应用几何关系建立函数关系式

应用几何关系建立函数关系式
应用几何关系建立函数关系式

三、应用几何关系建立函数关系式

典型例题:

例1. (2012黑龙江哈尔滨3分)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是【】.

(A)y=-2x+24(0

2

x+12(0

(c)y=2x-24(0

2

x-12(0

例2. (2012黑龙江牡丹江3分)已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是【】.

例3. (2012湖南湘潭6分)已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.

例4. (2012山东聊城3分)如图,在直角坐标系中,正方形的中心在原点O,且正方形的

一组对边与x轴平行,点P(3a,a)是反比例函数

k

y

x

(k>0)的图象上与正方形的一个

交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为.

例5.(2012江苏无锡8分)如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;

(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

例6. (2012黑龙江大庆6分)将一根长为16 厘米的细铁丝剪成两段.并把每段铁丝围

r和2r.

成圆,设所得两圆半径分别为

1

r与2r的关系式,并写出1r的取值范围;

(1)求

1

r的函数关系式,求S的最小值.

(2)将两圆的面积和S表示成

1

x

例7. (2012辽宁铁岭3分)如图,□ABCD的AD边长为8,面积为32,四个全等的小平行四边形对称中心分别在□ABCD的顶点上,它们的各边与□ABCD的各边分别平行,且与□ABCD 相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间

的函数关系的大致图象是【】

A. B. C. D.

例8. (2012上海市14分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB

上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.

(1)当BC=1时,求线段OD的长;

(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;

(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.

例9. (2012江苏无锡10分)如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D 三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.

(1)求A.B两点的坐标;

(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.

例10. (2012江苏常州9分)已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C、D两点)。连接PM,过点P作PM的垂线与射线DA相交于点E(如图)。设CP=x,DE=y。

(1)写出y与x之间的函数关系式▲ ;

(2)若点E与点A重合,则x的值为▲ ;

(3)是否存在点P,使得点D关于直线PE的对称点D′落在边AB上?若存在,求x的值;若不存在,请说明理由。

练习题:

1. (2012黑龙江哈尔滨6分)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm ,这个三角形的面积S(单位:cm 2

)随x(单位:cm)的变化而变化.

(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);

(2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?

2. (2012辽宁营口12分)如图,四边形ABCD 是边长为60cm 的正方形硬纸片,剪掉阴影

部分所示的

四个全等的等腰直角三角形,再沿虚线折起,使A 、B 、C 、D 四个点重合于图中的点P ,正

好形成一个底

面是正方形的长方体包装盒.

(1) 若折叠后长方体底面正方形的面积为12502cm ,求长方体包装盒的高;

(2) 设剪掉的等腰直角三角形的直角边长为)(cm x ,长方体的侧面积为S )(2cm ,求S

与x 的函数关系

式,并求x 为何值时,S 的值最大.

3. (2012江苏苏州9分)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形

ABCD

以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,

连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH

的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),线段GP的长为y(cm),其中

0≤x≤2.5错误!未找到引用源。.

⑴试求出y关于x的函数关系式,并求出y =3时相应x的值;

⑵记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;

⑶当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.

4. (2012江苏苏州8分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB

左侧半圆上

的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为错误!未找到引用源。.

⑴当

5

x=

2

错误!未找到引用源。时,求弦PA、PB的长度;

⑵当x为何值时,PD PC

错误!未找到引用源。的值最大?最大值是多少?

l P

D

C B

O

A

5. (2012湖北鄂州12分)已知:如图一,抛物线c bx ax y 2++=与x 轴正半轴交于A 、

B 两点,与y

轴交于点C ,直线2x y -=经过A 、C 两点,且AB=2.

(1)求抛物线的解析式;

(2)若直线DE 平行于x 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别

交y 轴、线

段BC 于点E 、D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);

当点P

运动到原点O 时,直线DE 与点P 都停止运动,连DP ,若点P 运动时间为t 秒 ;设

OP

ED OP ED s ?+=,当 t 为何值时,s 有最小值,并求出最小值。

(3)在(2)的条件下,是否存在t 的值,使以P 、B 、D 为顶点的三角形与△ABC 相似;若

存在,求t

的值;若不存在,请说明理由。

6. (2012湖北孝感12分))如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、

B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式及顶点D的坐标;

(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的

最大值和此

时点P的坐标;

(3)若点P是抛物线第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的

坐标为

时,四边形PQAC是平行四边形;当点P的坐标为时,四边形PQAC 是等腰梯形(直接写出结果,不写求解过程).

7. (2012湖南株洲8分)如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.

(1)当t为何值时,∠AMN=∠ANM?

(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

8. (2012湖南衡阳10分)如图,A 、B 两点的坐标分别是(8,0)、(0,6),点P 由点B 出发沿BA 方向向点A 作匀速直线运动,速度为每秒3个单位长度,点Q 由A 出发沿AO (O 为坐标原点)方向向点O 作匀速直线运动,速度为每秒2个单位长度,连接PQ ,若设运动时间为t (0<t <103

)秒.解答如下问题: (1)当t 为何值时,PQ∥BO?

(2)设△AQP 的面积为S ,

①求S 与t 之间的函数关系式,并求出S 的最大值;

②若我们规定:点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),则新坐标(x 2﹣x 1,y 2﹣y 1)称为“向量PQ”的坐标.当S 取最大值时,求“向量PQ”的坐标.

9. (2012辽宁阜新12分)在平面直角坐标系中,二次函数2

y ax bx 2=++的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .

(1)求这个二次函数的关系解析式;

(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;

考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!

(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;

(4)点Q 是直线AC 上方的抛物线上一动点,过点Q 作QE 垂直于x 轴,垂足为E .是否存在点Q ,使以点B 、Q 、E 为顶点的三角形与△A OC 相似?若存在,直接写出点Q 的坐标;若不存在,说明理由;

(5)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.

10. (2012贵州安顺14分)如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c 经过点A、B,且18a+c=0.

(1)求抛物线的解析式.

(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.

①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t 的取值范围.

②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

应用等量关系建立函数关系式

二、应用等量关系建立函数关系式 典型例题: 例1. (2012宁夏区10分)某超市销售一种新鲜“酸奶”,此“酸奶”以每瓶3元购进,5元售出.这种“酸奶”的保质期不超过一天,对当天未售出的“酸奶”必须全部做销毁处理. (1)该超市某一天购进20瓶酸奶进行销售.若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式。为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶? (2)小明在社会调查活动中,了解到近10天当中,该超市每天购进酸奶20瓶的销售情况统计如下: 每天售出瓶数17 18 19 20 频数 1 2 2 5 根据上表,求该超市这10天每天销售酸奶的利润的平均数; (3)小明根据(2)中,10天酸奶的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明. 例2. (2012新疆区12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B 元. (1)请填写下表,并求出y A,y B与x之间的函数关系式; C D 总计 A x吨200吨 B 300吨 总计240吨260吨500吨 (2)当x为何值时, A村的运费较少? (3)请问怎样调运,才能使两村的运费之和最小?求出最小值.

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法 函数是初中数学的重要容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。 但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。 一、 用图形的面积公式确立等量关系 例1、如图1,正方形ABCD 的边长为2,有一点P 在BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式; (2)如果S △ABP =S 体型APCD 请确定P 的位置。 分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式 B C A D P 图1

A D C B E F G N 图2 S=2 1(上底+下底)×高 ,分别找出上底、下底、高问题可获解决。因为上底CP=x -2,下底AD=2,高CD=2,于是由梯形面积公式建立两个变量之间的等量关系,2)22(21?+-=x y ,整理得:22 2 +-=x y 。(2)略 例2、如图2,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,AD=a ,BC=2a ,CD=2,四边形EFCG 是矩形,点E 、G 分别在腰AB 、CD 上,点F 在BC 上。设 EF=x ,矩形EFCG 的面积为y 。(2002年中考题) (1)求y 与x 的函数关系式; (2)当矩形EFCG 的面积等于梯形ABCD 的面积的一半时,求x 的值; (3)当∠ABC=30°时,矩形EFCG 是否能成正方形,若能求其边长,若不能试说明理由。 分析:本题所给的变量y 值是矩形的面积,因此根据矩形面积公式S=长×宽,若能算出长FC 与宽EF ,或者用变量x 、y 表示FC 和EF ,则问题可获解决。其中宽EF=x ,问题归结为求出长FC ,从而两个变量x 、 y 之间的关系通过矩形面积公式建立了。 解:(1)过点A 作AN ⊥BC 于N ,因为在矩形EFCG 中,EF ⊥BC , ∴EF ∥AN ∴ AN EF BN BF =

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

函数关系建立教案

数 学 教 案 天山中学 马谦 课题:函数关系的建立(第一课时) 一.教学目标 过程与方法:通过对实际问题的分析与解决,领会分析变量和建立函数关系的思考方法,体验函数模型建立的一般过程. 知识与能力:能够在解决简单的实际问题时建立两个变量间的函数关系式,并学会如何确定函数的定义域.初步形成把实际问题转化成数学问题的建模能力. 情感态度与价值观:通过本节课的学习,加深对事物运动变化和相互联系的认识,初步学会用函数的观点去观察和分析客观事物. 二【教学重点】 建立实际问题中两个变量间的函数关系. 三【教学难点】 把实际问题转化成数学问题,建立函数关系并确定它的定义域. 四、教学流程设计 五、教学过程设 计 (一)、提出问题 引入新课 1.问题1.用一根长为l 的铁丝,制成如图所 示的框架,问如何设计,使得框架的面积S 最大. 2.分析: 分析:设矩形框架的宽为x ,那么长为2 4x l - 面积=长?宽, 所以,24x l x S -?=

∴ x l x S 222- -=, 又,024>-x l 且0>x , ∴4 0l x << ∴x l x S 222--= (4 0l x <<) 我们今天就先学习如何建立函数关系. 3.小结 建立函数关系解题的步骤: (1)仔细审题,设出适当的自变量 (2)找出等量关系,列出函数关系式 (3)根据问题的要求,作适当的变形 (4)根据实际要求,写出函数定义域 [说明] 理解函数的概念,目的是进一步通过建立函数关系解决实际问题,从一个简单的实际问题1的提出,能引起学生的思考,学生能体会到要用数学方法解决这个实际问题时,首先要把问题中的有关变量及其关系用数学的形式表示出来.说明建立函数关系的重要性,对于函数的最值问题在以后的函数性质中再解决. (二)、尝试方法 体验过程 问题2 如图,有一个圆柱形的无盖纸杯,它的表面积是100cm 2(杯子的厚度忽略不计),设底面的半径为x (cm ) (1)写出杯子的高度h (cm )关于x (cm )的函数关系式; (2)写出杯子的容积V (cm 3)关于x (cm )的函数关系式。 解:根据题意, (1)表面积等于底面积与侧面积之和,则 h x x ?+=ππ21002 化简整理得 x x h ππ21002-= 另一方面,根据实际意义,必须x >0且1002

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

怎样求一次函数关系式

怎样求一次函数关系式? 广东 林伟杰 一次函数关系式)0(≠+=k b kx y 中有两个待定系数k 和b ,确定了它们就确定了一个一次函数,故一般需要两个条件才能确定一个一次函数.现结合实例介绍求一次函数关系式的方法,供同学们学习时参考. 一、利用代入坐标法求一次函数关系式 例1 已知一次函数的图象经过(1,5)和(3,9)两点,求此一次函数关系式. 分析:先设函数关系式为b kx y +=,然后代入坐标建立方程组,求出方程组的解后再代回所设关系式即可. 解:设所求函数关系式为b kx y +=,则由题意,得???+=+=,39,5b k b k 故? ??==.3,2b k 故所求的函数关系式是32+=x y . 点评:图象上每一点的横坐标和纵坐标都是此函数中自变量与函数的一对对应值,据此可通过建立二元一次方程组来求一次函数关系式. 二、根据直线间的位置关系求一次函数关系式 例2 某一次函数的图象过点(2,1)且与直线32+-=x y 相交于y 轴上的同一点,求此一次函数的关系式. 分析:因直线32+-=x y 与y 轴的交点是(0,3),故设函数关系式为3+=kx y ,代入点(2,1)可求出k ,进而可得关系式. 解:因直线32+-=x y 交y 轴于点(0,3),故某一次函数的图象也与y 轴相交于点(0,3),故设其关系式为3+=kx y ,代入点(2,1),得321+=k ,故1-=k ,故关系式为3+-=x y . 点评:由已知条件得出图象与y 轴的交点坐标,进而正确设出所求关系式是解本题的关键. 三、根据表格信息求一次函数关系式 例3 商店出售某商品时,在进价的基础上加一定的利润,其数量x 与售价y 的关系如下表所示,请根据表中提供的信息求出y 与x 的函数关系式,并求出当数量是2.5千克时的售价. 分析:由表可知,当1=x 时, 4.08+=y ;当2=x 时, )4.08(28.016+=+=y ;当3=x 时, )4.08(32.124+=+=y ;当4=x 时,)4.08(46.132+=+=y ;…… 故x x y 4.8)4.08(=+=. 解:由表中信息可求得函数关系式是x x y 4.8)4.08(=+=(正比例函数是一次函数的特例).当5.2=x 千克时,214.85.2=?=y (元). 四、根据图象信息求一次函数关系式 例4 长途汽车客运公司规定旅客可随身携带一定重量的行李,若超过规定,则要购买

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

反比例函数与几何图形的综合

代几结合专题:反比例函数与几何图形的综合(选做) ——代几结合,掌握中考风向标 ◆类型一 与三角形的综合 1.(2016·云南中考)位于第一象限的点E 在反比例函数y =k x 的图象上,点F 在x 轴的 正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( ) A .4 B .2 C .1 D .-2 2.(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6 x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( ) A .36 B .12 C .6 D .3 3.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8 x 上,且AB ∥x 轴,则△OAB 的 面积等于________. 第3题图 第4题图 4.(2016·包头中考)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB =30°,AB =BO ,反比例函数y =k x (x <0)的图象经过点A ,若S △AOB =3,则k 的值为________. 5.(2016·宁波中考)如图,点A 为函数y =9 x (x >0)图象上一点,连接OA ,交函数y =1 x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.

第5题图 第6题图 6.★如图,若双曲线y =k x (k >0)与边长为3的等边△AOB (O 为坐标原点)的边OA 、 AB 分别交于C 、D 两点,且OC =2BD ,则k 的值为________. 7.(2016·宁夏中考)如图,Rt △ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO =90°,∠AOB =30°,OB =23,反比例函数y =k x (x >0)的图象经过OA 的中点C ,交 AB 于点D . (1)求反比例函数的关系式; (2)连接CD ,求四边形CDBO 的面积. 8.(2016·大庆中考)如图,P 1、P 2是反比例函数y =k x (k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点. (1)求反比例函数的解析式; (2)①求P 2的坐标;②根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1、 P 2的一次函数的函数值大于反比例函数y =k x 的函数值.

函数的概念与关系式

主 题 函数的概念与关系式 教学内容 1. 加深理解函数的概念; 2. 掌握求解函数定义域的基本方法. (以提问的形式回顾) 1. 初中阶段我们学过哪些函数?请分别画出他们的图像。 我们学过正比例函数,反比例函数,一次函数,二次函数。也会有学生说,常值函数也是可以的。 2. 对于二次函数2y x =当x 值确定了,y 值是否也唯一确定?,如果y 值确定了(y >0),是否x 值也唯一确定? 当x 值确定了,y 值就唯一确定。但y 值确定了,x 值并没有唯一确定。 探究一: 一枚炮弹发射后,经过26s 落到地面击中目标.炮弹的射高为845m ,且炮弹距离地面的高度h (单位:m )随时间t (单位:s )变化的规律是: 2 1305h t t =- 思考1:这里的变量t 的变化范围是什么?变量h 的变化范围是什么?试用集合表示? 答:{|026},{|0845}A t t B h h =≤≤=≤≤ 思考2:高度变量h 与时间变量t 之间的对应关系是否为函数?若是,其自变量是什么? 答:从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系h ,在数集B 中都有唯一确定的高度h 和它对应.所以它们的对应关系是函数。其中t 是自变量。

探究二: 近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况. 思考1:根据曲线分析,时间t 的变化范围是什么?臭氧层空洞面积S 的变化范围是什么?试用集合表示? 答:{|19792001},{|026}A t t B S S =≤≤=≤≤ 思考2:时间变量t 与臭氧层空洞面积S 之间的对应关系是否为函数?若是,其自变量是什么? 答:对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.而数集B 中的某些值却有多个t 和它对应,并不唯一确定。自变量是t . 探究三: 思考1:从集合与对应的观点分析,上述两个实例中变量之间的关系都可以怎样描述? 答:对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 和它对应,记作 :f A B →. 思考2:上述两个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 答:设,A B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作 ()()y f x x A =∈。其中,x 叫做自变量,与x 值相对应的y 值叫做函数值. 思考3:在一个函数中,自变量x 和函数值y 的变化范围都是集合,这两个集合分别叫什么名称? 20 25 5 10 15 30 图1 26 25 t S O 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法: 已知复合函数[()]f g x 的表达式,求()f x 的解析式。(注意定义域) 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知221)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x 2、换元法: 已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。(注意所换元的定义域的变化) 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2 )1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x (2)设.)(,,,1111111 11-=∴-=-===x x f t t t f t x t x t )(代入已知得则

3、待定系数法: 当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(1212102242222--=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法: 已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1(2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1(2)( ① 显然,0≠x 将x 换成x 1,得: x x f x f 1)(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(--= 五、赋值法: 当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

应用几何关系建立函数关系式

三、应用几何关系建立函数关系式 典型例题: 例1. (2012黑龙江哈尔滨3分)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是【】. (A)y=-2x+24(0

例5.(2012江苏无锡8分)如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm). (1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V; (2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值? 例6. (2012黑龙江大庆6分)将一根长为16 厘米的细铁丝剪成两段.并把每段铁丝围 r和2r. 成圆,设所得两圆半径分别为 1 r与2r的关系式,并写出1r的取值范围; (1)求 1 r的函数关系式,求S的最小值. (2)将两圆的面积和S表示成 1 x 例7. (2012辽宁铁岭3分)如图,□ABCD的AD边长为8,面积为32,四个全等的小平行四边形对称中心分别在□ABCD的顶点上,它们的各边与□ABCD的各边分别平行,且与□ABCD 相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间 的函数关系的大致图象是【】 A. B. C. D.

一次函数与几何图形综合

一次函数与几何图形综合 思想方法小结 :(1)函数方法.(2)数形结合法. 例题1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM 的 值不变;②(MQ -AC )/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 x y x y

2、如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA =OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 第2题图① 第2题图② 第2题图③

3、如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足. (1)求直线AB的解析式; (2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值; (3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.

1.1函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 21)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x (2)设.)(,,,1111111 11-=∴-=-===x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c

二次函数与几何综合典题 含答案详解

二次函数与几何综合典题题 例1.已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,求其解析式。 例2.已知二次函数)0(2≠++=a c bx ax y 的图像与x 轴交于不同的两点A 、B ,点A 在点 B 的左边,与轴交于点 C ,若△AOC 与△BOC 的面积之和为6,且这个二次函数的图像的顶点坐标为(2,-a ),求这个二次函数的解析式。 例3.已知二次函数)0(2≠++=a c bx ax y 的图像过点E (2,3),对称轴为x =1,它的图像与x 轴交于两点A 10,)0(),0,(22212121=+x x x x x B x <且。 (1)求二次函数的解析式; (2)在(1)中抛物线上是否存在点P ,使△POA 的面积等于△EOB 的面积?若存在,求出P 点的坐标;若不存在,说明理由。 例4.如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于A (-1,0)、B (3,0)、C(0,3)三点,其顶点为D 。 (1)求经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似? 若相似写出证明过程;若不相似请说明理由。 例5:如图,已知抛物线4:21-=x y l 的图像与X 轴交于A 、C 两点。 (1)若抛物线2l 与1l 关于x 轴对称,求2l 的解析式; (2)若点B 是抛物线1l 上一动点(B 不与A,C 重合),以AC 为对角线,A ,B ,C 三点为顶点的平行四边形的第四个顶点记为D ,求证:点D 在2l 上; (3)探索:当点B 分别位于1l 在x 轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值或最小值?若存在,判断它们是何种特殊平行四边形并求出它的面积;若不存在,请说明理由。 例6.如图,已知:m ,n 是方程0562 =+-x x 的两个实数根,且m <n ,抛物线c bx x y ++-=2的图像经过点A (m ,0)、B (0,n )。 (1)求这个抛物线的解析式; (2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D 。 试求出点C 、D 的坐标和△BCD 的面积; (3)P 是线段OC 上一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点坐标。

《文本》函数关系的建立《函数关系的建立》(上教版高一上册).

课 题:3.2-函数关系的建立(2课时) 教学目标: 1. 会对一些简单的实际问题建立两个变量之间的函数关系式,并确定函数的定义域。 2. 通过函数关系式的建立,提高实际问题转化为数学问题的能力。 3. 培养数学应用意识和理论联系实际的观点。 教学重点:建立实际问题中两个变量之间的函数关系式 教学难点:实际问题转化为数学问题 第1课时:[重点:建立函数关系式;难点:实际问题转化为数学问题] 头脑体操: 1、若函数f(x)=3x 2-2x ,则f [f (2)]= 。 2、函数1 |x |13x 2x 4y 2-++?-=的定义域是 。 3、已知?? ???+∞∈-∈--∞∈+=时,当时,当时, 当),2[x ,x 2)2,1(x ,x ]1,(x ,2x )x (f 2那么当=x 时,f(x)=3。 4、有下列四组函数中,表示同一函数的有 组。 ①55x y =与33x y = ②x 3x y -=与 x 3x y -= ③1 x )2x )(1x (y 22+-+=与y =x -2 ④|x |)x (f =与2t )t (g = 教学过程: 复习:函数的定义。强调y =f(x),x ∈D 。 [例1]如图,一个边长为a ,b(a >b)的长方形被平行于边的两条直线所分割,其中长方形的 左上角是一个边长为x 的正方形,试用解析式将图中阴影部分的面积S 表示成x 的函数。 分析:右下阴影部分的长为a -x ,宽为b -x , 面积为(a -x)(b -x);左上阴影部分面积为x 2 得S =x 2+(a -x)(b -x)=2x 2-(a +b)x +ab 解析式容易求,定义域容易忘! x 取值范围:0<x ≤b 则S =2x 2-(a +b)x +ab ,0<x ≤ b

相关文档
最新文档