药物动力学模型 数学建模

药物动力学模型 数学建模
药物动力学模型 数学建模

药物动力学模型 数学建模

药物动力学模型 一般说来,一种药物要发挥其治疗疾病的作用,必须进入血液,随着血流到达作用部位。药物从给药部位进入血液循环的过程称为药物的吸收,而借助于血液循环往体内各脏器组织转运的过程称为药物的分布。 药物进入体内以后,有的以厡型发挥作用,并以厡型经肾脏排出体外;有的则发生化学结构的改变--称为药物的代谢。代谢产物可能具有药理活性,可能没有药理活性。不论是厡型药物或其代谢产物,最终都是经过一定的途径(如肾脏、胆道、呼吸器官、唾液腺、汗腺等)离开机体,这一过程称为药物的排泄。有时,把代谢和排泄统称为消除。 药物动力学(Pharmacokinetics)就是研究药物、毒物及其代谢物在体内的吸收、分布、代谢及排除过程的定量规律的科学。它是介于数学与药理学之间的一门新兴的边缘学科。自从20世纪30年代Teorell 为药物动力学奠定基础以来,由于药物分析技术的进步和电子计算机的使用,药物动力学在理论和应用两方面都获得迅速的发展。至今,药物动力学仍在不断地向深度和广度发展。药物动力学的研究方法一般有房室分析;矩分析;非线性药物动力学模型;生理药

物动力学模型;药物药效学模型。下面我们仅就房室分析作一简单介绍。 为了揭示药物在体内吸收、分布、代谢及排泄过程的定量规律,通常从给药后的一系列时间 (t) 采取血样,测定血(常为血浆,有时为血清或全血)中的药物浓度( C );然后对血药浓度——时间数据数据(C——t数据)进行分析。 一一室模型 最简单的房室模型是一室模型。采用一室模型,意味着可以近似地把机体看成一个动力学单元,它适用于给药后,药物瞬间分布到血液、其它体液及各器官、组织中,并达成动态平衡的情况。下面的图(一)表示几种常见的给药途径下的一室模型,其中C代表在给药后时间t的血药浓度,V代表房室的容积,常称为药物的表观分布容积,K代表药物的一级消除速率常数,故消除速率与体内药量成正比,D代表所给刘剂量。 图(a)表示快速静脉注射一个剂量D,由于是快速,且药物直接从静脉输入,故吸收过程可略而不计;图(b)表示以恒定的速率K,静脉滴注一个剂量D;若滴注所需时间为丅,则K=D/丅。图(c)表示口服或肌肉注射一个剂量D,由于存在吸收过程,故图中分别

(完整版)药物非临床药代动力学研究技术指导原则

附件5 药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过体外和动物体内的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄(Absorption, Distribution, Metabolism, Excretion, 简称ADME)的过程和特征。 非临床药代动力学研究在新药研究开发的评价过程中起着重要 作用。在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据。在药效学和毒理学评价中,药代动力学特征可进一步深入阐明药物作用机制,同时也是药效和毒理研究动物选择的依据之一;药物或活性代谢产物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据。在临床试验中,非临床药代动力学研究结果能为设计和优化临床试验给药方案提供有关参考信息。 本指导原则是供中药、天然药物和化学药物新药的非临床药代动力学研究的参考。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行药物非临床药代动力学研究的 基本原则、试验设计的总体要求、生物样品的测定方法、研究项目(血

药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性及转运体的影响)、数据处理与分析、结果与评价等,并对研究中其他一些需要关注的问题进行了分析。附录中描述了生物样品分析和放射性同位素标记技术的相关方法和要求,供研究者参考。 二、基本原则 进行非临床药代动力学研究,要遵循以下基本原则: (一)试验目的明确; (二)试验设计合理; (三)分析方法可靠; (四)所得参数全面,满足评价要求; (五)对试验结果进行综合分析与评价; (六)具体问题具体分析。 三、试验设计 (一)总体要求 1. 受试物 中药、天然药物:受试物应采用能充分代表临床试验拟用样品和/或上市样品质量和安全性的样品。应采用工艺路线及关键工艺参数确定后的工艺制备,一般应为中试或中试以上规模的样品,否则应有充分的理由。应注明受试物的名称、来源、批号、含量(或规格)、保存条件、有效期及配制方法等,并提供质量检验报告。由于中药的特殊性,建议现用现配,否则应提供数据支持配制后受试物的质量稳定性及均匀性。当给药时间较

临床前药物代谢动力学研究指导原则(动物)

临床前药物代谢动力学研究指导原则 一、研究目的及内容 临床前进行药物动力学研究,日的在于了解新药在动物体内动态变化的规律及特点,给临床合理用药提供参考;其内容包括药物的吸收、分布、排泄、蛋白结合等。根据数学模型,求算重要的药物动力学参数。 二、动物选择与注意事项 必须采用成年、健康动物。常用动物为大鼠、小鼠、免、豚鼠、狗等。首选动物与性别尽量与药效学或毒理学研究所用动物一致。尽量在清醒状态下进行。动物进实验室应饲养3—5天再开始实验。给药途径要选择拟在临床上用的途径(如有特殊情况加以说明)。 三、药物在生物样品中的分离与测定 要建立一个灵敏、特异、重现性好的测定方法。 (一)灵敏度: 一般以ng(或ug)/ml(g)生物样品表示。 度,或能检测出Cmax的1/10浓度。 (二)特异性: 必须证明所测药物为原形药或其代谢产物。 (三)重现性: 用cv%表示药物加入生物样品中反复测定的变异系数,在实际所用标准曲线(至少四个浓度)范围内,日内变异系数争取达到5%以内,但不能超过10%。(四)标准曲线及回收率: 1.要指明药物的化学纯度。 2.要进行药物在血、尿、粪、胆汁及组织匀浆等中的标准曲线,每条标准曲线在应用浓度范围内,最少包含四个药物浓度;并指出其相关系数。要注意不同组织的空白干扰及回收率可能不同。 3.在所测浓度范围内,药物自生物样品的回收率不低于70%。(如有特殊情况,请加以说明。) (五)分离及测定: 1.根据实验室条件,首选先进的HPLC、HPTLC、GC等分离方法,以及可见光、紫外光、荧光等测定方法。 2.用放射性核素标记药物,在用前要进行纯度检查,放化纯度要>95%。定位标记要指明标记位置。尽量不用以曝射法法制备的非定位3H标记物。 3.放射免疫法和酶标免疫法具有—定持异性,灵敏度高,但原药与其代谢产物或内源性物质常有交叉反应,需提供证据,说明其特异性。 4.生物检定法常能反映药效学本质.一般特异性较差,最好用特异性好的方法予以对比、证明,否则要加以说明。 四、药物动力学参数测定 (一)血药浓度一时间曲线(药一时曲线): 1.给药后取血时间应注意到下列三个时相的时间点分布。光做项试,摸索各自范围。

化学药物非临床药代动力学研究技术指导原则

指导原则编号: 【H】G P T 5-1 化学药物非临床药代动力学研究 技术指导原则 二○○五年三月

目 录 一、概述 (1) 二、基本原则 (2) 三、试验设计 (2) (一)总体要求 (2) (二)生物样本的药物测定方法 (3) (三)研究项目 (4) 四、数据处理与分析 (9) 五、结果与评价 (9) 六、常见问题与处理思路 (10) 七、参考文献 (13) 八、附录(生物样品的分析方法) (15) 九、著者 (21)

化学药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过动物体内、外和人体外的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄的过程和特点。 非临床药代动力学研究在新药研究开发的评价过程中起着重要作用。在药效学和毒理学评价中,药物或活性代谢物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据;在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据;在临床研究中,非临床药代动力学研究结果能为设计和优化临床研究给药方案提供有关参考信息。 本指导原则是供药物研究开发机构进行化学药品新药的非临床药代动力学研究的参考,而不是新药申报的条框要求。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行非临床药代动力学研究的基本原则、试验设计的总体要求、生物样品的药物分析方法、研究项目(血药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性的影响)、数据处理与分析、结果与评价等,并对研究中的一些常见问题及处理思路进行了分析。

药物动力学模型 数学建模

药物动力学模型 一般说来,一种药物要发挥其治疗疾病得作用,必须进入血液,随着血流到达作用部位。药物从给药部位进入血液循环得过程称为药物得吸收,而借助于血液循环往体内各脏器组织转运得过程称为药物得分布。 药物进入体内以后,有得以厡型发挥作用,并以厡型经肾脏排出体外;有得则发生化学结构得改变--称为药物得代谢。代谢产物可能具有药理活性,可能没有药理活性。不论就是厡型药物或其代谢产物,最终都就是经过一定得途径(如肾脏、胆道、呼吸器官、唾液腺、汗腺等)离开机体,这一过程称为药物得排泄。有时,把代谢与排泄统称为消除。 药物动力学(Pharmacokinetics)就就是研究药物、毒物及其代谢物在体内得吸收、分布、代谢及排除过程得定量规律得科学。它就是介于数学与药理学之间得一门新兴得边缘学科。自从20世纪30年代Teorell为药物动力学奠定基础以来,由于药物分析技术得进步与电子计算机得使用,药物动力学在理论与应用两方面都获得迅速得发展。至今,药物动力学仍在不断地向深度与广度发展。药物动力学得研究方法一般有房室分析;矩分析;非线性药物动力学模型;生理药物动力学模型;药物药效学模型。下面我们仅就房室分析作一简单介绍。 为了揭示药物在体内吸收、分布、代谢及排泄过程得定量规律,通常从给药后得一系列时间(t) 采取血样,测定血(常为血浆,有时为血清或全血)中得药物浓度( C );然后对血药浓度——时间数据数据(C ——t数据)进行分析。

一一室模型 最简单得房室模型就是一室模型。采用一室模型,意味着可以近似地把机体瞧成一个动力学单元,它适用于给药后,药物瞬间分布到血液、其它体液及各器官、组织中,并达成动态平衡得情况。下面得图(一)表示几种常见得给药途径下得一室模型,其中C代表在给药后时间t 得血药浓度,V代表房室得容积,常称为药物得表观分布容积,K代表药物得一级消除速率常数,故消除速率与体内药量成正比,D代表所给刘剂量。 图(a)表示快速静脉注射一个剂量D,由于就是快速,且药物直接从静脉输入,故吸收过程可略而不计;图(b)表示以恒定得速率K,静脉滴注一个剂量D;若滴注所需时间为丅,则K=D/丅。图(c)表示口服或肌肉注射一个剂量D,由于存在吸收过程,故图中分别用F与 K代表吸收分 数与一级吸收速率常数。 1、快速静脉注射 在图(a)中所示一室模型得情况下,设在时间t,体内药物量为x,则按一级消除得假设,体内药量减少速率与当时得药量成正比,故有下列方程: dx Kt dt(5、1) 快速静脉注射恒速静脉滴注口服或肌肉注射 K F 0K

15第十二章新药临床前药物代谢动力学研究

第十二章新药临床前药物代谢动力学研究 第一节新药临床前药物代谢动力学研究的目的和意义 创新药物的开发是一项高风险、高投入和高回报的产业。一旦一个创新药物开发成功并上市就可以为开发者带来巨额的利润。但目前创新药物开发的成功率的很低,命中率约为五万分之一,在发达国家开发成功一种新药需要耗资5-10亿美元左右,研究周期约在10年左右。许多体外研究认为很有前途的候选化合物可能因在体内活性很低甚至无体内活性或体内具有较大的毒性而夭折,造成极大的人力和财力的浪费。缺乏体内活性可能是由于其药动学性质不理想,如首关消除较强或不易通过肠黏膜被吸收,生物利用度太低;或代谢太快,半衰期太短;或不易通过生物膜而进入靶器官。而体内的毒性则可能是由于其在体内形成的毒性代谢物所致。据文献报道进入临床试验后约有40%的候选化合物是由于药动学方面的原因而被淘汰的,这足以说明药动学研究在创新药开发研究中的作用。一个候选化合物不仅要有较高的体外活性和较低的毒性,还应具有理想的药动学性质,即较高的生物利用度和理想的半衰期。因此,在新药开发的早期阶段,可利用各种体内和体外模型对候选化合物药动学进行初筛,以便在研究开发的早期就确定该候选化合物是否有继续开发的价值,并可以根据筛选的结果对先导化合物进行结构改造或修饰,以获得具有良好药动学特性的新候选化合物。最优的候选化合物是从一次次的优化循环中诞生的,每一次的优化循环都通过药理学、毒理学和药动学筛选结果反馈来指导下一步合成或结构改造。这样循环往复最终产生具有良好的药理学、毒理学和药动学特性的最佳候选化合物,进入下一步的临床研究。由此可见新药的临床前药动学研究在创新药物的开发研究中占有重要的地位,它与临床前药理学研究和毒理学研究一起构成一个三位一体的完整的新药筛选和评价体系。 临床前药动学研究的目的是阐明新药在体内吸收、分布、代谢和排泄的过程和特点,并提供一些重要的药动学参数,进而揭示新药在体内动态变化规律性,包括吸收的速度和程度;全身分布情况,药物的血浆蛋白结合率;阐明代谢物的结构、转化途径及其动力学;排泄的途径、速率和排泄量。它可以为 293

生物药剂学与药代动力学

生物药剂学与药物动力学习题 一、单项选择题 1.以下关于生物药剂学的描述,正确的是 A.剂型因素是指片剂、胶囊剂、丸剂和溶液剂等药物的不同剂型 B.药物产品所产生的疗效主要与药物本身的化学结构有关C.药物效应包括药物的疗效、副作用和毒性 D.改善难溶性药物的溶出速率主要是药剂学的研究内容 2. K+、单糖、氨基酸等生命必需物质通过生物膜的转运方式是A.被动扩散 B.膜xx转运 C.主动转运D.促进扩散 E.膜动转运 3.以下哪条不是主动转运的特点 A.逆浓度梯度转运 B.无结构特异性和部住特异性 C.消耗能量D.需要载体参与 E.饱和现象 4.胞饮作用的特点是 A.有部位特异性 B.需要载体 C.不需要消耗机体能量D.逆浓度梯度转运

E.以上都是 5.药物的主要吸收部位是 A.胃B.小肠 C.大肠D.直肠 E.均是 6.药物的表观分布容积是指 A.人体总体积B.人体的体液总体积 C.游离药物量与血药浓度之比D.体内药量与血药浓度之比E.体内药物分布的实际容积 7.当药物与蛋白结合率较大时,则 A.血浆中游离药物浓度也高 B.药物难以透过血管壁向组织分布 C.可以通过肾小球滤过 D.可以经肝脏代谢 E.药物跨血脑屏障分布较多 8.药物在体内以原形不可逆消失的过程,该过程是 A.吸收 B.分布 C.代谢 D.排泄 E.转运

9.药物除了肾排泄以外的最主要排泄途径是 A.胆汁 B.汗腺C.唾液腺 D.泪腺E。呼吸系统 10.可以用来测定肾小球滤过率的药物是 A.青霉素 B.链霉素C.菊粉 D.葡萄糖 E.乙醇 11.肠肝循环发生在哪一排泄中 A.肾排泄B.胆汁排泄C.乳汁排泄 D.肺部排泄 E.汗腺排泄 12.最常用的药物动力学模型是 A.隔室模型 B.药动一药效结合模型 C.非线性药物动力学模型 D.统计矩模型 E.生理药物动力学模型 13.药物动力学是研究药物在体内的哪一种变化规律 A.药物排泄随时间的变化

动力学模型

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

群体药代动力学解读

发布日期2007-11-01 栏目化药药物评价>>综合评价 标题群体药代动力学(译文) 作者康彩练 部门 正文内容 审评四部七室康彩练审校 I.前言 本指南是对药品开发过程中群体药代动力学的应用制定建议,目的是帮助确定在人群亚组中药品安全性和疗 效的差异。它概述了应当用群体药代动力学解决的科学问题和管理问题。本指南讨论了什么时候要进行群体 药代动力学研究和/或分析;讨论了如何设计和实施群体药代动力学研究;讨论了如何处理和分析群体药代动 力学数据;讨论了可以使用什么样的模型验证方法;讨论了针对计划申报给FDA的群体药代动力学报告,怎 样提供恰当的文件。虽然本行业指南中的内容是针对群体药代动力学,但是其中讨论的原则也同样适用于群 体药效学研究和群体毒代动力学研究2。 由于对药品在人群亚组中的安全性和疗效的分析是药品开发和管理中一个发展迅速的领域,所以在整个药品 开发过程中,鼓励主办者和FDA审评人员经常沟通。 制药行业科学家和FDA长期以来一直对群体药代动力学/药效学在人群亚组中药品安全性和疗效分析方面的 应用感兴趣[1]。在FDA的其他指南文件(包括“进行药品临床评价时一般要考虑的问题”(General Considerations for the Clinical Evaluation of Drugs) (FDA 77-3040))中和在国际协调会议(ICH)指南(包 括“E4支持药品注册的剂量-效应资料”(E4 Dose-Response Information to Support Drug Registration)和“E7 支持特殊人群的研究:老年医学”(E7 St udies in Support of Special Populations: Geriatrics))中,对这个主 题制定了参考标准3。这些指南文件支持使用特殊的数据收集方法和分析方法,例如群体药代动力学方法(群 体PK方法),作为药品开发中药代动力学评价的一部分。 1本指南由药品评审和研究中心(CDER)医药政策协调委员会临床药理学部群体药代动力学工作组与食品 药品监督管理局生物制品评审和研究中心(CBER)合作编写。本指南文件反映了当前FDA对药品评价中的 群体药代动力学的考虑。它不给任何人也不代表任何人创造或赋予任何权力,也不约束FDA或公众。如果其 他措施满足适用法令、法规或两者的要求,那么也可采用其他措施。

药代动力学12 第九章 药代动力学与药效学动力学结合模型

药代动力学12 第九章药代动力学与药效学动力学结 合模型 第九章药代动力学与药效动力学结合模型第一节概述 药代动力学(Pharmacokinetics, PK)和药效动力学(Pharmacodynamics,PD) 是按时间同步进行着的两个密切相关的动力学过程,前者着重阐明机体对药物的 作用,即药物在体内的吸收、分布、代谢和排泄及其经时过程;后者描述药物对 机体的作用,即效应随着时间和浓度而变化的动力学过程,后者更具有临床实际 意义。传统的药效动力学主要在离体的水平进行,此时药物的浓度和效应呈现出 一一对应的关系,根据药物的量效关系可以求得其相应的药效动力学参数,如亲 和力和内在活性等。但药物的作用在体内受到诸多因素的影响,因而其在体内的 动力学过程较为复杂。以往对于药动学和药效学的研究是分别进行的,但实际上 药动学和药效学是两个密切相关的动力学过程,两者之间存在着必然的内在联 系。 早期的临床药动学研究通过对治疗药物的血药浓度的监测(Therapeutic

Drug Monitoring, TDM)来监测药物效应变化情况,其理论基础是药物的浓度和 效应呈现出一一对应的关系,这一关系是建立在体外研究的基础之上的,这里所 说的浓度实际上是作用部位的浓度,但在临床研究中我们不可能直接测得作用部 位的药物浓度,因而常常用血药浓度来代替作用部位的浓度。随着药代动力学和 药效动力学研究的不断深入人们逐渐发现药物在体内的效应动力学过程极为复 杂,其血药浓度和效应之间并非简单的一一对应关系,出现了许多按传统理论无 法解释的现象,如效应的峰值明显滞后于血药浓度峰值,药物效应的持续时间明 显长于其在血浆中的滞留时间,有时血药浓度和效应的曲线并非像在体外药效动 力学研究中观察到的 S形曲线,而是呈现出一个逆时针滞后环。进一步研究发现 血药浓度的变化并不一定平行于作用部位药物浓度的变化,因而出现了上述的一 些现象,所以在体内不能用血药浓度简单地代替作用部位的浓度来反映药物效应 的变化情况。针对上述问题 Sheiner 等人于 1979年首次提出了药动学和药效学结 合模型,并成功地运用这一模型解释了上述的现象。药动学和药效力学结合

药物代谢动力学吐血整理(中药药理专业)(20201101084327)

药物代谢动力学完整版 第二章药物体内转运 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织的血流速率及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②有选择性③有饱和现象④有竞争性抑制作用⑤常需要能量 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、胃肠道中影响药物吸收的因素有哪些①药物和剂型②胃肠排空作用③肠上皮的外排机制④首过效应⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2 细胞模型法 Caco-2 细胞来源于人体结肠上皮癌细胞。 优点:① 作为研究体外药物吸收的快速筛选模型;② 在细胞水平上研究药物在小肠黏膜中 的吸收、转运和代谢;③ 研究药物对肠黏膜的毒性;④ 由于Caco-2细胞来源于人,不存在种属的差异性。 缺点: ①酶和转运蛋白的表达不完整;②来源、培养代数、培养时间对结果有影响; 四、药物血浆蛋白结合率常用测定方法的原理及注意事项。 1. 平衡透析法原理:利用与血浆蛋白结合的药物不透过半透膜的特性进行测定的。 2. 超过滤法 原理:与平衡透析法不同的是在血浆蛋白室一侧加压力或离心力,使游离药物快速通过滤膜 进入另一隔室。 脑微血管的特性:①低水溶性物质的扩散通透性;②低导水性;③高反射系数;④高电阻性; ⑤酶屏障

专题02 常见动力学模型(上)(解析版)

浙江高考物理尖子生核心素养提升 之常见动力学模型(上) 滑块滑板问题是高考常考的热点,这类问题对学生的综合分析能力和数学运算能力要求较高,而且滑块滑板模型常和功能关系、动量守恒等结合,分析过程较复杂。学生常因为对过程分析不清或计算失误而丢分。 命题点一水平面上的滑块—滑板模型 1.两种位移关系 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移大小之和等于板长。 2.解题思路 [典例]如图所示,质量m=1 kg的物块A放在质量M=4 kg的木板B的左端,起初A、B 静止在水平地面上。现用一水平向左的力F作用在B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1。假设最大静摩擦力等于滑动摩擦力,g=10 m/s2。求: (1)能使A、B发生相对滑动的力F的最小值; (2)若力F=30 N,作用1 s后撤去,要想A不从B上滑落,则B至少多长;从开始到A、B 均静止,A的总位移是多少。 [解析](1)A的最大加速度由A、B间的最大静摩擦力决定,即 对于A,根据牛顿第二定律得:μ1mg=ma m 解得a m=4 m/s2 对于A、B整体,根据牛顿第二定律得: F-μ2(M+m)g=(M+m)a m 解得F=25 N。 (2)设力F作用在B上时A、B的加速度大小分别为a1、a2,撤去力F时速度分别为v1、v2,

撤去力F后A、B速度相等前加速度大小分别为a1′、a2′,A、B速度相等时速度为v3,加速度大小为a3 对于A,根据牛顿第二定律得:μ1mg=ma1 得a1=4 m/s2,v1=a1t1=4 m/s 对于B,根据牛顿第二定律得: F-μ1mg-μ2(M+m)g=Ma2 得a2=5.25 m/s2,v2=a2t1=5.25 m/s 撤去力F:a1′=a1=4 m/s2 μ1mg+μ2(M+m)g=Ma2′ 得a2′=2.25 m/s2 经过t2时间后A、B速度相等v1+a1′t2=v2-a2′t2 得t2=0.2 s 共同速度v3=v1+a1′t2=4.8 m/s 从开始到A、B相对静止,A、B的相对位移即为B的最短长度L L=x B-x A=v22 2a2+v32-v22 -2a2′ - 1 2a1(t1+t2) 2=0.75 m A、B速度相等后共同在水平地面上做匀减速运动,加速度大小a3=μ2g=1 m/s2 对于A、B整体从v3至最终静止位移为 x=v32 2a3=11.52 m 所以A的总位移为x A总=x A+x=14.4 m。 [答案](1)25 N(2)0.75 m14.4 m [规律方法] 求解“滑块—滑板”类问题的方法技巧 (1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向。 (2)准确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况。 (3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变。 [集训冲关] 1.如图所示,光滑水平面上静止放着长为L=1.6 m、质量为M=3 kg的木板,一质量为m=1 kg的物块放在木板的最右端,物块与木板之间的动摩擦因数为μ=0.1,对木板施加一水平向右的拉力F,g取10 m/s2。

临床药代动力学试验的常见设计类型与统计分析

发布日期 20140327 化药药物评价 >> 临床安全性和有效性评价 临床药代动力学试验的常见设计类型与统计分析 张学辉,卓宏,王骏 化药临床二部 一、临床药代动力学试验的统计分析问题现状 临床药代动力学试验在新药上市注册申请中占有重要地位。 与大样本量的 临床试验相比,这类试验样本数少、 观测指标少,其统计分析问题要简单很多, 未引起申请人或研究者的重视,一般较少邀请统计专业人员参与。甚至一些人 认为这类试验是描述性试验,不需要进行专业的统计分析。其实正是因为这类 试验的样本数少,才要更加重视其试验设计和统计分析的规范性,才能得出相 对可靠的专业结论。从目前申报资料看,存在较多问题: 1 )研究设计时未充 分考虑三要素”(受试者、试验因素、观察指标),无法满足研究目标的专业 需要;2)研究设计不符合 四原则”(随机、对照、重复和均衡),不采用常见 的设计类型,设计出一些不同寻常的异型试验; 3)资料整理和统计分析方法 选用不当,与研究设计类型不匹配,尤其是滥用 t 检验和单因素多水平设计资 料的方差分析方法。 临床药代动力学试验的一般要求参见技术指导原则 ⑴。本文拟介绍这类试 验的常见研栏目 标题 作者 部门 正文内容

究设计类型与统计分析方法,供大家参考。 二、创新药物临床药代动力学试验 这里的创新药物是指新化学实体。这类药物通常在健康受试者中进行多项 的临床药代动力学试验,包括单次给药、多次给药、食物影响、药代动力学相互作用等药代动力学试验。后续还要进行目标适应症患者和特殊人群的药代动力学试验。 2.1创新药物单次给药药代动力学试验 创新药物的健康受试者单次给药药代动力学试验通常在I期耐受性试验结 束后进行。受试者例数一般要求每个剂量组8?12例,男女各半。药物剂量, 一般选用低、中、高三种剂量,有时会选用更多剂量。剂量的确定主要根据I 期临床耐受性试验的结果,并参考动物药效学、药代动力学及毒理学试验的结果,以及经讨论后确定的拟在∏期临床试验时采用的治疗剂量推算。高剂量组剂量必须接近或等于人最大耐受的剂量。 由于该类药物初上人体试验,出于安全性和伦理的考虑,每位受试者只给药一次,最常采用多剂量组平行设计。一般设计为在健康受试者(男女各半)中、随机、开放、多剂量组平行、单次给药的药代动力学试验。整理这类试验的药代动力学参数时,可以归类为两因素(剂量、性别)析因设计。各剂量组内性别间差异无统计学意义或者不考虑性别因素时,可以将该试验简化为单因素(剂量)的平行组设计。 安全性好的药物,在伦理允许情况下,也可采用多剂量组、多周期的交叉设计。交叉设计的优点是节省样本量、自身对照、减少个体间变异,缺点是多周期时间长、重复测量次数多、受试者依从性差易脱落、统计分析方法复杂。 当选用低、中、高三个剂量组时,通常采用随机、开放、单次给药、三剂量组

药代动力学建模部分

第四章药代动力学建模——使用WinNonlin 库模型 假设一个研究者已经获得一个研究对象口服化合物后的浓度数据,现在要拟合一个药代动力学模型。 数据探究 数据加载:打幵Win No nlin Examples子目录的STUD Y1.P W文件,此文件包含具备单位的时间- 浓度数据。 数据绘图: 1.数据文件打开后,单击工具栏按钮Chart Wizard (图表向导)或从WinNonlin 菜单选择Tools>Chart Wizard 。 2.选择XY Scatter (散点图),然后点击下一步。 3.拖动Time 到X 变量框中。 4.拖动Cone到Y变量框中。 5.点击Next 。 6.点击Finish 。图表在一个新的图表窗口中生成。 图4-1 study1.pwo 的时间-浓度曲线 转换为半对数坐标图: 1.从菜单选择Chart>Axis Options ,出现轴选项对话框。 2.将Y轴框的Logarithmic复选框打勾。 3.点击确定。该对话框关闭,窗口的图表转换为半对数图,图表如下所示。 图4-2 study1.pwo 的半对数坐标图

设置模型 图表表明,该系统可能适用一级吸收,一室模型进行拟合。该模型在WinNonlin 编译的药动模型库中是排列为模型3。 开始建模: 1.点击PK/PD/NCA Analysis Wizard 工具栏按钮,或选择菜单中的Tools> PK/PD/NCA Analysis Wizard 。 2 .确保STUDY1.PWO现在数据设置区域。 3.选择Pharmacokinetic 单选按钮,和Compiled 模式。 4.点击Next 。出现WinNonlin 编译模式对话框。 5.选择模式3。 6 .点击Next按钮。遴选摘要对话框出现。 7.点击Finish 。向导关闭,出现模型窗口。 指定X和丫变量: 1.从菜单选择Model>Data Variables 。 2.拖动Time 到X 变量框中。 3.拖动Cone到Y变量框中。 4.点击OK。 输入给药数据: 注意:输入给药数据的单位,以便之后在模型参数中可以查看(和调整)单位。 模型3单剂量模式需具备三个常量。这个例子中,2ug的单剂量在时间为0时给药,则剂量常量应该为: 剂量数= 1 剂量# 1 = 2 ug 给药时间# 1 = 0 1.从WinNonlin 菜单选择Modei>Dosing Regimen,打开Model Properties (模型属性)对话框的Dosing Regimen (给药方案)选项卡。 2.分别在数据网格的对应格子中输入值 1,2,0,如下图所示。 3.在Curre nt Un its 区域输入ug单位。 4.单击Apply 进行更改,保持模型属性对话框打开状态。输入初始参数估值: 所有模型的估算程序均可受益于参数初始估值。虽然WinNonlin可以采用曲线剥离法估测初始参数,但这个例子仍为用户提供了初始参数估值。 1 .打开Model Properties (模型属性)对话框的Model Parameters (模型参数)选项卡。 2.在参数计算组框(下面)选择User Supplied Initial Parameter Values (用户 提供初始参数值),网格延伸出初始值填写栏。 3.输入初始值: V_F = 0.25 K01 = 1.81

2019专本专临床药代动力学B和答案

专业:药学(专升本,专)适用年级:2017级科目:药物代谢动力学满分:100分 总页数:4页出题日期:2019-5-8 一、概念解释(每概念2分,共10概念,共20分) 1. 血脑屏障 2. 肝药酶抑制剂 3. 肝肠循环 4. 零级动力学消除 5. 生物利用度 6. 血浆半衰期 7. 稳态血药浓度 8. 易化扩散 9. 体过程 10. 药物的排泄

二、问答题(共2题,每题4-6分,共10分) 1、Caco-2细胞作为体外吸收模型的优点?(4分) 2、举例说明药代动力学在药剂学中的应用。(6分) 三、选择题(共60题,每题1分,共60分) 1.大多数脂溶性药物跨膜转运是通过 A.易化扩散 B.简单扩散 C.膜孔滤过 D.主动转运 E.胞饮2.被动转运的特点是 A.从高浓度侧向低浓度侧转运 B.从低浓度侧向高浓度侧转运 C.需消耗能量 D.有竞争性抑制现象 E.有饱和限速现象 3.下列关于主动转运的叙述中,错误的是 A.从低浓度侧向高浓度侧转运 B.需特异性载体 C.不消耗能量 D.有竞争性抑制现象 E.有饱和限速现象 4.某弱酸药物的pka=3.4,在pH=7.4的血浆中其解离度为 A.90% B.99% C.99.9% D.99.99% E.10% 5.以下何种情况药物易通过简单扩散转运 A.解离型药物在酸性环境中 B. 解离型药物在碱性环境中 C. 弱碱性药物在酸性环境中 D. 弱酸性药物在碱性环境中 E. 弱酸性药物在酸性环境中 6.下列关于药物解离度的叙述中,错误的是( C ) A.弱酸性药物在酸性环境中解离度小,易吸收 B.弱碱性药物在碱性环境中解离度小,易吸收

临床药代动力学基础

临床药代动力学基础总结 一、被动转运 1、简单扩散:属于脂溶性扩散。 一、(1)特点:1、从浓度高的一侧转运向浓度低的一侧顺着浓度梯度差通过生物膜。 2、转运过程不消耗能量,不需要载体,各药物之间没有竞争抑制现象,没有饱和性。 3、当生物膜两侧药物浓度达到平衡状态时,转运即停止。 一、影响简单扩散的因素 1、膜两侧的浓度差2药物的脂溶性3药物的解离度:取决于解离常数(Ka)和环境的PH 值 (2)影响简单扩散的因素-Handersoh-hasselbalch公式:-弱酸性药物: 结论:1、酸性药物在酸性环境中,解离少容易跨膜转运达到平衡时,主要分布在碱侧。2、碱性药物在碱性环境中解离少,容易跨膜转运,达到扩散平衡,主要分布在酸侧。 2、膜孔扩散1、滤过或水溶性扩散2、分子量小,分子直径膜孔的水溶性极性或非极性物 质(水、乙醇、尿素、乳酸)借助膜两侧的液体和渗透压差,被水带到低压一侧的过程。 影响因素:膜两侧浓度差。 3、易化扩散分类1经载体的易化扩散2经通道的易化扩散 4、特殊转运 药物体内吸收过程 1吸收:药物从用药部位向血液循环中转运的过程。多数药物的吸收属于被动转运。 影响药物最主要的因素:1、给药途径:经肠给药口服:舌下、直肠、 2、非经肠给药:肌肉注射、皮下注射、静脉注射 吸入、皮肤 一、消化道给药 1、口服给药吸收途径:肠道内吸收-通过毛细血管-肝门静脉-体循环 2、影响因素首关效应:首过效应、第一关卡效应药物在肠粘膜上皮细胞内,肝脏内通过时, 被某些酶灭火代谢,进入体内循环的药物量减少,这一过程成为首关效应或首过消除。 3、药物方面:药物性质、剂型、溶出度在消化道稳定性。 胃肠功能:胃肠道蠕动速度、血流量。 其他:胃内容物、胃肠内PH值,肠道细菌对药物的代谢。 2舌下药:舌下含服,直接吸入体循环,不经过肝门静脉因此无首过消除效应。 3吸入给药:吸入途径:肺泡-肺部毛细血管-体循环 4皮肤给药 二、分布 药物随血液循环进入器官,组织甚至细胞内的过程。 影响因素1药物与血浆蛋白的结合2器官血流量与组织亲和力3体内屏障4体液PH值和药物溶解度 结合性药物分子量变大不易通过生物膜。 药物与血浆蛋白的结合特点:1可逆性2饱和性3竞争性4常用血浆蛋白结婚率来表现 一、体内屏障1血脑屏障分类:1血液-脑脊液2血液-脑组织3脑脊液-脑组织 特点:致密、通透性差2胎盘屏障 药物转化(代谢)过程 三催化转化的酶种类1专一性酶特点:具有专一性(选择性)如乙酰胆碱酯酶-单胺氧化酶2非专一性酶:即肝脏微粒体混合功能酶系统。 存在于肝脏的微粒内,参与多种化合物的转化,与药物的代谢密切相关,因此又称为肝药酶,

一期临床试验及药代动力学测试的主要内容

一期临床试验及药代动力学测试的主要内容 Ⅰ期临床试验就是新药人体试验的起始阶段。 Ⅰ期临床试验目的: 1.在健康志愿者中,对通过临床前安全有效性评价的新药,从绝对安全的初始剂量开始,考察人体对该药的耐受性; 2.对人体能够耐受的剂量进行药代动力学研究,为研究Ⅱ期临床试验提出合理的给药方案。 Ⅰ期临床试验工作程序 1、接到药政管理当局(SDA)下达的批件; 2、签订合同; 3、阅读有关资料及文献,选择、组织试验研究小组; 4、计算并确定耐受性试验最小初始剂量与最大剂量; 5、制定、讨论、确定Ⅰ期临床试验方案; 6、试验方案呈报伦理委员会审批; 7、Ⅰ期临床试验前准备工作: 1)筛选志愿受试者; 2)准备知情同意书; 3)准备记录表格与试验流程图; 4)血药浓度监测考核; 5)Ⅰ期病房准备; 8、Ⅰ期临床试验方案伦理委员会批准后,制定试验进度计划; 9、试验前受试者签署知情同意书; 10、受试者随机分组; 11、试验前24小时内完成每例受试者病例登记:体格检查、心电图检查、脑电图检查、 眼科检查、血液学检查、血生化检查、尿液学分析等各项指标检查; 12、准备每例受试者试验流程图; 13、按照试验方案与进度计划进行Ⅰ期临床试验; 14、数据处理、统计分析;

15、总结报告。 Ⅰ期临床试验方案程序 1)单次给药耐受性试验(随机分组,逐组进行,有主观或其它因素影响时设安慰剂对照); 2)单次给药药代动力学研究(设高、中、低三个剂组,三向交叉拉丁方设计,确定临床有效量与给药量,每组均有三个剂量,每次均有三个剂量,以排除仪器、个体差异); 3)连续给药耐受性与药代动力学研究,要求达稳态后再继续二天,一般连续七至十天)。 Ⅰ期临床试验方案模式 1、首页:项目名称、研究者姓名、单位,申办者负责人姓名、单位 2、简介:试验药物中文名、国际非专利药名、结构式、化学名、分子式、分子量、理化性 质、药理作用、作用机制、临床前药理、毒理研究结果摘要(如已在国外进入临床试验,介绍初步试验结果); 3、研究目的:在健康志愿受试者中,观察单次给药耐受性,单次给药药代动力学参数,连续给药药代动力学与耐受性; 4、试验样品:样品名称、代号、制剂与规格,制剂制备单位、制备日期、批号、有效期、药 检部门检验人用合格报告、给药途径、贮存条件、数量(剂量总数、制剂总数); 5、受试者选择:志愿受试者来源,入选标准,淘汰标准(根据各类具体药物制定)。入选人数、姓名、年龄、性别、体重、身高、籍贯、民族。 6、受试者签署知情同意书; 7、伦理委员会报批:三个试验方案需分别报送医学伦理委员会审批; 8、试验设计与方法; 9、观察指标:体检检查、心电图、脑电图、神经科检查、眼科检查、血液学、血生化及尿 液分析等各项指标均需写明; 10、数据处理统计分析:事先规定数据处理方法,确定正常值与异常值确定标准,统计分析方法及单位等; 11、总结报告:规定试验周期、总结报告完成日期; 12、末页:试验地点、研究者与申办者签名。 健康志愿者耐受性试验步骤与方法

动力学方程拟合模型(DOC)

动力学方程拟合模型 动力学方程拟合模型主要分为幕函数型模型和双曲线型模型。 在幕函数型动力学方程中,温度和浓度被认为是独立地影响反应速率的,可 以表示为: 在双曲线型动力方程中强调模型方程中的吸附常数不能靠单独测定吸附性质来确定,而必须和反应速率常数一起由反应动力学实验确定。这说明模型方程中的吸附平衡常数并不是真正的吸附平衡常数,模型假设的反应机理和实际反应机理也会有相当的距离。双曲线型动力学方程的一般表达形式为 (吸附项严 上述两类动力学模型都具有很强的拟合实验数据的能力,都既可用于均相反应体系,也可用于非均相反应体系。对气固相催化反应过程,幕函数型动力学方程可由捷姆金的非均匀表面吸附理论导出,但更常见的是将它作为一种纯经验的关联方式去拟合反应动力学的实验数据。虽然,在这种情况中幕函数型动力学方程不能提供关于反应机理的任何信息,但因为这种方程形式简单、参数数目少,通常也能足够精确地拟合实验数据,所以在非均相反应过程开发和工业反应器设计中还是得到了广泛的应用。 1. 幕函数拟合 刘晓青⑴等人研究了HN03介质中TiAP萃取Th (W)的动力学模式和萃取动力学反应速率方程。 对于本萃取体系,由反应速率方程的一般形式可知: R = - dCrJdt = klThtNOa )4? [TiAP? LHNOJ" 可用孤立变量法求得各反应物的分反应级数a、b与c,从而确立萃取动力 学方程。

第一步:分级数的求算 1.求a 固定反应物中TiAP和HNO3的浓度, 当TiAP的浓度远远大于体系中Th的初始浓度时,可以认为体系中TiAP浓度在整个萃取过程中没有变化而为一定値,则速率方程可以简化为 dCrh/ dt = ki[|h(NQ)4 两边取对数后得: In{-d[Th-]/dt}=aln[Th]+ln1 ,用In{-d[Th-]/dt} 4.0 H5 -UQ -7』7.t> e.3 -C 0 Inf | I li rw. LJ 5 .0 5 川 …5 . 1 2 2 J 3 - - - - - s J ft E m ^ J p 二 三 @ 9 :h前分反应级敎的求算 对In [Th]作图得到一条直线(r=0.9973),其斜率即为a。结果如图1所示,从图中可知斜率为1.05,即此动力学速率方程中Th (W)的分反应级数a=1.05 2.求b和c 同求Th (W)分反应级数类似,固定反应物中Th (W)和HNO3的浓度, 则速率方程可以简化为 -dC Th/dt = k2LTiAPj h 固定反应物中Th (W)和TiAP的浓度,则速率方程可以简化为 -dC Th/dt - kaTHNOa? 画图可得:

相关文档
最新文档