离散数学图论部分自学安排

离散数学图论部分自学安排

英才1901《离散数学》图论部分自主学习安排

一、分组

第一组施恒阳蒋鹏程孙铭阳黄熙宁

第二组尹书瀚唐义飚蒋浩枫

第三组徐佶楠孙长智张煜来

第四组梁孙俊杰胡翔宇王家宝

第五组邵禹哲罗兰张翠宇

第六组贾泽宇李秋霖叶乔宇

二、内容安排

6.1 图的基本概念(自学基本内容,教师补充应用。第二组汇报定理6.2,6.3);

6.2 连通性(只要求无向图的连通性,第三组汇报定理6.4的证明);

6.3 图的矩阵表示(自学、第四组汇报无向图的邻接矩阵及其应用);

6.4 最短路径问题(第五组汇报);

6.5欧拉图与哈密尔顿图(自学,第一组安排2人,定理6.10,定理6.15汇报);

6.6平面图(以教师讲为主,先自学);

6.7图的着色(了解,自学内容);

7.1 树(第六组汇报定理7.1)

7.2-7.5(自学,教师引导,补充应用)

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

图论基础

1、略 2、计算有向无圈图的根 输入一个有向无圈图DAG,计算和输出DAG的根r(即r到其他任何顶点都有一条路。若图中没有根,则输出“not found”)。 输入:顶点数n和边数e;以下为e行,每行为一条有向边的两个端点 输出:根r或者“not found” 算法分析 设 const mx=100;{顶点数的上限} var n,e,i,j,k,a,b:integer;{ 顶点数n、边数e} g:array[1..mx,1..mx]of boolean;{传递闭包} bn:boolean;{根存在标志} 1、输入信息,计算传递闭包 readln(n,e);{输入顶点数和边数} fillchar(g,sizeof(g),0);{ 有向无圈图初始化} for i:=1 to e do{输入信息,构造传递闭包的初始值} begin readln(a,b);g[a,b]:=true end; for k:=1 to n do{计算传递闭包} for i:=1 to n do for j:=1 to n do if g[i,j] or g[i,k] and g[k,j]then g[i,j]:=true; 2、计算DAG的根 然后枚举每一个顶点。根据传递闭包的信息,若当前顶点至其它所有顶点有路,则判定该顶点即为根。若没有一个顶点可作为DAG的根,则输出失败信息 for i:=1 to n do{枚举每一个可能的根} begin bn:=true;{设定I至其他所有顶点有路的标志} for j:=1 to n do{若I至任一个顶点无路,则返回bn为false} if (i<>j) and not g[i,j] then begin bn:=false; break end; if bn then break{若I至其他所有顶点有路,则输出根i} end; if bn then writeln(i) else writeln('not found'){若不存在根,则输出失败信息}

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学图论复习

离散数学11春图论部分综合练习辅导 大家好!本学期的第二次教学辅导活动现在开始,本次活动主要是针对第二单元图论的重点学习内容进行辅导,方式同样是通过讲解一些典型的综合练习作业题目,帮助大家进一步理解和掌握图论的基本概念和方法. 图论作为离散数学的一部分,主要介绍图论的基本概念、理论与方法.教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路问题、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其应用等. 本次综合练习主要是复习这一单元的主要概念与计算方法,与集合论一样,也安排了五种类型,有单项选择题、填空题,判断说明题、计算题、证明题.这样的安排也是为了让同学们熟悉期末考试的题型,能够较好地完成这一部分主要内容的学习. 下面是本学期第4,5次形考作业中的部分题目. 一、单项选择题 单项选择题主要是第4次形考作业的部分题目. 第4次作业同样也是由10个单项选择题组成,每小题10分,满分100分.在每次作业在关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩.需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目. 1.设图G =,v ∈V ,则下列结论成立的是 ( ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v V v 2)deg(=∑∈ D . E v V v =∑∈)deg( 该题主要是检查大家对握手定理掌握的情况.复习握手定理: 定理3.1.1 设G 是一个图,其结点集合为V ,边集合为E ,则 ∑∈=V v E v ||2)deg( 也就是说,无向图G 的结点的度数之和等于边数的两倍. 正确答案:C 2.设无向图G 的邻接矩阵为 ????????????????010******* 000011100100110, 则G 的边数为( ). A .6 B .5 C .4 D .3 主要是检查对邻接矩阵的概念理解是否到位.大家要复习邻接矩阵的定义,

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析

图论基础知识

图论基本知识 对于网络的研究,最早是从数学家开始的,其基本的理论就是图 论,它也是目前组合数学领域最活跃的分支。我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。 本章只给出非平凡的定理的证明,过于简单直观的定理的证明将 留给读者。个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。 图的基本概念 图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。 集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→

y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。以后如果没有特殊的说明,所有出现的图都是简单图。记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。 图2.1:网络拓扑结构示意图。图a 是10阶有向图,顶点集为 {1,2,3,4,5,6,7,8,9,10},边集为{1→2,1→3,1→4,2→5,2→6,2→7,3→6,4→7,4→8,6→9,7→9,8→10};图b 是6阶无向图,顶点集为{1,2,3,4,5,6},边集为{13,14,15,23,24,26,36,56}。 从定义中可以看到,从任意顶点x 到y 不能连接两条或以上 边,本文所讨论的图,均符合上述要求,既均为不含多重边的图。如

离散数学之图论

第四篇图论 自从1736年欧拉(L.Euler)利用图论的思想解决了哥尼斯堡(Konigsberg)七桥问题以来,图论经历了漫长的发展道路。在很长一段时期内,图论被当成是数学家的智力游戏,解决一些著名的难题。如迷宫问题、匿门博奕问题、棋盘上马的路线问题、四色问题和哈密顿环球旅行问题等,曾经吸引了众多的学者。图论中许多的概论和定理的建立都与解决这些问题有关。 1847年克希霍夫(Kirchhoff)第一次把图论用于电路网络的拓扑分析,开创了图论面向实际应用的成功先例。此后,随着实际的需要和科学技术的发展,在近半个世纪内,图论得到了迅猛的发展,已经成了数学领域中最繁茂的分支学科之一。尤其在电子计算机问世后,图论的应用范围更加广泛,在解决运筹学、信息论、控制论、网络理论、博奕论、化学、社会科学、经济学、建筑学、心理学、语言学和计算机科学中的问题时,扮演着越来越重要的角色,受到工程界和数学界的特别重视,成为解决许多实际问题的基本工具之一。 图论研究的课题和包含的内容十分广泛,专门著作很多,很难在一本教科书中概括它的全貌。作为离散数学的一个重要内容,本书主要围绕与计算机科学有关的图论知识介绍一些基本的图论概论、定理和研究内容,同时也介绍一些与实际应用有关的基本图类和算法,为应用、研究和进一步学习提供基础。

第4-1章无向图和有向图 学习要求:仔细领会和掌握图论的基本概论、术语和符号,对于图论研究的一些最基本的课题,如道路问题、连通性问题和着色的问题等,应掌握主要的定理内容和证明方法以及基本的构造方法,以便为下一章研究提供理论工具。学习本章要用到集合和线性代数矩阵运算的知识,特别是集合数和矩阵秩的概念。 §4-1-1 图的基本概念 图是用于描述现实世界中离散客体之间关系的有用工具。在集合论中采用过以图形来表示二元关系的办法,在那里,用点来代表客体,用一条由点a指向点b的有向线段来代表客体a和b之间的二元关系aRb,这样,集合上的二元关系就可以用点的集合V和有向线的集合E构成的二元组(V,E)来描述。同样的方法也可以用来描述其它的问题。当我们考察全球航运时,可以用点来代表城市,用线来表示两城市间有航线通达;当研究计算机网络时,可以用点来表示计算机及终端,用线表示它们之间的信息传输通道;当研究物质的化学结构时,可以用点来表示其中的化学元素,而用线来表示元素之间的化学键。在这种表示法中,点的位置及线的长短和形状都是无关紧要的,重要的是两点之间是否有线相连。从图形的这种表示方式中可以抽象出图的数学概念来。 一、图 定义4-1-1.1一个(无向)图G是一个二元组(V(G),E(G)),其中V (G)是一个有限的非空集合,其元素称为结点;E(G)是一个以不同结点的无序对为元素,并且不含重复元素的集合,其元素称为边。 我们称V(G)和E(G)分别是G的结点集和边集。在不致引起混淆的地方,常常把V(G)和E(G)分别简

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2?E ? B .deg(V )=?E ? C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ? ? ? ? ? c a b e d ? f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ? ? ? ? ? c a b e d ? f 图四

1040 【图论基础】求连通子图的个数 1041 【图论基础】求最小生成树(prim)

【图论基础】求连通子图的个数 Time Limit:10000MS Memory Limit:65536K Total Submit:42 Accepted:30 Description 求一个无向图中连通子图的个数。 Input 第一行一个数n,表示无向图的顶点的数量(n<=5000),接下来从第2行到第n+1行,每行有n个数(1表示相应点有直接通路,0表示无直接通路),形成一个n*n的矩阵,用以表示这个无向图。示例: Output 输出一个数,表示这个图含有连通子图的个数。 Sample Input 5 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 Sample Output 自己算吧! Source

?var ? i,j,n,ans,x:longint; ? a:array[1..5000,0..5000] of longint; ? b:array[1..5000] of boolean; ?procedure dfs(x:longint); ?var i:longint; ?begin ? b[x]:=false; ? for i:=1 to a[x,0] do if b[a[x,i]] then ? dfs(a[x,i]); ?end; ? ?begin ? readln(n); ? for i:=1 to n do ? for j:=1 to n do begin ? read(x); ? if x=1 then begin ? inc(a[i,0]); a[i,a[i,0]]:=j; ? end; ? end; ? fillchar(b,sizeof(b),true); ? for i:=1 to n do if b[i] then begin ? inc(ans); ? dfs(i); ? end; ? writeln(ans); ?end.

离散数学图论与关系中有图题目

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8 个结点的三次正则图 (2) (1) (3) (2) (1)

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

离散数学(图论)课后总结

第八章图论 例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5) 解:a)不是, 因为有三个数字是奇数. b) c) d)是. e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边. 例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么? 解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点. 强连通、单侧连通和弱连通 在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通. 在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图. 注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了 利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!! 令图G=, 集合Si V Si’=V-Si , 令|V|=n Si={u|从u0到u的最短路已求出} Si’={u’|从u0到u’的最短路未求出} Dijkstra算法:(求从u0到各点u的最短路长) 第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0) i=0 S0={u0} S0’=V-S0 , 第二步.若i=n-1 则停. 否则转第三步 第三步. 对每个u’∈Si’ 计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’ 置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步. 例3、求最短路 解:例.求右图中从v1到v6的 最短路 1.置初值: u0=v1 d(u0,u0)=0 d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞ 2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6} d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3 d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞ d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5

离散数学图论部分综合练习讲解

离散数学图论部分综合练习 1.设图G =,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 2.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 3.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 4.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 图三 5.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 6.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 7.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 ο ο ο ο ο c a b e d ο f 图一 图二

离散数学基本知识

离散数学基本知识 01 什么是“数据结构”? 这里我就不说那些“官方的定义”,简单谈谈自己的理解吧。 数据结构是一种抽象的封装。 好像还是有点绕脑,不过没关系,我们继续往下看。 说简单点就是,把一堆基本的数据,按照某种顺序给揉成一坨。 相信大家都吃过饭吧? 做一道菜需要放各种调料,如盐、味精,还有肉等,把它们混在一起就做成了一道菜。 口水鸡是我最喜欢的一道菜,这里我们就以口水鸡为例,来讲一讲什么是数据结构。下图是百度百科中口水鸡的做法。

好,下面我就用程序来表示一下,我写的是伪码,大家能懂就好哈。先来抽象一下“口水鸡”:

对,上述这个结构体就是一个自定义的数据结构,将很多种不同的东西融合在一起;而计算机中的数据结构,则是把一些基本的数据类型,如int、double等融合成一些复杂的数据结构,如map、队列。 抽象完口水鸡再来抽象“你”吧: 然后再来抽象一下“厨师”:

这里的抽象有点随意,不过大家理解就好,我们把一堆很基本的元素抽象成了3个数据结构,这三个元素就是所谓的数据结构。 而平时我们说的链表无非就是把一些基本元素和指针做了融合,树、图也是把指针和一些基本元素融合后再外加一些流程,如函数。 比如python的dict,dict的key,value就是两种相同或者不同的数据类型;dict还提供了一些函数,譬如get(),set()。dict就是一个典型的被封装的数据结构。 所以我说数据结构是一种抽象的封装,当然,数据结构并没有我们举的例子那样简单,但是原理是一样的。 我们平时写程序都是直接去调用这些数据结构,而没有去想它们的内部实现是怎样的。数据结构这门课就是要告诉我们常见的数据结构是如何实现的,比如Vector,map的实现。我们常常听到的譬如平衡二叉树,红黑树,大顶堆等词汇就是出自数据结构这门课。具体了解数据结构后,我们就可以知道队列的内部实现是什么样,词典的内部实现又是什么样。

图论基础知识点

基本知识点: 一、图的基本定义: 平凡图:只有一个顶点无边的图。 非平凡图:其他所有图。 空图:边集合为空的图。 简单图:既没有环也没有重边的图。 复合图:其他所有的图。 同构图:顶点集合之间存在双射(一一对应关系),对应边重数和端点对应相等。 标定图:给图的点和边标上符号。非标定图:不标号。非标定图代表一类相互 同构的图。 完全图:每两个不同顶点之间都有一条边相连的简单图。N 个顶点的完全图只有一个,记为n K 。 偶图(二部图):具有二分类(,)X Y 的图,他的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。 完全偶图 :指具有二分类(,)X Y 的简单偶图,其中X 的每个顶点与Y 的每个顶点相连。若,X m Y n ==,则这样额完全偶图记为:,m n K 。 k —正则图:设(,)G V E =为简单图,如果对所有的结点v V ∈,有()d v k =,称G 为k —正则图。 完全图和完全偶图,n n K 均是正则图。 图划分:若一个n 阶简单图G 各点的度为i d ,则分正整数k 为n 个部分的划分i d ∑称为是图划分。 子图:边集合和点集合均是原图的子集,且待判定图中的边的重数不超过原图中对应的边的重数。 生成子图:点集合相等,边集合为原图子集的图。 导出子图:由顶点集为原图G 真子集的所有点,及两端点均在该集合中的边的全体组成的 子图V ‘。 '[]G V 和G v -。 边导出子图:由原图G 边的真子集,该图中边的断点全体为顶点组成的子图E ‘。 ' []G E 和{}G e -。 图的运算: 并,交,差,对称差,联图,积图,合成图,极图 路与图的联通性: 途径: 迹:边互不相同的途径。 路:边和点都互不相同的途径。 连通的:两个顶点之间存在路。 连通图:每一对顶点之间都有一条路。

图的基本知识

完成题库中的P1135、P1138、P1465、P1466、P1471、P1545~ 图的基本知识 一、什么是图 什么是计算机中所说的图?请先看下面的“柯尼斯堡桥问题”。传说在东普鲁士境内,有一座柯尼斯堡城,希雷格尔河流经这个城市的克奈霍福岛后,就将这个城市一分为二,形成如图1—1(左)的A、B、C、D 4个地区。人们建造了7座桥将这4个地区连起来。在游览中有人提出,是否可以从A地出发,各座桥恰好通过一次,最后又回到原来出发地呢? 这个问题在18世纪被数学家欧拉解决了。他把这个问题转化为图1—1右边所示的图。图上用A、B、C、D4个顶点分别表示4个地区,用两点间的线段表示连接各地的桥。这样原来的问题就转化为:从A顶点出发经过其中每一条线段一次,而且仅一次,再回到A点的“一笔画”问题。 欧拉对柯尼斯堡问题作出了否定的结论。因为对于每一个顶点,不论如何经过,必须有一条进路和一条出路,所以对每一个顶点(除起点和终点)来说与它有关的线段(称为边)必须是偶数条。而图1-1(右)的顶点有关的线段都是奇数条,因此不可能一笔画出。而如图1—2中的图形是可以一笔画出的。 欧拉通过对柯尼斯堡桥问题的研究,于1736年发表了著名的关于图论的论文,从而创立了图论的学说。图1—2一类的问题就是图论中所指的图。 又如,有6个足球队之间进行循环赛,他们比赛的场次可以用图1-3(1)来表示。有3个人相互写信,可以用图1—3(2)来表示。

从上面两个例子可看出,我们这里所说的图(graph),与人们通常所熟悉的图,如圆、四边形、函数图象等是很不相同的。是指某些具体事物和这些事物之间的联系。如果我们用点来表示事物(如地点、队),用线段来表示两事物之间的联系,那么一个图就是表示事物的点集和表示事物之间联系的线段集合所构成。其中线段仅表示两点的关系,它的长短与曲直是无关紧要的。例如图1-4中3 个图,被认为是同一个图。 图(Graph)是一种复杂的非线性结构。在人工智能、工程、数学、物理、化学、生物和计算机科学等领域中,图结构有着广泛的应用。奥林匹克信息学竞赛的许多试题,亦需要用图来描述数据元素间的联系。 二、图的基本概念 定义:图G定义为一个偶对(V,E),记作G:(V,E)。其中 1)V是一个非空有限集合,它的元素称为顶点; 2)E也是一个集合,它是如下集合(它的元素称为边)的子集: E∩{(a,b|a ∈ V,b ∈ V} 例如图4-1中的图有4个顶点,4条边。 或者定义:图G(Graph)是由顶点的集合V和边的集合E所组成的二元组,记作: G =(V,E) 其中V是顶点的集合,E是边的集合。 (一)有向图和无向图 1.有向图 若图G中的每条边都是有方向的,则称G为有向图(Digraph)。在有向图中,一条有向边是由两个顶点组成的有序对,有序对通常用尖括号表示。有向边也称 为弧(Arc),边的始点称为弧尾(Tail),终点称为弧头(Head)。例如表示

高数-图论基础

第六章习题图论基础 6.1下列各组数中,那些能构成无向图的度数列?那些能构成无向简单图的度数列? (1)1,1,1,2.3 (2)2, 2, 2, 2 , 2 (3)1,2,3,4,5 (4)1,3,3,3 6.2设有向简单图D的度数为2,2,3,3,入度列0,0,2,3,试求D的除度列。 6.3设是4阶有向简单图,度数列为3,3,3,3.它的入度列9或出度列)能为1,1,1,1 吗? 6.4设( )为一正整数序列,互不相同,问此序列能构成n阶无向图的度数列吗?为什么? 6.5下面无向图中有几个顶点? (1)16条边,每个顶点都是2度顶点. (2)21条边,3个4度顶点,其余的都是3度顶点. (3)24条边,各顶点的度数是相同的. 6.6 35条边,每个顶点的度数至少为3的图最多有几个顶点? 6.7设n阶无向简单图中,(G)=n-1,问(G)应为多少? 6.8一个n(n2)阶无向简单图G中,n为奇数,已知G中有r各奇度顶点,问G的补图中有几个奇度顶点? 6.9设D是n阶有向简单图,是D的子图,已知的边数=n(n-1),问D的边数m为多少? 6.10画出---的所有非同构的子图,其中有几个是子图?生成子图中有几个是连通图? 6.11设G为n阶简单图(无向图或有向图),--为G的补图,若G----,则称G为自补图,――的生成子图中有几个非同构的自补图? 6.12.设无向图G有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G 中至少有几个顶点?在最少顶点的情况下,写出G的度数列、Δ(G)、δ(G). 6.13.设n阶图G中有m条边,证明:δ(G)≤2m/n≤Δ(G). 6.14.设无向图中有6条边,3度与5度顶点各一个,其余的都是2度顶点,问该图有 几个顶点? 6.15.证明空间中不可能存在有奇数个面且每个面都有奇数条棱的多面体。 6.16.阶2-正则图有几种非同构的情况? 6.17.设n阶无向图为3-正则图,且边数m与n满足2n-3=m,问这样的无向图有几种非同构的情况? 6.18画出3阶有完全图所有非同构的子图,问其中有几个是生成子图?生成子图中有几个是自补图? 6.19设----均为4阶无向简单图,他们均由两条边,他们能彼此均非同构吗?为什莫? 6.20已知n阶无向图G中有m条边,各顶点的度数均为3,又已知2n-3=m,问在同构的意义下,G是唯一的吗?又若G为简单时,是否唯一? 6.22在--的边上涂上红色或蓝色,证明对于任意一种随意的涂法,总存在红色――或蓝色――?

相关文档
最新文档