关于化工厂余热余压的利用

关于化工厂余热余压的利用
关于化工厂余热余压的利用

科研训练结题报告

指导教师:..苏泷

小组成员:..扬光 ..绿亮于..洋

项目专业:建筑环境与设备工程

项目名称:化工厂余热余压的处理

2013年9月

科研训练结题报告

摘要:介绍了化工厂企业在工业生产中余热余压资源利用的基本现状,探讨了各种余热余压利用技术的进展,分析了余热利用等方面存在的主要问题,为科学合理地进行余热余压利用提出了相关建议。关键词:余热余压利用化工企业低温热能余热锅炉热管吸收式热泵其他工质

一、引言

化工企业是维系人类社会发展进步的重要部门,化工产品与人类生活关系密切,从衣食住行等物质生活到文化艺术娱乐等精神生活都离不开化工产品。但是,化工企业又是当今污染大源、能耗大户的代名词,在能源消耗方面尤为突出,它们的热效率都很低,一般只有30%左右,而被高温烟气、高温炉渣、高温产品等带走的热量却达到40%~60%,其中可利用的余热约占燃料消耗量的三分之一。节能减排是我国经济和社会发展的一项长远战略方针,也是一项极为紧迫的任务。回收余热降低能耗对我国实现节能减排、环保发展战略具有重要的现实意义。同时,余热利用在对改善劳动条件、节约能源、增加生产、提高产品质量、降低生产成本等方面起着越来越大的作用,有的已成为工业生产中不可分割的组成部分。自上世纪六七十年代以来,世界各国余热利用技术发展很快。目前,我国的余热利用技术也得到了长足进步,但是与世界先进水平还有一定的差距,有一部分余热尚未被充分利用,有一部分余热在利用中还存在不少问题。

二、前期准备

虽然此科研训练与我们建筑环境与设备的专业所学的知识有联系,但是在完成科研训练的过程中碰到了很多超出我们所了解和掌握的知识范围的难题,所以我们花费了大量的时间和精力做准备工作。

第一阶段,我们通过查阅图书馆查阅了很多相关化工厂余热余压利用的文献和上网查找相关资料(《余热回收利用系统实用手册》机械工业出版社一色尚次著,《余热回收手册》中南工业大学出版社 R.J.GOLDSTICK著,《余热回收》天津科学技术出版社霍光云编)。

第二阶段,在我们查阅资料之后,我们再次联系了李老师,跟李老师汇报了我们所遇到的问题,李老师答疑解惑之后,还送了我们一本关于余热余压处理的博士生毕业论文让我们参考。

第三阶段,正式开始科研训练。

三、化工厂余热余压的处理

1 余热利用概述

余热属于二次能源,它是一次能源和可燃物料转换过程后的产物,是燃料燃烧过程中所发出的热量在完成某一工艺过程后所剩下的热量。一般分成下列七大类:高温烟气余热、高温蒸汽余热、高温炉渣余热、高温产品余热(包括中间产品)、冷却介质余热、可燃废气余热、化学反应及残炭的余热、冷凝水余热等。常见的余热利用方法主要有:余热锅炉、热水法、预热空气、烟气一流体换热器、加工物料

等。由于使用的生产方法、生产工艺、生产设备以及原料、燃料条件的不同和工艺上千变万化的需要,从而给余热利用带来很多困难。一般说来余热热源往往有以下特点:

(1)热负荷不稳定。不稳定是由工艺生产过程决定的。例如:有的生产是周期性的,有的高温产品和炉渣的排放是间断性的,有的工艺生产虽然连续稳定,但热源提供的热量也会随着生产的波动而波动。(2)烟气中含尘量大。如氧气顶吹转炉烟气中的含尘量达8()~150 g /nl 、沸腾焙烧炉150~350 g/m。、闪速炉80~130 g/m 、烟气炉80~160 g,/m ,含尘数量大大超过一般的锅炉。同时烟尘的物理、化学性质也特别恶劣,尤其是炉烟温度高、含尘量大时,更容易粘结、积灰,从而对余热回收的设备有可能产生严重磨损和堵塞的后果。(3)热源有腐蚀性。余热烟气中常常含有二氧化硫等腐蚀性气体,在烟尘或炉渣中含有各种金属和非金属元素,这些物质都有可能对余热回收设备造成受热面的高温腐蚀或低温腐蚀,

(4)受安装场所固有条件的限制。如有的对前后工艺设备的联接有一定的要求,有的对排烟温要求保持在一定的范围内等。这些要求与余热回收设备常发生一定的矛盾,必须认真研究统筹解决。

2 化工厂余热余压利用的技术进展

2.1 石油化工低温热能的应用

我国化工行业的余热资源主要集中在低温热能,余热资源回收率仅41.9%。低温余热资源分布比较分散,传热温差小,回收比较困难,但回收价值可观。这类热源存在于气态及业态载热体中,液态主要是

冷凝水和冷却水及可燃性废液,气态主要是工业生产气体。回收和利用这部分能量既有助于解决能源问题,又能减少能源生产过程中的环境污染。

炼油厂的低温余热是指炼油生产过程中高于油品储存温度或工艺本身需要温度而未被回收利用的热量。一般认为温度在85~160度的热量均可作为低温余热进行回收利用。通常炼油厂低温热主要来自常压、催化裂化、延迟焦化、制氢、加氢裂化和重整等工艺装置。

低温余热的利用有同级利用和升级利用两种方式。同级利用主要包括:气体分馏、烷基化和产品精制等低温加工装置原料及塔底重沸器加热;动力系统除盐水、新鲜水的加热;油品储运及油罐的加热;管道和仪表的伴热及生活采暖等。升级利用的方式主要包括:低温热发电、低温热制冷和热泵等。

炼厂低温热的用户可分为三类:第一类是生产用户,第二类是生活用户,第三类是辅助负荷。随着炼油厂和工艺装置的大型化,可回收的低温余热越来越多,将多余的低温余热用于发电、制冷或热泵等形式是提高利用水平的途径之一。

2.2 余热锅炉技术

余热锅炉,也称废热锅炉,它的原理和构造基本上与普通锅炉相同,基本组成为:锅炉本体的汽包、受热面、给水预热省煤器、蒸汽过热器等等。相对于普通锅炉,余热锅炉的热源为生产过程的剩余热量或过程尾部排出的热量,没有一个固定的理论燃烧温度;在石油、

化工企业中,由于排放废热的部位不固定,锅炉部件的布置也一般比较分散;余热锅炉需要有完善的除灰清焦装置;在一些石油化工企业中,有的余热锅炉不但水侧(或汽侧)是高温(高压),而且工艺气侧也是高温(高压),因此对余热锅炉设备的严密性,材料的耐热性及水质和避免产生不必要的热应力等等都有很高的要求。

水管余热锅炉的汽水循环系统如图所示,管束中的水受热后,比

重随温度升高而减少,当有蒸汽产生时,

比重显著降低,在整个管系中形成一个压

力差P,其值为

P=H(γ’-γ’’)

式中 P——管束中压力差

H——水位差

γ’γ’’——水、汽水混合物的重度

因汽水混合物的重度γ’’小,在上升管内会自然上升;下降管理的水重度γ’大,水即向下流动。当这个压力差大于整个系统的阻力时,就形成自然循环。

近年来余热锅炉技术的最新进展和创新思路,主要有以下几点:(1)采用理论分析和参数优化的研究方法进行余热锅炉本体热量分配、工质参数优化和余热锅炉整体布置选型研究,该研究将决定余热锅炉应达到的设计目标。

(2)采用试验研究的方法研究粉尘的物理、化学和外部工作过程特性,

采用数值模拟的方法进行通流结构的优化研究;采用试验研究的方法进行热交换受热面结构设计及传热、阻力特性研究。主要研究粉尘颗粒特性,粉尘沉积、污染特性,磨损及防磨技术,粉尘预分离技术清灰及除灰技术,受热面及通流结构密封设计,高效传热元件设计,并对高效传热元件的换热、阻力特性进行研究。

(3)研究余热锅炉本体设计所必须的热力、水循环、烟风阻力计算方法并编制相关的计算机辅助设计计算软件。

(4)采用理论分析和优化设计的研究方法研余热锅炉对生产工艺系统取热参数在变动工况下的适应性以及对热工参数的影响机制,并在余热锅炉方案设计的基础上对余热锅炉方案进行技术经济比较,为系统设计出能够实现提高蒸发量和余热废气利用效率为总体目标的余热锅炉。

2.3 热管技术

热管可以在温差很小的情况下传递相当大的热负荷,由于它具有热传递能力大、部件轻小、简单可靠、成本低廉的特点,近几年来,热管的研究和应用发展很快,研究热管这项传热新技术,也为回收利用余热资源开拓了新的途径。

热管结构如图,在它的长度

方向分成三段:蒸发段、传输段

和凝结段。容器内的液体在一端

的蒸发段从外部热源吸收潜热

而汽化,携带潜热的汽化蒸汽通过传输段传到容器的另一端——凝结

段,向外部冷源放出潜热,蒸汽重新凝结成液体。凝结的液体不需要外加机械装置,只靠毛细管作用即回流到原来的蒸发段,保持工质循环,从而实现热量传递。更由于他的热量纯粹是依靠饱和蒸汽流动来传递,所以通常管内温度非常接近等温,可维持温度的均一性。热管因其独特结构和相变传热机理,具有如下特点:

(1)安全可靠性高。不存在管内超压,不怕干烧,因液体工质汽化后,热管的内压不随温度变化而变化,而且热管余热回收器是二次问壁换热,与常规的换热设备一般都是问壁换热不同;

(2)导热性强。导热速度快、强度大、效率高(传热效率达98%以上),节能效果明显;

(3)等温性好。传热阻力小,在很小的温差下,传递很大的热通量;

(4)热流密度可变性。热管可以独立改变蒸发段或冷却段的面积;

(5)环境的适应性强。受环境的限制相对常规换热设备小,通过适当的热流变换把热管管壁温度调整在低温流体的露点之上,从而可防止露点腐蚀。同时热管在导热时会产生自振动,使灰不易粘附在管壁和翅片上,不易堵灰;热管可根据环境的需要而设计;

(6)使用寿命长、应用领域广。使用寿命在10年以上,单根热管可拆卸更换,维护简单、成本低,超导热管形状具有更大的灵活性,更广泛的应用领域,能适应各种恶劣的工作环境。

2.4 吸收式热泵技术

化学工业中产生大量低品位的、无法用常规方法进一步利用的废热,通常这部分废热只能排放到环境中去,吸收式热泵采用吸收的方

法实现热泵的循环,把低品(温)位的废热提高到高品(温)位,从而实现废热的回收利用。下面以化工节能中的热泵精馏过程为例讲述:

化工行业是能耗大户,其中精馏又是能耗极高的单元操作,而传统的精馏方式热力学效率很低,能量浪费很大,而热泵精馏技术节能效果很明显。热泵精馏是把精馏塔塔顶蒸汽加压升温,使其用作塔底再沸器的热源,回收塔顶蒸汽的冷凝潜热。

如图为吸收式热泵用于精馏塔的流程示意图,吸收式热泵由吸收

器、再生器、冷却器和再沸器等装置组成,

常用溴化锂水溶液或氯化钙水溶液为工

质。由再生器送来的蒸汽,发生了强烈的

吸收作用,不但升温高而且放出了热量,

该热量即可用于精馏塔的蒸发器,实际上热泵的吸收器即为精馏塔的蒸发器。浓溴化锂溶液吸收了蒸汽之后,浓度变稀,即送再生器蒸浓,再生器所耗用的热能是热泵的原动力。从再生器中蒸发出来的水蒸气,在冷却器中冷却、冷凝,而后送入精馏塔冷却器,在此冷凝器中,塔顶馏出物被冷凝,而水又重新蒸发进入吸收器,所以精馏塔的冷凝器也是热泵的再沸器。

热泵精馏在下述场合应用,可以取得比较良好的效果:

(1)塔顶和塔底温差较小。因为压缩机的功耗主要取决于温差,温差越大,压缩机的功耗越大,只要塔顶和塔底温差小于36度,就可以取得良好的经济效果。

(2)沸点相接近组分的分离。按常规方法,蒸馏塔需要较多的塔盘及较大的回流比,才能得到合格的产品,而且加热用的蒸汽或冷却用的循环水都比较大。若采用热泵激素,一般可得明显的经济效益。

(3)工厂蒸汽供应不足或价格偏高,有必要减少蒸汽用量或取消再沸器时。

(4)冷却水不足或者冷却水温偏高、价格偏贵,需要采用制冷技术或者其他方法解决冷却问题时。

(5)一般蒸馏塔塔顶温度在38~138度之间,如果用热泵流程对缩短投资回收期有利就可以采用,但如果有较便宜的低压蒸汽和冷却介质来源,用热泵流程不一定有利。

(6)蒸馏塔顶再沸器温度在300度以上,采用热泵流程往往是不合适的。

2.5 基于其他工质的余热利用技术

常规的余热利用技术主要是基于水一水蒸汽的循环系统,一些新型余热利用系统采用的工质还可以为低沸点工质、混合工质。例如,在低沸点有机物朗肯循环(ORC)发电系统中,换热器将余热传给蒸发器,有机工质蒸发成符合工作参数的蒸气进入汽轮机做功带动发电机发电,做功后的工质在冷凝器中冷凝,通过循环泵回到蒸发器实现工质的循环;在以氨水混合物为工质的Kalina循环系统 'Ⅲ中,工质变温蒸发,减少工质吸热过程的不可逆性,冷凝温度变化较小,减少了混合工质在冷凝过程中的不可逆性,抑制了混合工质在动力循环冷

端部分的不利因素,同时实现了在较低压力下工质完全冷凝;在以多种混合物为工质的新型动力制冷复合循环巾,复合了朗肯循环和吸收式制冷循环,达到了制冷和电力输出的双重效果,可以用于电站循环的底循环,或其它低温热能利用场所。

当利用低温有机工质时,主要设备有:蒸发器、汽轮机、冷凝器和有机工质循环泵。对低等及中等的焓热,ORC技术比常规的水蒸气朗肯循环有很多优点,主要是在回收显热方面有较高的效率,由于循环中显热/潜热比例不相等,ORC技术中此比例大。因此采用ORC技术比水蒸气循环会回收较多的热量。

3 讨论

3.1工业炉余热利用的原则

工业炉余热利用技术经过多年实践和发展,已经逐渐使我们认识到,必须根据余热种类、介质温度、数量及利用的可能性来确定使用回收利用设备的类型及规模。其总的原则是:

(1)遵循能量梯级的原则,高温余热要优先用于需要高温的设备,减少能量转换次数;

(2)余热回收后应优先用于本系统设备,降低一次能源消耗;

(3)加强回收后的保温措施,安全措施要齐备,确保发生意外事故时不影响本工艺的正常生产。

3.2 循环工质的选择

循环工质(特别是一些新的环保型工质)的选择是余热发电技术研究的重要内容。如何选择工质使其技术可行、经济性好,并且符合

环保要求,是余热发电技术的重要问题之一。首先从技术可行性角度讲,其最重要的因素就是工质在循环过程中的压力不能过高,也不能太低,必须在装置抗压性和密封性允许的范围之内。另外,工质需尽量选择干性工质,以保证透平工作的安全性。其次从经济性角度讲,主要从系统的效率因素考虑,系统的效率尽可能

高。不同的有机物工质主要通过以下3个方面来影响系统的效率:

(1)工质热物性影响整个系统的循环特性;

(2)工质的传热特性影响换热器换热特性以及在其它部件中的换热损失;

(3)工质的流动特性影响系统的流动损失。

从环保角度,工质应该是环境友好的,包括对臭氧层没有破坏作用,且温室效应低。评价工质的环保性质主要有两个指标:分别是臭氧层衰减指数(ODP)和温室效应指数(GWP)。上世纪七八十年代建造的大量低温热能电站系统,大多是采用各种CFC(指含氯、氟、碳的完全卤代烃)等对环境有破坏的有机物工质,如今将被大量淘汰。今后应尽量选择环保的HFC(含氢、氟、碳的不完全卤代烃)。另外,工质选择还需要考虑以下一些因素:传热性和流动性、化学稳定性和热稳定性、毒性、价格等。特别还需要注意工质可燃性,应该尽量采用不可燃的工质,以使系统更具安全性。

3.3 余热利用的建议

从技术方面看,高温余热利用技术经过多年的发展已比较成熟,一些成功的案例也表明其经济效益比较明显,但潜力巨大的中低温余

热利用技术尚需进一步发展。另外,由于信息传播渠道及企业缺乏资金等问题,制约了余热利用技术的大量推广。

一方面,高耗能企业缺少正确认识这些节能技术和利用清洁发展机制(CDM)、合同能源管理(EPC)等先进机制推进实现技术进步的机会;另一方面,国内外先进技术服务商也无法了解这些企业的情况。针对上述余热利用技术推广过程中的问题和障碍,提出如下建议:

(1)建议通过开展余热资源调研、收集汇编国内外相关先进技术、方法、先进的管理机制及案例等方式加强信息传播,并加强中低温余热利用技术的研究,促进余热技术的广泛应用。

(2)由于技术难度较大、投资回收期较长、经济性不明显等原因,企业在利用中低温余热时积极性不高。但中低温余热利用节能潜力巨大,建议给予企业财政、税收上的支持和优惠。

(3)中低温余热利用项目投资一般较大,在企业资金不充裕的情况下无法开展。而中国目前的节能服务公司(ESCO)多数为中小型公司,在投资项目时主要考虑总投资和投资回收期,不利于中低温余热的利用。建议国家支持组建大型ESCO公司。

(4)建议有余热利用潜力的企业和ESCO公司进行EPC项目时,尽量做到将多种用能系统综合考虑,整体改进,并注重自动控制系统的精细化使用。

4 结论

本文在对化工厂余热余压利用现状分析的基础上,分析了近年来余热利用的主要技术进展,包括石油化工低温热能应用技术,余热

锅炉技术,热管技术,吸收式热泵技术,基于其他工质的余热利用技术等,剖析了一些行业在余热利用中存在的问题,提出了余热利用技术的原则和建议。

四、科研训练心得体会

此次科研训练让我们深切的体会到搞科研的过程是艰苦的,同时在余热余压处理方面有了更深的了解;此外加深我们对课堂所讲授的内容的理解,巩固学习成果,掌握毕业设计的一般步骤和方法;培养学生运用所学知识分析和解决实际工程设计问题的能力;使我们查阅外文文献资料、手册以及使用设计规范等技能上得到初步训练,为将来从事实际工作打下良好的基础。与以往理论课学习不同,具有巩固、深化和运用所学理论知识的作用。科研训练也是培养学生实践、创新能力的一个重要阶段。

余压余热简介

余热余压--是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。 利用余热余压是高耗能企业节能减排的重要举措,但目前在很多企业中仍未得到充分利用。本文研究余热余压利用现状和现有技术,并结合现场实例,提出了余热余压利用的实用性途径。 余热余压利用工程主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。作为“十一五”期间国家十大重点节能工程和建设节约型社会重点工程之一的“余热余压利用工程”及相关技术应用正逐步推广。但是目前,钢铁、煤炭、建材、化工、纺织、冶金等行业的余热余压以及其他余能仍未得到充分利用,主要原因在于利用余热余压的装置一次性投资过高和投资回报率较低。随着能源价格的节节升高,余热余压利用的投资回报逐渐被人们认可,余热余压利用对企业节能减排工作也日趋重要。 余热余热应用现状是除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来很多困难。许多企业限于投资或技术等难题,余热余压利用节能减排工程未能得到实施。 如钢铁企业的焦炉气、高炉气、转炉气,煤矿的煤层气,焦化企业的焦炉气等可燃副产气,大量放空,造成能源的严重浪费,同时也污染了环境。又例如,我国钢铁行业1000立方米以上高炉约110余座,有30座以上尚未配套炉顶压差(TRT)发电设备;有大型转炉的企业19家,中型转炉的企业42家,只有7家使用转炉负能炼钢技术。我国焦化炉干熄焦比例较低,干熄焦产量仅占机焦总产量的17.4%。低热值煤气燃气轮机可充分利用副产煤气,但一次性投资较大。我国现有日产2000吨以上新型干法窑水泥生产线225条,只有少数配装了余热发电装置。 主要技术 1、在钢铁行业,逐步推广干法熄焦技术、高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、转炉负能炼钢技术、蓄热式轧钢加热炉技术。建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。 2、在有色金属行业,推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。 3、在煤炭行业,推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。到2010年,全国煤层气(煤矿瓦斯)产量达100亿立方米,其中,地面抽采煤层气50亿立方米,利用率100%;井下抽采瓦斯50亿立方米,利用率60%以上。 4、在化工行业,推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。 5、在其他行业中,玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节

余热发电行业主要法律法规和主要相关政策

余热发电行业主要法律法规和相关政策 1.主要法律 1.1.《中华人民共和国清洁生产促进法》 2002年,第九届全国人民代表大会常务委员会第二十八次会议通过《中华人民共和国清洁生产促进法》,要求对企业生产过程中产生的废物、废水和余热等进行综合利用或者循环使用或者转让给有条件的其他企业和个人使用。 1.2.《中华人民共和国节约能源法》 2007年10月,第十届全国人民代表大会常务委员会第三十次会议修改通过《中华人民共和国节约能源法》,将节约资源确定为基本国策,并在节能方面加大了激励措施力度,明确规定“国家鼓励工业企业采用高效、节能的电动机、锅炉、窑炉、风机、泵类等设备,采用热电联产、余热余压利用、洁净煤以及先进的用能监测和控制等技术”;明确提出“国家运用财税、价格等政策,支持推广电力需求侧管理、合同能源管理、节能自愿协议等节能办法”。《中华人民共和国节约能源法》以法律形式明确鼓励余热发电和合同能源管理,并且规定电网企业应按规定安排余热余压发电机组并网运行,为大力发展余热发电、促进余热余压利用提供了有力政策支持。 2、行政法规及国务院相关政策 早在1996年,国务院即发布《关于进一步开展资源综合利用意见》(国发【1996】36号)明确鼓励余热余压回收利用,并在随后2005年和2006年颁布了《国务院关于加快发展循环经济的若干意见》(国发【2005】22号)和《国务院关于加强节能工作的决定》(国发【2006】28号),均对余热余压利用等重点节能工程进行支持和鼓励。2007年,国务院发布《节能发电调度办法(试行)》(国办发【2007】53号),规定“余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机组”所发电力属于电网优先调度的电力。国务院先后发出《国务院办公厅

余热余压利用项目节能量计算

余热余压利用项目节能量计算 (1)采用溴化锂吸收式制冷技术,利用废热制取冷媒水替代冰机制冷项目,改造后停运7台活塞式冰机。 改造前7台活塞式冰机每小时用电量:7×190kW=1330kW 改造后溴化锂吸收式制冷机组配电设备每小时用电量:173.3kW 年运行小时:8000h 电折标系数: 0.366kgce/kWh 节电折标量:(1330-173.3)×8000×0.366/1000=3387 tce (2)利用工艺废热加热锅炉除氧水 两期合成供给热:循环机铭牌 出塔气量: 13350NM 3/tHN 3 小时氨产量:16.5 tHN 3 /h 水冷器进口温度:94℃ 出口温度:34℃ C P =7.6kcal/kmil ℃ Q=601868.46.75.16133504.221?????℃=1.877×107 kJ/h(△T=94-34=60) Q 节约=120×1000×(52-15)×4.1868=1.859×107 kJ/h m 节蒸汽=03 .4409.276218590000-=8003kg\h 实际节约为:7.6t\h 年节能量=7.6×8000=60800t 蒸汽/年×128.6=7818.88tce 依据: 1、2007年1月-2008年4月,除氧水150m 3/h 除氧进口温度25℃,出口95℃。 2、2008年5-8月170 m 3/h ,15℃,95℃。

3、2008年9月-2009年6月200 m3/h,15℃,95℃。 4、回收热水:锻烧28t/h、脱碳5t/h、重灰2t/h、干铵3t/h,以上四项合计约40 t/h,温度为100℃。 5、回收热量= () 4.0 03 . 440 9. 2762 2.4 95 100 1000 40 = - ? - ? ?T ①=()() 水 汽T T T k / 103 .0 150 5. 15 4.0 2.4 15 95 1000 40 150 = ÷ = - ? - ? ? - ②=()() 水 汽T T k / 108 .0 170 8. 18 4.0 2.4 15 95 1000 40 170 = ÷ = - ? - ? ? - ③=()()() 水 汽T T k / 075 .0 200 8 7. 22 4.0 2.4 15 95 1000 40 200 = ÷ - = - ? - ? ? - (3)采用无动力氨回收技术回收氨项目 采用无动力氨回收改造现等压回收氨以节约动力和蒸氨蒸汽, 并增加回收合成氨量。 改造前氨回收蒸汽流量平均 4.08 t/h,年蒸汽用量=4.08×8000=32640 t/a;改造后无蒸汽消耗,节约蒸汽量为32640t/a。 蒸汽折标系数:128.6kgce/t 节约蒸汽折标量:32640×128.6/1000=4197.5 tce 改造前因稀氨水膨胀外排 6.27 m3/h,年外排氨水折合成氨量6.27×16×17/20×8000=682 t/a;改造后无外排废水,节约合成氨量为682 t/a。 2007年吨合成氨综合能耗:1.699tce/t(实际统计数据) 节约合成氨折标量:682×1.699=1158.7 tce 节蒸汽和氨折标量为:4197.5+1158.7=5356 tce (4)采用涡轮机组回收脱碳余压位能项目 改造后1#脱碳增加一台水力透平发电机,每小时发电160kW,相当于节电160kWh;2#脱碳安装一台水力透平涡流泵,停掉1台配电机200kW的贫液泵,相当于节电200kWh。

余热余压利用相关技术介绍

余热余压利用相关技术介绍 一:概述 1.1:概念: 余热余压:是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。 余热余压利用工程:主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。这类工程除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来较大困难。 1.2利用领域介绍:(与我公司有关) (1)在钢铁行业,逐步高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、蓄热式轧钢加热炉技术。建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。 (2)在有色金属行业,推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。 (3)在煤炭行业,推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。 (4)在化工行业,推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。 (5)在电力行业,推广热电联产,热电冷联供等技术,提高电厂综合效益。

(6)在其他行业中,玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节能设备及材料,淘汰落后的高能耗设备。在纺织、轻工等其他行业推广供热锅炉压差发电等余热、余压、余能的回收利用,鼓励集中建设公用工程以实现能量梯级利用。 1.3发展前景: (1)由于一次性投资较高,部分企业余热余热利用工程还未得到充分发展,尤其是中小型企业。 (2)余热余压利用不仅节能,还有利用环境保护,是企业实现循环经济的新尝试,随着余热余压利用新技术的推广,余热余压利用必将有着广阔的应用前景。 二:工业余热 2.1资源特点 (1)余热资源属于二次能源,是一次能源或可燃物料转换后的产物,或是燃料燃烧过程中释放的热量在完成某一工艺过程后剩下的热量。按照温度品位,工业余热一般分为600℃以上的高温余热,300~600℃的中温余热和300℃以下的低温余热三种;按照来源,工业余热又可分为:烟气余热,冷却介质余热,废汽废水余热,化学反应热,高温产品和炉渣余热,以及可燃废气、废料余热。 (2)余热资源来源广泛、温度范围广、存在形式多样,从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。 因此工业余热资源利用系统或设备运行环境相对恶劣,要求有稳定的运行范围,能适应多变的工艺要求,设备部件可靠性高,初期投入成本高。从经济性出

余热发电法律法规和相关政策汇总

余热发电法律法规和相关政策汇总 1.主要法律 1.1.《中华人民共和国清洁生产促进法》 2002年,第九届全国人民代表大会常务委员会第二十八次会议通过《中华人民共和国清洁生产促进法》,要求对企业生产过程中产生的废物、废水和余热等进行综合利用或者循环使用或者转让给有条件的其他企业和个人使用。 1.2.《中华人民共和国节约能源法》 2007年10月,第十届全国人民代表大会常务委员会第三十次会议修改通过《中华人民共和国节约能源法》,将节约资源确定为基本国策,并在节能方面加大了激励措施力度,明确规定“国家鼓励工业企业采用高效、节能的电动机、锅炉、窑炉、风机、泵类等设备,采用热电联产、余热余压利用、洁净煤以及先进的用能监测和控制等技术”;明确提出“国家运用财税、价格等政策,支持推广电力需求侧管理、合同能源管理、节能自愿协议等节能办法”。《中华人民共和国节约能源法》以法律形式明确鼓励余热发电和合同能源管理,并且规定电网企业应按规定安排余热余压发电机组并网运行,为大力发展余热发电、促进余热余压利用提供了有力政策支持。 2、行政法规及国务院相关政策 早在1996年,国务院即发布《关于进一步开展资源综合利用意见》(国发【1996】36号)明确鼓励余热余压回收利用,并在随后2005年和2006年颁布了《国务院关于加快发展循环经济的若干意见》(国发【2005】22号)和《国务院关于加强节能工作的决定》(国发【2006】28号),均对余热余压利用等重点节能工程进行支持和鼓励。2007年,国务院发布《节能发电调度办法(试行)》(国办发【2007】53号),规定“余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机

如何实现余热余压的回收

如何实现余热余压的回收 余热余压是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。 一、什么是余热余压? 余热余压利用工程主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。作为“十一五”期间国家十大重点节能工程和建设节约型社会重点工程之一的“余热余压利用工程”及相关技术应用正逐步推广。但是目前,钢铁、煤炭、建材、化工、纺织、冶金等行业的余热余压以及其他余能仍未得到充分利用,主要原因在于利用余热余压的装置一次性投资过高和投资回报率较低。随着能源价格的节节升高,余热余压利用的投资回报逐渐被人们认可,余热余压利用对企业节能减排工作也日趋重要。 余热余压应用现状 除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来很多困难。许多企业限于投资或技术等难题,余热余压利用节能减排工程未能得到实施。 如钢铁企业的焦炉气、高炉气、转炉气,煤矿的煤层气,焦化企业的焦炉气等可燃副产气,大量放空,造成能源的严重浪费,同时也污染了环境。又例如,我国钢铁行业1000立方米以上高炉约110余座,有30座以上尚未配套炉顶压差(TRT)发电设备;有大型转炉的企业19家,中型转炉的企业42家,只有7家使用转炉负能炼钢技术。我国焦化炉干熄焦比例较低,干熄焦产量仅占机焦总产量的17.4%。低热值煤气燃气轮机可充分利用副产煤气,但一次性投资较大。我国现有日产2000吨以上新型干法窑水泥生产线225条,只有少数配装了余热发电装置。 二、余热余压回收利用的主要技术 1、钢铁行业 逐步推广干法熄焦技术、高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、转炉负能炼钢技术、蓄热式轧钢加热炉技术。建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。 2、有色金属行业 推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。 3、煤炭行业 推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。到2010年,全国煤层气(煤矿瓦斯)产量达100亿立方米,其中,地面抽采煤层气50亿立方米,利用率100%;井下抽采瓦斯50亿立方米,利用率60%以上。 4、化工行业 推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。 5、其他行业 玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节能设备及材料,淘汰落后的高能耗设备。在纺织、轻工等其他行业推广供热锅炉压差发电等余热、余压、余能的回收利用,鼓励集中建设公用工程以实现能量梯级利用。 三、余热余压回收利用案例

TRT余热发电

TRT余热发电 一、高炉炉顶煤气余压发电的基本原理 高炉炉顶煤气余压回收透平发电装置(TopGasPressureRecoveryTurbine简称TRT)是目前世界最有价值 的二次能源回收装置之一。TRT是利用高炉炉顶煤气中的压力能及热能经透平膨胀做功来驱动发电机 发电,再通过发电机将机械能变成电能输送给电网,可以回收高炉鼓风能量的30%左右。TRT装置所 发出的电量与高炉煤气的压力和流量有关,一般吨铁发电量为30千瓦时~40千瓦时。高炉煤气采用 干法除尘可以使发电量提高36%,且温度每升高10℃,会使透平机出力提高10%,进而使TRT装置 最高发电量可达54千瓦时/吨这种发电方式既不消耗任何燃料,也不产生环境污染,是高炉冶炼工序 的重大节能项目,经济效益十分显著。 炼铁生产中,高炉炉顶煤气压力大于0.03兆帕时,称为高炉高压运作。高炉煤气在高压运作下具有 一定的压力能。采用煤气余压发电技术装备(TRT)可将这部分压力能回收,其设备的工作原理是煤 气的余压使煤气在透平机内进行膨胀做功,推动透平机转动,进而带动发电机转动,发出一定的电量。TRT装置所发出的电量与高炉煤气的压力和流量有关,一般吨铁发电量为30千瓦时~40千瓦时。高 炉煤气采用干法除尘可以使发电量提高36%,且温度每升高10℃,会使透平机出力提高10%,进而使TRT装置最高发电量可达54千瓦时/吨铁。 二、高炉炉顶余压发电的工艺流程 图1、高炉炉顶余压发电的工艺流程图

高炉荒煤气经重力除尘器后的半净煤气管道进入布袋除尘器的进气总管。在布袋除尘器进气总管和布袋除尘器之间设有一个旁路,在旁路上设有冷热交换器,用于煤气的升温和降温。布袋除尘器的布袋是氟美斯化纤制品,其工作温度为80℃~250℃,瞬间不允许超过500℃。煤气温度低于80℃易产生结露现象,布袋内有露水会与灰尘结球,造成布袋除尘的除尘效果下降,严重时会导致煤气流流动不畅;煤气温度高于250℃会使布袋变脆,甚至烧损。所以,设置旁路冷热交换器来应对煤气温度的变化,是干式布袋除尘器能够正常工作的条件。 下一步,从干式布袋除尘器出来的净煤气将进入透平机。这时的净煤气温度在120℃~180℃之间,含尘量为1.2~4.6毫克/立方米。从透平机出来的净煤气进入企业的净煤气管网。一些炼铁企业高炉煤气采用湿式除尘方法,即在重力除尘器之后采用文式管除尘设备,出来的净煤气仍可进入透平机去发电。 从工作原理上看,TRT装置代替了原来煤气系统的高压阀组,不同的是,原煤气系统的高压阀组将煤气的压力能白白泄漏掉了,而TRT装置可以回收高炉鼓风能量的30%左右。 三、TRT系统组成 实际应用中的TRT一般由八大系统组成。 1、透平主机:透平主机是TRT的主要部分,由它来完成压力能向动能的转化,同时通过静叶的调节功能来保证高炉炉顶压力的稳定。

20吨以上锅炉余热余压利用

描述 蒸汽锅炉压差发电节能技术 全国的热电公司承担着对外供应蒸汽和热水的业务。他们的运行方式一般是: 1、由热电公司自己的换热站置换成热水或冷水供给用户,这一部分需要对蒸汽降压使用。 2、把蒸气直接供给用户用于生产需要或自行换热采暖。有相当的一部分需要降压使用热力公司外供蒸气和换热站对蒸汽参数的要求是各有不同的。 在供热锅炉和热水\汽用户之间对蒸汽和热水的温度\压力要求不同。常常有0.8-1兆帕的压力差白白的浪费掉,可以利用它发电。不影响用户用汽和热。使用我们已经掌握的蒸汽锅炉压差发电节能技术,对锅炉供热系统进行技术改造,采用小型背压机组根据不同用户需要的蒸气压力差,进行热能-电能的转换以获取低成本的电能,实现了能源的梯级利用,减少厂用电,增加外供电量。该项目具有投资小、收益大,具有节能增值,以较少的成本增加和较低煤耗情况下,增加单位的经济效益。 国家在《热电联产项目可行性研究技术规定》[2000]1268号文件规定:“单台锅炉额定蒸发量≥20t/h,参数为次中压及以上,热负荷年利用小时≥4000小时的较型集中供热锅炉房,经技术经济比较具有明显经济效益的,应改造成为热电厂”。修订后的《中华人民共和国节约能源法》第三十二条规定:“电网企业应当按照国务院有关部门制定的节能发电调度管理的规定,安排清洁、高效和符合规定的热电联产、利用余热余压发电的机组以及其他符合资源综合利用规定的发电机组与电网并网运行,上网电价执行国家有关规定。” 对现有的锅炉房实施锅炉蒸气压差发电节能技术改造、热电联产后向用户供热供汽,此举既满足了用户的需要,又可使供热公司经济效益的提高。同时也能够因此工程的建设具有明显的经济、社会和环境效益,改善产业区的投资环境,对促进产业区的经济发展起着十分重要的作用。 例如:一家供热企业有5×20t/h百吨锅炉,对它的运行负荷进行分析,5台20t/h 工业蒸汽锅炉,其额定蒸汽压力为1.27MPa(g)而用户生产及空调所需蒸汽压力为0.70MPa (a),特别是采暖期所需汽水热交换器的用汽压力仅为0.2~0.5MPa(a),充分利用两者之间的压差发电,是本项取得节能的主要内容。 为了节约用地和考虑系统优化,宜在原有的5×20t/h锅炉房外侧加盖三层钢结构轻型厂房,并放置1400KW饱和蒸汽背压机组和相关设备。地平0.00米布置背压汽轮发电机组和水泵,有利于高压蒸汽管线的布局和走向。标高4.50米放置各种疏水泵和电气设备、值班计量室并做隔音处理。标高9.00安排汽水换热器和加热器,不需要盖顶棚以节约投资。 按区域内热负荷需求状况,统一考虑装机规模和装机方案,在保证供热发电运行安全性、可靠性的前提下,突出发电系统设计的技术先进、经济合理、洁净环保性能。工程设计和布置要与产业区的环境景观相协调,主要建筑物的设计要有时代感,突出美化景观的功效。 投资约700万元,发电0.7x108KWh度/年,按上网电价0.6元,收益420万元/年,设备寿命20-25年。经济效益十分显著。

河北武安裕华钢铁有限公司余热余压利用及高炉煤气发电项目

河北省武安市裕华钢铁有限公司 余热余压利用及高炉煤气发电项目 河北省财政厅 一、项目概要 1.项目简介 无论是谁,看到那样巨大的一炉滚滚钢水出炉,而仅需两个工人过去操作,都会对现代化的钢铁企业叹为观止。裕华钢铁有限公司是河北省重点“百强企业”以及“中国500强”,其树立的“打造精品基地,建设绿色钢企”的发展理念,令其发展长时间处于同行业上游。裕华公司率先将钢铁制造流程由“资源—产品—废物”的单向直线型,转变为“资源—产品—再生资源”的圆周循环型,使钢铁企业既是钢铁产品的制造者,又是清洁能源的转换者和社会废弃物的耗用者。因为其先进的发展理念以及高效的生产模式,在其发展的关键时刻,清洁基金给予了有力支持。 武安市裕华钢铁有限公司余热余压利用及高炉煤气发电项目,地点位于裕华公司现有厂区内。主要建设2×20t/h烧结余热锅炉+1×10MW补气式汽轮发电机组;2×75t/h中温中压纯燃煤气锅炉+2×15MW凝气式汽轮发电机组;1×4.5MW高炉煤气余压能量回收发电装置(TRT)及其配套设施。项目总投资19,493万元,在2011年该公司获得了6,000万元的清洁发展委托贷款。2011年8月初,2座15MW高炉煤气发电项目、4.5MW高炉余压TRT发电机组相继完工,并且顺利发电,2012年6月,10MW高炉煤气余热发电项目投产。根据已投产项目发电情况看,2013年度至2015年度项目合计发电112,140万kWh,实际减排108.30万吨二氧化碳当量、减排煤气65.55亿立方米、二氧化硫32,808吨、氮氧化物15,954吨;该项目合计实现总产值7.35亿元,实现利税1.70亿元,经济效益、社会效益、环境效益十分明显。

关于化工厂余热余压的利用

科研训练结题报告 指导教师:..苏泷 小组成员:..扬光 ..绿亮于..洋 项目专业:建筑环境与设备工程 项目名称:化工厂余热余压的处理 2013年9月

科研训练结题报告 摘要:介绍了化工厂企业在工业生产中余热余压资源利用的基本现状,探讨了各种余热余压利用技术的进展,分析了余热利用等方面存在的主要问题,为科学合理地进行余热余压利用提出了相关建议。关键词:余热余压利用化工企业低温热能余热锅炉热管吸收式热泵其他工质 一、引言 化工企业是维系人类社会发展进步的重要部门,化工产品与人类生活关系密切,从衣食住行等物质生活到文化艺术娱乐等精神生活都离不开化工产品。但是,化工企业又是当今污染大源、能耗大户的代名词,在能源消耗方面尤为突出,它们的热效率都很低,一般只有30%左右,而被高温烟气、高温炉渣、高温产品等带走的热量却达到40%~60%,其中可利用的余热约占燃料消耗量的三分之一。节能减排是我国经济和社会发展的一项长远战略方针,也是一项极为紧迫的任务。回收余热降低能耗对我国实现节能减排、环保发展战略具有重要的现实意义。同时,余热利用在对改善劳动条件、节约能源、增加生产、提高产品质量、降低生产成本等方面起着越来越大的作用,有的已成为工业生产中不可分割的组成部分。自上世纪六七十年代以来,世界各国余热利用技术发展很快。目前,我国的余热利用技术也得到了长足进步,但是与世界先进水平还有一定的差距,有一部分余热尚未被充分利用,有一部分余热在利用中还存在不少问题。

二、前期准备 虽然此科研训练与我们建筑环境与设备的专业所学的知识有联系,但是在完成科研训练的过程中碰到了很多超出我们所了解和掌握的知识范围的难题,所以我们花费了大量的时间和精力做准备工作。 第一阶段,我们通过查阅图书馆查阅了很多相关化工厂余热余压利用的文献和上网查找相关资料(《余热回收利用系统实用手册》机械工业出版社一色尚次著,《余热回收手册》中南工业大学出版社 R.J.GOLDSTICK著,《余热回收》天津科学技术出版社霍光云编)。 第二阶段,在我们查阅资料之后,我们再次联系了李老师,跟李老师汇报了我们所遇到的问题,李老师答疑解惑之后,还送了我们一本关于余热余压处理的博士生毕业论文让我们参考。 第三阶段,正式开始科研训练。 三、化工厂余热余压的处理 1 余热利用概述 余热属于二次能源,它是一次能源和可燃物料转换过程后的产物,是燃料燃烧过程中所发出的热量在完成某一工艺过程后所剩下的热量。一般分成下列七大类:高温烟气余热、高温蒸汽余热、高温炉渣余热、高温产品余热(包括中间产品)、冷却介质余热、可燃废气余热、化学反应及残炭的余热、冷凝水余热等。常见的余热利用方法主要有:余热锅炉、热水法、预热空气、烟气一流体换热器、加工物料

余热发电行业发展趋势

余热发电行业发展趋势 余热资源是指在目前条件下有可能回收和重复利用而尚未回收利用的那部分能量,被认为是继煤、石油、天然气和水力之后的第五大常规能源。这些余热资源可用于发电、驱动机械、加热或制冷等,因而能减少一次能源的消耗,并减轻对环境的热污染。 前瞻产业研究院发布的《2015-2020年中国余热发电行业市场前瞻与投资战略规划分析报告》显示,现阶段,中国一次能源利用率约为30%,仅为日本的1/2,比世界平均水平还要低3个百分点,存在着巨大的能源浪费。据专家推测,钢铁、有色、化工、水泥、建材、石油与石化、轻工、煤炭等行业的余热总资源约占其燃料消耗总量的17%-67%,其中可回收利用的余热资源约为余热总资源的60%。也就说,可回收利用的余热资源约为燃料消耗总量10.2%-40.2%。前瞻初步核算,2012年中国能源消费总量36.2亿吨标准煤,可回收利用的余热资源高达3.69-14.55亿吨标准煤,节能潜力十分巨大。 图表1:2001-2012年中国可回收利用余热资源(单位:亿吨标准煤,%) 资料来源:前瞻产业研究院整理 余热资源从其来源可分高温烟气余热、冷却介质余热、废气废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液余热和废料余热以及高压流体余压等七种类型,其中高温烟气余热和冷却介质余热占比最高,是余热回收利用的主要来源。 图表2:中国余热资源结构图(单位:%)

资料来源:前瞻产业研究院整理 趋势一——运营模式的转变:从单一EPC模式向EPC与BOOT、EMC模式共存的方式转变 当前行业内的主要服务模式是EPC总承包模式,大约占到60%左右的市场,相比EPC 模式,BOOT模式具有的显著特点就是电厂一投产就开始盈利。但是由于前几年有还本付息的压力,所以电厂投产后的几年内公司的现金流是较为紧张的。一旦还本付息完成,则公司的现金流状况会变得非常好。针对新增水泥生产线逐年减少的情况,BOOT模式对于维持企业长久持续的盈利能力就显得至关重要,该模式有助于企业从一个传统的建造者参与到后续电站的运营,分享电站投资所带来的稳定收益。同时,EMC模式,因为不用企业投资,由投资公司投资,且承担风险,而受到青睐。 趋势二——细分领域的转变:从水泥到钢铁、化工等 余热发电作为一项通用技术,不仅是水泥、玻璃生产线可以安装余热发电设备,其他如钢铁、冶金、化工这些高耗能行业将来都是余热发电行业的目标市场。目前我国除水泥行业外,其他高耗能行业大部分低温废气余热没有进行有效利用。以钢铁企业为例,只有少量的企业如济南钢铁、邯郸钢铁、昆明钢铁等企业安装了余热发电设备,大部分钢铁企业排放的600度以下的高炉余热和烟道废气基本都被浪费。钢铁行业的余热电厂的规模较大,一般是水泥余热电厂发电功率的2-3倍,相应地投资金额也较大为行业内公司提供了新的拓展空间。 趋势三——区域市场的转变:从中国到海外 国际水泥行业余热发电市场,除日本外,其他国家水泥窑余热发电的普及率不高,技术装备相对落后。我国水泥窑余热发电系统无论从技术装备水平还是发电效率都处于全球领先地位,近两年刚刚进入国际市场,未来的前景十分广阔。

中国余热发电市场概述

中国余热发电市场概述 我国工业余热资源丰富,特别是在钢铁、有色、化工、水泥、建材、石油与石化、轻工、煤炭等行业,余热资源约占其燃料消耗总量的17%-67%,其中可回收利用的余热资源约占余热总资源的60%。目前我国余热资源利用比例低,大型钢铁企业余热利用率约为30%~50%,其他行业则更低,低温余热发电利用的提升潜力大。 (1)钢铁、冶金、化工等行业的余热发电市场容量为1100亿元 钢铁工业是我国重点的耗能大户,钢铁行业能耗约占全国总能耗的15%,其中余热资源约占37%,节能空间大。据统计,05年我国大中型企业吨钢产生的余热总量为8.44GJ,约占吨钢能耗的37%,其中最终产品或中间产品所携带的显热约占余热总量的39%,各种熔渣的显热约占9%,各种废(烟)气占37%,冷却水携带的物理热约占15%,余热资源十分的丰富。钢铁生产工艺流程长,工序多,且主要以高温冶炼、加工为主,生产过程中产生大量余热能源,主要来自烧结机烟气显热、红焦显热、转炉烟气及加热炉炉底的余热回收装置等,各种余热资源约占全部生产能耗的68%,说明在目前钢铁生产过程中2/3以上的能量是以废气、废渣和产品余热形式消耗。我国大中型钢铁企业余热资源的利用率大约为30%~50%,如果加上其他中小型钢铁厂,全国平均水平则更低;而国外先进钢铁企业余热余能的回收利用率平均达到了80%,有的在90%以上,如日本新日铁高达92%。在余热发电技术的研发应用方面,与日本、德国等发达国家钢铁工业相比,我国钢铁行业的余热发电技术起步较晚。目前,钢铁工业余热发电主要有以下三种方式,一是利用焦化、烧结工序烟气余热换热产生过热蒸汽发电;二是利用炼钢、轧钢工序烟气余热换热产生饱和蒸汽发电;第三种是利用高炉的冲渣热水发电。 近年来从事水泥窑余热发电技术的设计公司开始向钢铁、冶金、化工、钢铁厂各种余热资源及潜力等行业拓展。目前以水泥窑余热发电技术为基础,在钢铁、化工、玻璃等行业的多家生产厂建设投运了余热电站。钢铁行业各生产工序如焦炭、烧结机、高炉、转炉的余热均可以回收进行余热发电,焦炉的余热利用较好,废热发电仅达到37%,其他工序回收比例更低。预计在“十二五”期间,随着钢铁行业余热利用技术的逐步成熟,国家对节能要求的进一步提高,钢铁行业的余热电站市场空间十分广阔。 国内钢铁业余热利用比例低,余热利用发电将是钢铁业节能主战场。工业余热资源约占其燃料总热量的17%-67%,可回收率达60%。钢铁行业能耗约占全国工业总能的15%,其中余热资源约占37%,节能空间大(如图所示)。目前我国余热资源利用比例低,宝钢等大型钢铁企业余热利用率仅在30%-50%,远低于日本的90%,而其他企业则更低。钢厂余热、余压利用部位仅干熄焦、转炉和烧结余热发电的市场可达到1000亿。在钢铁行业中,余热可回收利用的重点部位有氧气转炉余热发电、烧结余热发电和与干熄焦余热发电。

余热发电项目可研

所属专题:余热余压利用工程 云南永昌铅锌股份有限公司 电炉余热发电项目 可行性研究报告 咨询证书编号: 质量认证注册号: 05007Q10074R1M 河北能源工程设计有限公司 批准单卫东 审核王彩霞韩建锋 校核姚晌阳粟涛 王永林何立波 编制王婷婷叶青青樊贞圆 莘英卿沈永兵蔡伟健 尹锐佳颜如焱张青枝 李春龙

目录

1总论 1.1申报单位概况 云南永昌铅锌股份有限公司(简称永昌公司)前身为创建于1958年的勐兴铅厂。原是一个年产粗铅300吨,固定职工229人, 年产粗铅300吨的小型地方国有企业,当时企业名称为“龙陵县勐糯铅锌矿”。后历经改扩建、兼并改制、债转股等历程至今,企业资本、生产能力和抗风险能力不断提升和增强,在短短几年里,公司发展到总股本29864万元,总资产8.8亿元。目前,公司由五家股东单位组成。公司下设8个管理部门,5个分公司、6个党支部,拥有职工1568人。 多年来,公司始终坚持贯彻和落实《消费者权益保护法》,在“重质量、守诚信,抓安全、求发展,讲环保、铸辉煌”的质量方针指引下,确保广大用户和消费者的合法权益不受侵犯,以科学的管理体制和严格的质量检验制度,以及务实、奋进的工作态度,服务于社会各界。由于工作扎实,1998年公司被中国质量无投诉活动委员会授予“98质量百日无投诉单位”;“勐糯牌”商标于1997年被保山地区评为“着名商标”,“永昌牌”商标于2007年被云南省评为“着名商标”;公司继2000年顺利通过了ISO9002:1994质量体系认证后,于2003年顺利通过了ISO9001:2000质量体系换版审核;先后荣获国家科技进步二等奖、全国“安康杯”竞赛优胜企业、全国绿化模范先进单位、全国行业产品实物质量金杯奖、云南省科技进步一等奖、云南省安全示范企业、云南省思想政治工作先进单位、云南省劳动关系和谐企业、连续两届荣获云南省文明单位等荣誉称号。 永昌公司目前生产规模为:采选铅锌矿14万吨/年,冶炼电锌2万吨/年;硅铁5万吨/年,工业硅5万吨/年;生产硫酸1.6万吨/年。每年可实现销售收入10亿元,年上缴税费1亿元以上。 1.2项目背景 随着我国经济的快速发展,能源和资源相对不足已成为经济发展瓶颈,如何合理的利用现有的宝贵资源是确保我国经济可持续发展的

离心压缩机余热回收工程技术方案

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

目录 一、项目概况 (1) 二、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点............... 错误!未定义书签。 四、热工计算 (6) (一)基本参数 (6) (二)设计计算书 (6) (三)主要设备 (7) 五、经济效益分析 (10)

一、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级压缩工艺,提供总容量为800Nm3/min,0.35MPa的压缩空气供生产使用,根据工艺和设备的要求,二级入口风温不可高于65℃。空压机压缩空气二级出口温度为夏季140℃,现生产工艺是将风温降到60℃以下。 有四台三级离心压缩空压机,提供总容量为730Nm3/min,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65℃,空压机压缩空气三级出口温度夏季为140℃,现在的运行方式是将三级出口风温降到60℃以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17%。在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,

余热余压回收利用工程可行性实施报告

余热余压回收利用工程可行性研究报告 第一章总论

第一节概述 一、项目名称 余热余压回收利用工程 二、项目承办单位 1、单位名称:xx有限公司 2、法人代表: 3、项目联系人:** 4、联系:* 三、项目建设地点 xx 四、可行性研究报告编制单位 单位名称:某市工程咨询院 资质等级: 资质证书编号: 发证机关:国家发展和改革委员会 第二节可行性研究工作的依据和围 一、可行性研究的依据 1、《中华人民国环境保护法》(1989年12月) 2、《中华人民国节约能源法》

3、《国务院关于印发节能减排综合性工作方案的通知》 4、《能源发展“十一五”规划》 5、《“十一五”资源综合利用指导意见》 6、《国务院关于加强节能工作的决定》 7、《节约能源管理暂行条例》 8、《中国技术政策能源》 9、《**“十一五”标准化发展规划纲要》 10、《**省节能减排工作领导小组文件》(鲁节减字〔2008〕1号) 11、《2008年部门节能减排工作计划》 12、《中共**省委**省人民政府关于进一步加强节能减排工作的意见》(鲁发〔2007〕24号) 13、《**省人民政府关于印发节能减排综合性工作实施方案的通知》(鲁政发〔2007〕39号) 14、xx有限公司现有工程项目运行状况资料 15、xx有限公司现有公用工程条件 二、可行性研究的目的 在节能减排政策的指导下,在充分的调查研究以及收集、分析资料的基础上,达到以下目的: 1、论证建设的必要性; 2、在方案比较与论证基础上提出推荐方案,并进行工程论证; 3、对余热余压回收利用的工艺及工程投资等进行技术可靠性、经济合理性及实施可能性的综合比较和论证。 4、根据投资估算,提出资金筹措方式及项目实施进度;

2余热、余压利用项目案例

案例2 余热、余压利用项目案例 1、项目简介 项目名称:山西太原XX焦化有限公司余热回收发电项目 A、项目措施: 该项目拟将炼焦产生的废气中的物理显热予以回收。 B、原系统设备及耗能情况: 年产40万吨清洁型热回收捣固焦炉,废气量4×56000Nm3,温度950-1000℃,压力0.003MPa,直接通过烟囱排入大气。 C、新系统设备及耗能情况 建设4×25t/h余热锅炉四台,蒸汽压力3.82MPa,蒸汽温度450℃,锅炉设计效率为81.1%,12MW+6 MW凝汽式汽轮发电机组两套。电厂全年发电时间预计为6850h,年发电量12330万度,厂用电率13% 。 2、项目能耗影响因素分析 在该项目中可能影响项目实施后的节能量的主要因素有,机组的实际效率、机组的运行时间和负荷率、机组的运行期间的设备状态等等。 机组的实际效率是由设计、制造与安装等三个环节所决定的,只要在此三个环节中给予足够的控制,这个因素应当能达到设计水平,不会产生什么影响。 机组的运行时间和负荷率,对于余热回收项目,只要是主体设备(焦炉)与节能设备(余热回收发电设备)都能够保持良好的运行状态,机组可以携带较高负荷长时间运行,才能产生最大的节能量。 机组运行期间的设备状态,对能耗水平的影响也是相当重要的。如果机组在

使用维护不当的情况下,受热面内外结垢严重,大小事故频发,它的经济性是不言而喻的。 3、项目范围及技术改造内容 本项目的实施内容是: 1)新装四台25t/h余热回收锅炉; 2)新装一套12MW和一套6MW中温中压汽轮发电机组; 3)增加整套电厂的全部辅机与设施; 4)增加发电机出口线路到厂供电系统。 详见附图2-1

余热发电

利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉。它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有:高温烟气余热,化学反应余热,废气、废液余热,低温余热(低于200℃)等。此外,还有用多余压差发电的;例如,高炉煤气在炉顶压力较高,可先经膨胀汽轮发电机继发电后再送煤气用户使用。 目录 1基本信息 2发电技术 3低温余热发电技术 4设备介绍 5提高措施 1 基本信息 定义 余热发电是指利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉。它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有高温烟气余热,化学反应余热、废气、废液余热、低温余热,低于200℃等。 概况

余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。 钢铁行业加热炉高温烟气回收发电技术当年可收回全部成本,热量利用率提高5-10%。 利用途径 余热的回收利用途径很多。一般说来,综合利用余热最好;其次是直接利用;第三是间接利用(产生蒸汽用来发电)。如钢铁工业:钢铁厂中的焦炉。目前我国大中型钢铁企业具有各种不同规格的大小焦炉50多座,除了上海宝钢的工业化水平达到了国际水平,其余厂家能耗水平都很高,大有潜力可挖。炼钢厂中的转炉烟气发电,发电系统,可配置发电量为3000Kw的电站80座。炼钢厂中的电熔炉,现如今全国有20多座,其中65吨级可发电量在5000Kw/座以上。 发展 伴随着可持续发展、循环经济、节能减排以及低碳经济等一个个观念的提出,我国的余热发电行业经历了从无到有、从小到大的发展历程。 据国家统计局2011统计公报显示,2011年我国全年能源消费总量34.8亿吨标准煤,万元国内生产总值(GDP)能耗下降2.01%,未达到2011年单位GDP能耗较上年下降3.5%的目标。 尽管大多数专家预测,“十二五”期间我国经济增速较“十一五”时期将有所放缓,但每年8%以上的增速,仍意味着降低单位GDP能耗存在巨大压力。 紧随其后,工信部对外公布了《工业节能“十二五”规划》。《规划》提出,到2015年,规模以上工业增加值能耗比2010年下降21%左右,实现节能量6.7亿吨标准煤。 业内人士普遍认为,在保持工业年均增速8%的基础上,支撑工业增加值能耗下降21%的指标难度不小,这意味着“十二五”期间要实现6.7亿吨标准煤的节能量,较“十一五”的6.3亿吨还多出0.4亿吨。现如今,我国传统产业的工艺技术装备水平已经大幅提升,要实现这一目标只能从现有的装备节能中寻求突破。 [1] 根据《2013-2017年中国余热发电行业市场前瞻与投资战略规划分析报告》分析,随着国家节能减排力度不断加码,余热发电项目的魅力日益显著。预计,到2015年,我国余热余压发电要实现新增装机2000万千瓦。按照每千瓦造价5000元计算,“十二五”期间余热余压发电将形成1000亿元投资规模。[2] 2发电技术 中国水泥窑余热发电技术经过近十余年的发展有了长足的进步,现已接近国际先进水平。诞生了各种各样的并能满足不同窑型要求的发电系统。在未来相当长的时期内,中国水泥窑余热发电技术的发展趋势主要集中于以下几个方面:

相关文档
最新文档