在LB固体培养基上划线分离。以下为本实验中培养基配置步骤: 1.称量:准确称取各成分。蛋白胨0.5g,酵母提取物0.25g,氯化钠0.5g,加水50ml。配置LB固体培养基时还需加1g琼脂。 2.溶化:加热熔化,用蒸馏水定容到50mL。配置LB固体培养基时还需加琼脂,整个过程不断用玻棒搅拌,目的是防止琼脂糊底而导致烧杯破裂。 3.调pH:用1mol/L NaOH溶液调节pH至偏碱性。 4.灭菌:在两个250ml的三角瓶中分别装入50ml LB液体培养基和50ml LB固体培养基,加上棉塞。将培养皿用牛皮纸包好,放入灭菌锅内,1kg压力灭菌15min。

大肠杆菌基因型列表111

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if ab sent. E. coli B strains are naturally lon- and dcm-. F- = Does not carry the F plasmid F+ = Carries the F plasmid. The cell is able to mate with F- through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F- through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. rB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. mB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine + methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!) dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285. dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well. endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I (e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or

相关文档
最新文档