[高考数学]第十二章概率与统计12-5

[高考数学]第十二章概率与统计12-5
[高考数学]第十二章概率与统计12-5

课时作业(六十七)

一、选择题

1.(2011·沧州七校联考)若ξ~B (n ,p )且Eξ=6,Dξ=3,则P (ξ=1)的值为( ) A .3·2-

2

B .3·2

-10

C .2-4

D .2-

8

答案 B

解析 Eξ=np =6,Dξ=np (1-p )=3?p =12,n =12,P (ξ=1)=C 121(1

2)12=3·2-10.

2.设随机变量的分布列如表所示,且Eξ=1.6,则a ×b =( )

A.0.2 C .0.15 D .0.4

答案 C

解析 由分布列的性质得0.1+a +b +0.1=1,∴a +b =0.8 ① 又由Eξ=0×0.1+1×a +2×b +3×0.1=1.6,得a +2b =1.3 ② 由①②解得a =0.3,b =0.5, ∴a ×b =0.3×0.5=0.15.

3.已知离散型随机变量ξ,η,满足ξ+η=8,且ξ~B (10,0.6),则Eη,Dη分别是( ) A .6、2.4 B .2、2.4 C .2、5.6 D .6、5.6 答案 B

解析 由均值、方差的性质,ξ+η=8,得η=8-ξ, Eη=8-Eξ=8-10×0.6=2,

Dη=D (8-ξ)=(-1)2Dξ=10×0.6×0.4=2.4. 4.设投掷1颗骰子的点数为ξ,则( ) A .Eξ=3.5,Dξ=3.52 B .Eξ=3.5,Dξ=3512

C .Eξ=3.5,Dξ=3.5

D .Eξ=3.5,Dξ=35

16

答案 B

5.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中

后的剩余子弹数目ξ的期望为( )

A .2.44

B .3.376

C .2.376

D .2.4

答案 C

6.随机变量ξ的分布列如下:

其中a ,b ,c 成等差数列,若Eξ=1

3,则Dξ的值是( )

A.13

B.23

C.59

D.79

答案 C

解析 ∵a ,b ,c 成等差数列,∴2b =a +c ,又a +b +c =1,且Eξ=-1×a +1×c =c -a =13.联立三式得a =16,b =13,c =12,∴Dξ=(-1-13)2×16+(0-13)2×13+(1-13)2×12=59

. 二、填空题

7.若随机变量ξ的分布列为:P (ξ=m )=1

3,P (ξ=n )=a .若Eξ=2,则Dξ的最小值等于

________.

答案 0

解析 依题意有a =1-13=23,所以Eξ=13m +23n =2,即m +2n =6,又Dξ=1

3(m -2)2

+2

3

(n -2)2=2n 2-8n +8=2(n -2)2,所以当n =2时,Dξ取最小值为0. 8.设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.

答案 1

2

,25

解析 Dξ=100P (1-P ) ≤100·(P +1-P 2)2

=25

当且仅当P =1-P .

即P =1

2

时,Dξ最大为25.

9.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元,设一年内事件E 发生的概率为p ,为使公司收益的期望值等于a 的10%,公司应要求投保人交的保险金为________元.

答案 (0.1+p )a

解析 设要求投保人交x 元,公司的收益额ξ作为随机变量,则 p (ξ=x )= 1-p ,p (ξ=x -a )=p , 故Eξ=x (1-p )+(x -a )p =x -ap ,所以 x -ap =0.1a ∴x =(0.1+p )a . 三、解答题

10.一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望Eξ和方差Dξ.

解析 P (ξ=0)=P (A 1 A 2 A 3)=0.9×0.8×0.7=0.504;

P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1 A 2A 3)=0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398;

P (ξ=2)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=0.1×0.2×0.7+0.1×0.8×0.3+0.9×0.2×0.3=0.092;

P (ξ=3)=P (A 1A 2A 3)=0.1×0.2×0.3=0.006. ∴Eξ=1×0.398+2×0.092+3×0.006=0.6,

Dξ=Eξ2-(Eξ)2=1×0.398+4×0.092+9×0.006-0.62=0.82-0.36=0.46

11.某制药厂新研制出一种抗感冒药,经临床试验疗效显著,但由于每位患者的身体素质不同,可能有少数患者服用后会出现轻微不良反应,甲、乙、丙三位患者均服用了此抗感冒药,若他们出现轻微不良反应的概率分别是15,13,14

.

(1)求恰好有一人出现轻微不良反应的概率; (2)求至多有两人出现轻微不良反应的概率;

(3)设出现轻微不良反应的人数为ξ,求ξ的分布列和数学期望.

解析 (1)患者甲出现轻微不良反应,患者乙、丙没有出现轻微不良反应的概率为15×

2

3×34=110;患者乙出现轻微不良反应,患者甲、丙没有出现轻微不良反应的概率为45×13×34=15;患者丙出现轻微不良反应,患者甲、乙没有出现轻微不良反应的概率为45×23×14=2

15,所以,恰好有一人出现轻微不良反应的概率为P 1=110+15+215=1330

.

(2)有两人出现轻微不良反应的概率P 2=15×13×34+45×13×14+15×23×14=120+115+1

30=

320

. 三人均没有出现轻微不良反应的概率P 0=45×23×34=2

5,所以,至多有两人出现轻微不

良反应的概率为25+1330+320=59

60

.

(3)依题意知,ξ的可能取值为0,1,2,3,由(1)(2)得,

P (ξ=0)=25,P (ξ=1)=1330,P (ξ=2)=320,P (ξ=3)=1-25-1330-320=1

60.

于是ξ的分布列为:

ξ的数学期望Eξ=0×25+1×1330+2×320+3×160=47

60

.

12.甲、乙、丙三人组成一组参加一个闯关游戏团体赛.三人各自独立闯关,其中甲闯关成功的概率为13,甲、乙都闯关成功的概率为16,乙、丙都闯关成功的概率为1

5.每人闯关成

功记2分,三人得分之和记为小组团体总分.

(1)求乙、丙各自闯关成功的概率;

(2)设团体总分为ξ,求随机变量ξ的分布列和数学期望.

解析

(1)设乙闯关成功的概率为P 1

,丙闯关成功的概率为P 2

,则由题意得???

13P 1

=1

6,P 1

·P 2

=1

5

.

解得P 1=12,P 2=2

5

.

即乙闯关成功的概率为12,丙闯关成功的概率为2

5

.

(2)由题意知,ξ的可能取值为0,2,4,6,且P (ξ=0)=(1-13)×(1-12)×(1-25)=1

5;P (ξ=

2)=13×(1-12)×(1-25)+(1-13)×12×(1-25)+(1-13)×(1-12)×25=1330;P (ξ=4)=(1-13)×

1

2×25+13×(1-12)×25+13×12×(1-25)=310;P (ξ=6)=13×12×25=115

. 所以随机变量ξ的分布列为

所以Eξ=0×15+2×1330+4×310+6×115=37

15

.

13.(2010·北京卷,理)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为4

5,第二、第三门课程取得优秀成绩的概率分别为p ,q (p >q ),且不同课程是否取

得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为

(1)求该生至少有1(2)求p 、q 的值; (3)求数学期望Eξ.

解析 事件A i 表示“该生第i 门课程取得优秀成绩”i =1,2,3,由题意知P (A 1)=4

5,P (A 2)

=p ,P (A 3)=q .

(1)由于事件“该生至少有1门课程取得优秀成绩”,与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119

125

.

(2)由题意知P (ξ=0)=P (A 1

A

2

A 3)

=15(1-p )(1-q )=6125, P (ξ=3)=P (A 1A 2A 3)=45pq =24125.

整理得pq =6

25,p +q =1.

由p >q ,可得p =35,q =2

5

.

(3)由题意知a =P (ξ=1)=P (A 1A 2

A 3)+P (A 1A 2A 3)+P (A

1

A 2A 3)=4

5

(1-p )(1-q )

+15p (1-q )+15(1-p )q =37125

. b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58

125

.

Eξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=9

5

.

14.(2010·福建卷,理)设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .

(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列及其数学期望Eξ.

解析 (1)由x 2-x -6≤0得-2≤x ≤3,即S ={x |-2≤x ≤3}. 由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为: (-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,

且有P (ξ=0)=16,P (ξ=1)=26=13.P (ξ=4)=26=13,P (ξ=9)=16.

故ξ的分布列为:

所以Eξ=0×16+1×13+4×13+9×16=19

6

.

15.(2010·江西卷,理)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.

(1)求ξ的分布列; (2)求ξ的数学期望.

解析 (1)ξ的所有可能取值为:1,3,4,6,

P (ξ=1)=13,P (ξ=3)=16,P (ξ=4)=16,P (ξ=6)=1

3

,所以ξ的分布列为:

(2)Eξ=1×13+3×16+4×16+6×13=7

2(小时).

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

第十二章选修2第十二章概率与统计综合能力测试(Ⅱ)

第十二章选修2 第十二章概率与统计综合能力测试(n) 本试卷分第I卷(选择题)和第n卷(非选择题)两部分。满分150分。考试时间120分钟。一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 答案:C 解析:高一、高二、高三三个年级人数比为??22 2!,按分层抽样的要求,抽取的样 又知样本容量为70 ,故三个年级分别应抽取27人、22人、21人. 3. 已知样本: 10 8 6 10 13 8 10 12 11 7 8 9 11 9 12 9 10 11 12 12 那么频率为0.25的范围是 A.5.5 ?7.5 C. 9.5 ?11.5 答案:D 解析:统计结果为:5.5?7.5,2个数据;7.5?9.5,6个数据;9.5?11.5,7个数据;11.5? 13.5,5个数据.因此频率为0.25的范围是D. 4. 在样本的频率分布直方图中,一共有m(m》3)个小矩形,第3个小矩形的面积等于其 余m- 1个小矩形面积和的£且样本容量为100,则第3组的频数是() 4 A.0.2 C.20 答案: B.25 D.以上都不正确C 解析:第3组的频率是£样本容量为100,故第3组的频数是100 X4= 20.选C. 5 5 1.(2019成都市高中毕业班第一次诊断性检测题)某学校有教职工100人,其中教师80人, 职员20人.现从中随机抽取10人组成一个考察团外出学习考察,则这10人中恰有8名教师 的概率为 A. C. 2 8 A80A20 A100 8 2 C80C20 0 B. D. 8 2 A80A20 A100 2 8 C80C20 解析:依题意得从100名教职工中随机抽取10人的选法种数是人中恰有8名教师的选法种数是C8o c2c种,因此所求的概率等于c:0 0种,其中所选的 选C. 10 2?新华中学高一年级有540人,高二年级有440人,高三年级有方法,抽取容量为70的样本,则高一、高二、高三三个年级应分别抽取420人,用分层抽样的 () A. 28 人,24 人,18 人C.26 人,24 人,20 人答案:B B. 27 人,22 人,21 人D.25 人,24 人,21 人 本中三个年级人数比应保持不变, B.7.5 ?9.5 D.11.5 ?13.5 C:00,

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率论与数理统计概率问题

选修2-3 2.2.1 条件概率 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

3.已知P (B |A )=13,P (A )=25,则P (AB )等于( ) A.56 B.910 C.215 D.115 [答案] C [解析] 本题主要考查由条件概率公式变形得到的乘法公式, P (AB )=P (B |A )·P (A )=13×25=215,故答案选C. 4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14 B.13 C.12 D.35 [答案] B [解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件. 所以其概率为4361236 =13. 5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

高考数学概率与统计

高考数学概率与统计 SANY GROUP system office room 【SANYUA16H-

第16讲概率与统计 概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一“非等可能”与“等可能”混同 例1 掷两枚骰子,求所得的点数之和为6的概率. 错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为 P=1 11 剖析以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36 种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=5 36 . 类型二“互斥”与“对立”混同 例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是() A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对 错解A 剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在: (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对 立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.

类型三 “互斥”与“独立”混同 例3 甲投篮命中率为O .8,乙投篮命中率为,每人投3次,两人恰好都命中2次的 概率是多少? 错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中 两次为事件A+B ,P(A+B)=P(A)+P(B): 22223 30.80.20.70.30.825c c ?+?= 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰 好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指 两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个 事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关 系是根本不同. 解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独 立, 则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同 例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次, 求第二次才取到黄色球的概率. 错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球” 为事件C,所以P(C)=P(B/A)=6293 =. 剖析 本题错误在于P(A ?B)与P(B/A)的含义没有弄清, P(A ?B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的 A 已经发生的条件下事件 B 发生的概率。 解: P (C )= P(A ?B)=P (A )P (B/A )= 46410915 ?=. 备用

18题-高考数学概率与统计知识点

18题-高考数学概率与统计知识点

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)= ) ()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)= k n k k n p p C --)1(. 其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结

的概率P (i x =ξ)=i P ,则称下表. 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++2 1 P P (1) ②常见的离散型随机变量的分布列: (1)二项分布 n 次独立重复试验中,事件A 发生的次数ξ是一个 随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的 分布列如下: 称这样随机变量ξ服从二项分布,记作),(~p n B ξ ,其中n 、p 为参数,并记:) ,;(p n k b q p C k n k k n =- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

第十二章 概率与统计

第十二章 概率与统计 1、[文] 一个容量为20的样本,数据的分组与几个组的频数如下:[10,20],2;[20,30], 3;[30,40],4;[40,50],5;[50,60],4;[60,70],2. 则样本在区间[10,50]上的频率为 . 1.[文] 0.7 2. (文)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽取容量为45人的样本,那么高一、高二、高三年级抽取的人数分别为 A. 15,5,25 B. 15,15,15 C. 10,5,30 D. 15,10,20 2. (文)D 【思路分析】: 每20人中抽取1人 【命题分析】:考察抽样方法。 3、(理)同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是 A .20 B .25 C .30 D .40 3、(理)B【思路分析】: 抛掷-次,正好出现2枚正面向上,3枚反面向上的概率为1652 525=C , 2516 5 80=?=ξE 【命题分析】:考察等可能事件的概率的求法及数学期望的求法。 4.一个容量为20的样本数据,分组后,组距与频数如下:),40,30[;3),30,20[;2),20,10[ 3),70,60[;3),60,50[;5),50,40[;4,则样本在区间)50,10[内的频率是( ) A .0.05 B .0.25 C .0.50 D .0.70 4.D 【思路分析】:7.020 5 432=+++= P ,故选D. 【命题分析】:考查频率的计算方法. 5、(理)随机变量ξ的分布列为120 1 )(-= =ξk k P (*N k ∈ , )162≤≤k ,则=ξE _______ . 5、(理) 3 34 1201360= +?+?= ξ3221(120 1 E …)1615?+ 3 346068060120)(23172162322===+?++=C C C C . 6.对甲乙两学生的成绩进行抽样分析,各抽取5门功课,得到的观测值如下: 甲:70 80 60 70 90 乙:80 60 70 84 76 那么,两人中各门功课发展较平稳的是 . 【思路分析】:7474S 104S 70.4x x ====甲乙甲乙,,,,故S S >甲乙. 【命题分析】:考察抽样分析、期望(平均数)的应用 7、(12分) [理]甲、乙两人玩轮流抛掷一对骰子的游戏,由甲先掷,乙后掷,然后甲再掷,…. 规定先得到两颗骰子点数之和等于7的一方获胜,一旦决出胜负游戏便结束. (Ⅰ)若限定每人最多掷两次,求游戏结束时抛掷次数ξ的概率分布和数学期望; (Ⅱ)若不限定两人抛掷的次数,求甲获胜的概率. 7[理]、【思路分析】 (Ⅰ) 抛掷一次出现的点数共有6×6 = 36种不同结果,其中“点数之和为7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6个结果,

概率与统计高考数学

辅导讲义:概率与统计 一、知识回顾: 1、总体、个体、样本、样本容量: 总体:在统计中,所有考察对象的全体。 个体:总体中的每一个考察对象。 样本:从总体中抽取的一部分个体叫做这个总体的一个样本。 样本容量:样本中个体的数目。 2、统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。 3、抽样方法:简单随机抽样、系统抽样、分层抽样。 4、简单随机抽样:一般地,从个体为N烦人总体中逐个不放回地取出n个个体作为样本(n

(3)随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的。 8、抽签法—编号、制签、搅拌、抽取,关键是“搅拌”后的随机性;随机数表法—编号、选数、取号、抽取,其中取号的方向具有任意性。 9、简单随机抽样的特点: 它的总体个数有限的; 它是逐个地进行抽取; 它是一种不放回抽样; 它是一种等概率抽样. 10、系统抽样: 将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样。也可称为“等距抽样”。 注:如果个体总数不能被样本容量整除时该怎么办? (1)随机将这1003个个体进行编号1,2,3,……1003。 (2)利用简单随机抽样,先从总体中剔除3个个体(可以随机数表法),剩下的个体数1000能被100整除,然后按系统抽样的方法进行。 11、系统抽样的步骤: (1)采用随机的方式将总体中的 N 个体编号。 (2)整个的编号分段(即分成几个部分),要确定分段的间隔k 。当 n N (为总体中的个体的个数,n 为样本容 量)是整数时,取n N k = ;当n N 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N '能被n 整 除,这时取n N k ' = ,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编号l ; (4)按照一定的规则抽取样本,通常将编号为k n l k l k l l )1(2-+++,,,, 的个体抽出。 12、简单随机抽样、系统抽样的特点是什么? 简单随机抽样:①逐个不放回抽取;②等可能入样;③总体容量较小。 系统抽样:①分段,按规定的间隔在各部分抽取;②等可能入样;③总体容量较大。 13、分层抽样:一般地,当总体由差异明显几部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较明显的几部分,然后按照各部分在总体中所占的比实施抽样,这种抽样方法 有限性

第十二章 概率与统计

第十二章概率与统计 ●网络体系总览 ●考点目标定位 1.了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列. 2.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差. 3.会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本. 4.会用样本频率分布估计总体分布. 5.了解正态分布的意义及主要性质. 6.了解线性回归的方法和简单应用. 7.实习作业以抽样方法为内容,培养学生解决实际问题的能力. ●复习方略指南 在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用. 1.把握基本题型 应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视. 2.强化双基训练 主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力. 3.强化方法选择 特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系. 4.培养应用意识 要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.

高中数学教案——概率与统计

课题:1.7概率与统计 教学目的: 1能运用简单随机抽样、分层抽样的方法抽取样本; 2. 能通过对样本的频率分布估计总体分布; 3. 培养学生动手能力和解决实际问题能力通过例题,对本章部分内容进行一次复习.培养学生的探究能力以及分析与解决实际问题的能力 教学重点:统计在实际生活中的应用 教学难点:学生解决实际问题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 二、讲解范例: 例1某中学高中部共有16个班级,其中一年级6个班,二年级6个班,三年级4个班.每个班的人数均在46人左右(44人-49人),各班的男女学生数均基本各占一半.现要调查这所学校学生的周体育活动时间,它是指学生在一周中参加早锻炼、课间操、课外体育活动、体育比赛等时间的总和(体育课、上学和放学路上的活动时间不计在内).为使所得数据更加可靠,应在所定抽样的“周”之后的两天内完成抽样工作.此外还有以下具体要求: (1)分别对男、女学生抽取一个容量相同的样本,样本容量可在40-50之间选择 (2)写出实习报告,其中含:全部样本数据;相应于男生样本的 - - 1 x与 1 s,相 应于女生的 - - 2 x与 2 s,相应于男、女全体的样本的 - - x;对上面计算结果作出分

析. 解:(1)由于各个年级的学生参加体育活动的时间存在差异,应采用分层抽样;又由于各班的学生数相差不多,且每班的男女学生人数也基本各占一半,为便于操作,分层抽样时可以班级为单位.关于抽取人数,如果从每班中抽取男、女学生各3人,样本容量各为48(3×16),符合对样本容量的要求. (2)实习报告如表一所示. 1 .在本班范围内,就每名学生所在家庭的月人均用水量进行调查.调查的具

题 高考数学概率与统计知识点

题高考数学概率与统计 知识点 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.

第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 2.离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值 i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表. 机变量ξ的概率分布,简称ξ的分布列. 为随由概 率的性质可知,任一离散型随机变量的 分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布

2020高考理科数学大题专项练习:统计与概率问题

大题专项:统计与概率问题 一、解答题 1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率; (2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解:(1)由已知,有P (A )= C 22C 32+C 32C 3 2C 8 4=6 35. 所以,事件A 发生的概率为6 35. (2)随机变量X 的所有可能取值为1,2,3,4. P (X=k )= C 5k C 3 4-k C 8 4(k=1,2,3,4). 所以,随机变量X 的分布列为 随机变量X 的数学期望E (X )=1×1 14+2×3 7+3×3 7+4×1 14=5 2. 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,用“ξk =0”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系. 解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A , 第四类电影中获得好评的电影为200×0.25=50(部). P (A )=50 140+50+300+200+800+510=50 2 000=0.025.

相关文档
最新文档