第50讲 二项式定理-新高考数学一轮专题复习(新高考专版)

第50讲 二项式定理-新高考数学一轮专题复习(新高考专版)
第50讲 二项式定理-新高考数学一轮专题复习(新高考专版)

第50讲二项式定理

一、考情分析

1.能用多项式运算法则和计数原理证明二项式定理;

2.会用二项式定理解决与二项展开式有关的简单问题.

二、知识梳理

1.二项式定理

(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N+);

(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;

(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.

2.二项式系数的性质

3.各二项式系数和

(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.

(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n+…=C1n+C3n+C5n +…=2n-1.

[微点提醒]

(a+b)n的展开式形式上的特点

(1)项数为n+1.

(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.

(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.

(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n

n .

三、 经典例题

考点一 通项公式及其应用

多维探究

角度1 求二项展开式中的特定项

【例1-1】 (1)(x 2

+1)? ????1x -25

的展开式的常数项是( )

A.5

B.-10

C.-32

D.-42

(2)? ?????3x -123x 10

的展开式中所有的有理项为________. 解析 (1)由于?

????1x -25

的通项为C r 5·? ??

??1x 5-r

·(-2)

r

=C r 5·(-2)r ·x r -5

2,

故(x 2+1)·? ????1x -25

的展开式的常数项是C 15·(-2)+C 55(-2)5

=-42. (2)二项展开式的通项公式为T k +1=C k 10? ????-12k

x 10-2k

3 . 由题意

10-2k

3∈Z ,且0≤k ≤10,k ∈N .

令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.

∴r 可取2,0,-2,即k 可取2,5,8,

∴第3项,第6项与第9项为有理项,它们分别为45

4x 2, -

638,45256

x -2. 答案 (1)D (2)454x 2,-638,45

256x -2

规律方法 求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可. 角度2 求二项展开式中特定项的系数

【例1-2】 (1)(多项式是积.的形式)? ????1+1x 2(1+x )6的展开式中x 2的系数为( ) A.15

B.20

C.30

D.35

(2)(多项式是和.

的形式)已知(1+ax )3+(1-x )5的展开式中含x 3

的系数为-2,则a 等于( ) A.2 3 B.2 C.-2 D.-1

(3)(三项展开式问题)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10

B.20

C.30

D.60

解析 (1)因为(1+x )6的通项为C r 6x r ,所以? ??

??1+1x 2(1+x )6展开式中含x 2

的项为 1·C 26x 2

和1x 2·C 46x 4,

因为C 26+C 46=2C 26=2×

6×5

2×1

=30, 所以? ?

?

??1+1x 2(1+x )6展开式中x 2的系数为30.

(2)(1+ax )3+(1-x )5的展开式中x 3的系数为C 33a 3+C 35(-1)3=a 3-10=-2,则a 3=8,解得a =

2.

(3)法一 (x 2+x +y )5=[(x 2+x )+y ]5,

含y 2的项为T 3=C 25(x 2+x )3·

y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.

法二 (x 2+x +y )5表示5个x 2+x +y 之积.

∴x 5y 2可从其中5个因式中,两个取因式中x 2,剩余的3个因式中1个取x ,其余因式取y ,因

此x 5y 2的系数为C 25C 13C 22=30.

答案 (1)C (2)B (3)C

规律方法 1.求几个多项式和的特定项:先分别求出每一个多项式中的特定项,再合并,通常要用到方程或不等式的知识求解.

2.求几个多项式积的特定项:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.

3.三项展开式特定项:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形.

考点二 二项式系数与各项的系数问题

【例2】 (1)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. (2)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.

解析 (1)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),

即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3. (2)令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2

=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案 (1)3 (2)1或-3

规律方法 1.“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法.

2.若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. 考点三 二项式系数的性质 多维探究

角度1 二项式系数的最值问题

【例3-1】 二项式? ?

??

??3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( ) A.3 B.5 C.6 D.7

解析 根据? ?????3x +13x n 的展开式中只有第11项的二项式系数最大,得n =20,∴?

?????3x +13x n 的展开式的通项为T r +1=C r 20·(3x )20-r ·? ?????13x r =(3)20-r ·

C r 20·x 20-

4r

3,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项. 答案 D

角度2 项的系数的最值问题

【例3-2】 已知(3

x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在? ?

???2x -1x 2n

的展开式中,二项式系数最大的项为______,系数的绝对值最大的项为________.

解析 由题意知,22n -2n =992,即(2n -32)(2n +31)=0,故2n =32,解得n =5.由二项式系数的性质知,? ????2x -1x 10

的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510

(2x )

5? ??

??-1x 5

=-8 064. 设第k +1项的系数的绝对值最大,

则T k +1=C k 10·(2x )10-k ·? ??

??

-1x k

=(-1)k C k 10·210-k ·x 10-2k , 令???C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得???C k 10≥2C k -1

10,

2C k 10≥C k +1

10,

即???11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤11

3. ∵k ∈Z ,∴k =3.

故系数的绝对值最大的项是第4项, T 4=-C 310·27·x 4=-15 360x 4. 答案 -8 064 -15 360x 4

规律方法 1.二项式系数最大项的确定方法:当n 为偶数时,展开式中第n

2+1项的二项式系数最大,最大值为C n n

2;当

n 为奇数时,展开式中第n +12项和第n +3

2项的二项式系数最大,最大值

为C n

n -12

或C n

n +12

.

2.二项展开式系数最大项的求法

如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用???A k ≥A k -1,

A k ≥A k +1,从而解出k 来,即得.

[方法技巧]

1.二项式定理及通项的应用

(1)对于二项式定理,不仅要掌握其正向运用,而且应学会逆向运用与变形运用.有时先作适当变形后再展开较为简便,有时需适当配凑后逆用二项式定理.

(2)运用二项式定理一定要牢记通项T k +1=C k n a

n -k b k

,注意(a +b )n 与(b +a )n 虽然相同,但用二项式定理展开后,具体到它们展开式的某一项时是不相同的,一定要注意顺序问题.

(3)在通项T k +1=C k n a

n -k b k (n ∈N +)中,要注意有n ∈N +,k ∈N ,k ≤n ,即k =0,1,2,…,n . 2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.

四、 课时作业

1.(2020·福建省福州第一中学开学考试)在5

212x x ??- ??

?的二项展开式中2x 的系数为( )

A .40

B .40-

C .80

D .80-

【答案】D

【解析】因为5

212x x ??- ??

?展开式的第1r +项为()()()()552531552112r r r r r

r r r r T C x x C x ----+=-=-,

令532r -=,则1r =,

所以5

212x x ??- ??

?的二项展开式中2x 的系数为()()41

51280C -=-.

2.(2020·北京期末)6

3x

?

?

展开式中各项系数之和为( )

A .62

B .63

C .64

D .1

【答案】A

【解析】解:令1x =,得6

3x

? ?

展开式中各项系数之和为()66

312-=.

3.(2020·广西南宁三中高三其他(理))二项式5

的展开式中常数项为( )

A .5

B .10

C .-20

D .40

【答案】D

【解析】解:二项式展开式的通项公式为10556

155(2)r

r

r r r r r T C C x

--+?==- ?

, 令

10506

r

-=,则2r ,

所以展开式中的常数项为2

2

5(2)40C -=,

4.(2020·五华·云南师大附中高三月考(理))5(x -的展开式中,第4项的系数为( ) A .80- B .80 C .40 D .40-

【答案】A

【解析】解:7

32324315

(80T T C x x +==-=-,

5.(2020·北京高三开学考试)在6

2x ???的展开式中,常数项为( )

A .60

B .30

C .20

D .15

【答案】A

【解析】因为6

2x ???展开式的第1r +项为66322166

22r r r r r r r r T C x x C x ---+=???=??,

令630r -=,则2r ,

所以常数项为22

36260T C =?=.

6.(2020·河南高三月考(理))在6

(2)(1)x x -+展开式中,含4x 的项的系数是( )

A .220

B .-220

C .100

D .-100

【答案】D

【解析】解:由题意知,含4x 的项有两部分,即333424

66C 2()C 2()x x x -?+-, 所以含4x 的项的系数是3

3

4

2

66C 2C 2100-+=-.

7.(2020·湖南高三月考)设常数a R ∈.若5

2a x x ??+ ??

?的二项展开式中7x 项的系数为-15,则a =( ) A .-2 B .2

C .3

D .-3

【答案】D

【解析】52a x x ??+ ??

?的二项展开式的通项公式为()5215r

r r r a T C x x -+??=?? ???1035r r r a C x

-=??,0,1,2,3,4,5r =. 令1037r -=,得1r =,

所以展开式中7x 项的系数为1

515a C ?=-,解得3a =-.

8.(2020·广西南宁·高三月考(理))()()3

112x x -+展开式中2x 项的系数为( ) A .5 B .6 C .-6 D .-4

【答案】B

【解析】分解()()()()333

112=1212x x x x x -++-+, 求这两部分的2x 项的系数和,

2x 项为()()()2

212331226C x x C x x ?+-?=.

9.(2020·四川省绵阳江油中学高二月考(理))在二项式6

(1)x -的展开式中,含3x 的项的系数是( )

A .15-

B .20-

C .15

D .20

【答案】B

【解析】由616()(1)r r r

r T C x -+=-知3r =,所以3x 的系数为336(1)20C -=-,

10.(2020·河南南阳·高二期末(理))在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含4x 的项的系数是 A .-15 B .85

C .-120

D .274

【答案】A

【解析】()()()()()12345x x x x x -----的展开式中,

含4x 项为五个括号中四个取x 还有一个括号取常数相乘得到, 故含4x 的项的系数为(1)(2)(3)(4)(5)15.-+-+-+-+-=-

11.(2020·四川成都·月考(理))已知二项式13n

x x ??- ??

?的展开式中所有项的系数和为512,函数()r n f r C =,[)0,r n ∈且r N ∈,则函数()f r 取最大值时r 的取值为( )

A .4

B .5

C .4或5

D .6

【答案】C

【解析】因为二项式13n

x x ??- ??

?的展开式中所有项的系数和为512,

令1x =,得()3125129n

n n -==?= 所以

()9r

f r C =,二项式展开式有10项,

则由二项式系数最值性可知第5项和第6项的二项式系数最大, 所以当4r =或5时,()f r 最大,

12.(2020·北京二模)在(x ﹣2)5的展开式中,x 2的系数为( ) A .﹣40 B .40 C .﹣80 D .80

【答案】C

【解析】在(x ﹣2)5的展开式中,含x 2的项为()3

2

225280C x x =--?,

故x 2的系数为:﹣80.

13.(2020·云南昆明一中月考(理))在6

21x x ??- ???

的展开式中3x 的系数是( )

A .20-

B .15-

C .20

D .30

【答案】A

【解析】621x x ??- ???的展开式的通公式为()()623616

611r

r

r

r r r r T C x C x x --+??=-=- ?

??

令363r -=.则3r =,

故3x 的系数是()3

3

6120r T C =-=-,

14.(2020·广东月考)在()62x y x y ??

-+ ???

的展开式中,34x y 的系数是( ) A .20 B .

15

2

C .5-

D .252

-

【答案】D 【解析】()()()66622x x y x y x y y x y ??

-+=+-+

???

()

6

x y +的展开式的通项是616r r r

r T C x y -+=,

令62r -=,则4r =,则()6

x y +的展开式中24

x y 的系数为4615C =,

令6r 3-=,则3r =,则()6

x y +的展开式中33

x y 的系数为3620C =,

故()62x y x y ??

-+

???

展开式中34x y 的系数是251522102?-=-.

15.(2020·广东月考)()()3

11x x -+的展开式中,3x 的系数为( ) A .2 B .2- C .3 D .3-

【答案】B

【解析】由题意()()()()3

3

3

1111x x x x x -+=+-+,

()

3

1x +的通项公式为31331

r r

r r r r T C x C x -+=??=?,

令3r =,则3

331r

C C ==; 令2r

,则2

333r C C ==;

所以()()3

11x x -+的展开式中,3x 的系数为132-=-.

16.(2020·广东月考)已知二项式212n

x x ?? ??

?-的所有二项式系数之和等于128,那么其展开式中含1x 项的系数是( ) A .-84 B .-14

C .14

D .84

【答案】A

【解析】因为二项式的系数之和等于128, 所以2128n =,解得7n =,

所以二项式展开式的通项公式为2771431771=(2)()2(1)r r

r r r r r r T C x C x x

---+-=-, 令1431r -=-,解得=5r , 所以展开式中含

1x

项的系数为525

72(1)84C -=-, 17.(2020·山东济南外国语学校高三月考)二项式*

(1)()n x n +∈N 的展开式中3x 项的系数为10,则n =( )

A .8

B .6

C .5

D .10

【答案】C

【解析】由二项式*

(1)()n x n +∈N 的展开式的通项1r n r r n T C x -+=得:令3n r -= ,得3r n =-,则3310r n n n n C C C -=== ,所以(1)(2)60n n n --=,解得5n =,

18.(2020·广西柳州·高三二模(理))6

(1)(1)ax x -+的展开式中,3x 项的系数为-10,则实数a 的值为( ) A .

2

3

B .2

C .2-

D .23

-

【答案】B

【解析】6

(1)x +展开式的通项公式为16r r r T C x +=,分别令2,3x x ==,可求得 2x 的系数为2

615C =,3x 的系数为3620C =,

故6

(1)(1)ax x -+的展开式中,3x 项的系数为1201510a ?-=-,解得2a =.

19.(2020·山东潍坊·高三月考)6

12x x ??- ??

?的展开式中常数项为( ) A .160- B .160 C .80 D .80-

【答案】A

【解析】6

12x x ??- ??

?展开式的通项公式为()()()66621662112r r r r r r r

r r T C x x C x ----+=??-?=-???,

令620r -=,可得3r =,故6

12x x ??- ??

?展开式的常数项为368160C -?=-.

20.(2020·重庆高二月考)2

321

(2)x x

+-展开式中的常数项为( ) A .20 B .20-

C .12-

D .8-

【答案】B

【解析】由题意36

22112x x x x ????+-=- ? ????

?. 二项展开式的通项为()66216

611,0,1,2,,6r

r r

r

r r

r T C x

C x r x --+??=-=-=? ???

, 令3r =得常数项为()3

3

46120T C =-=-.

21.(2020·渝中·

重庆巴蜀中学月考)5

22x ???

-展开式中的常数项是______.

(用数字作答) 【答案】10-

【解析】解:可得522x ?

??

展开式的通项公式为()

()5522

52155

22k

k

k

k k k

k T C x C x

--+=-=-,

令1k =,则常数项为()1

1

115210T C +=?-=-.

22.(2020·湖南郴州·月考)已知(2)n x y +展开式的二项式系数和为64,则其展开式中含42

x y 项的系数是

__________. 【答案】60

【解析】解:由于()n

a b +的展开式的二项式系数之和为0122n n n n n n C C C C +++

=,

所以264n =,解得6n =,

所以()6616622k

k k k k k k

k T C x y C x y --+==,

故令2k =,即可得22424242216241560T C x y x y x y +==?=.

23.(2020·宝山·上海交大附中高三月考)在9

21x x ??+ ??

?的二项展开式中,常数项为______. 【答案】84.

【解析】二项式921x x ??+ ???的展开式的通项公式为99319921r

r r r r r C T x C x x --+??== ???

令930r -=,解得3r =,

所以9

21x x ??+ ??

?的二项展开式中,常数项为3

9=84C .

24.(2020·陕西西安·高新一中高三期末(理))已知()7

2701271...mx a a x a x a x -=++++,若435a =,则

实数m =________. 【答案】±1

【解析】因为()7

2701271...mx a a x a x a x -=++++的通项公式()17r

r

r T C mx +=-,0,1,2,...,7r = 故令4r =得()4

4445735T C mx m x =-=,故443535a m ==,1m ∴=±.

25.(2021·湖南湘潭·高三月考(理))在6(2)x -的展开式中,含4x 项的系数为_________. 【答案】60

【解析】6(2)x -的展开式的通项公式:()6162r

r r r T C x -+=-,

令64r -=,解得2r ,

所以含4x 项的系数为()2

26260C -=.

26.(2020·湖南雨花·雅礼中学高三月考)若6

2x x ?

- ??

的展开式的常数项为6,则a =_________. 【答案】4

【解析】解:∵6

x ?- ??

展开式的通项公式为:

6263166C ((C r r r r r r

r r T x x x ---+=???=??,

令630r -=,可得2r ,

∴展开式的常数项为226(C 60?=,解得4a =.

27.(2018·广东高二期末(理))在1

)n

x

的展开式中,各项系数的和为p ,二项式系数之和为q ,且q

是p 与48-的等差中项,则正整数n 的值为___________. 【答案】3

【解析】1

)n

x

-的展开式2

0121)n n n a a x x

a x a x =++++

令二项式中的1x =得到展开式中的各项系数的和为4n p =,

又各项二项式系数的和012n

n

n n n C C C C q ++++=,为2n q =,

根据题意得248q p =-即44822n n -=?, 解得28n =或26n =- (负值舍),

故3n =.

28.(2020·江西高二期末(理)

)在13n

x ???(*

n N ∈)的展开式中所有二项式系数之和为256.

(1)求展开式中的常数项; (2)求展开式中二项式系数最大的项.

【解析】解:(1)*31()3n

x n N x ?

?+∈ ???的展开式中所有二项式系数之和为2256n =,8n ∴=,

故展开式的通项公式为843

18

13r

r r r T C x

-+??

= ???

8403

r

-=,求得2r ,故展开式中的常数项为2

8

12899

C =. (2)由于8n =,故当4r =时,二项式系数最大,

故二项式系数最大的项为4

88

4

33

58

170381T C x

x --??== ???

. 29.(2020·福建三明一中高二月考)已知二项式12n

x ??+ ? ??

?()n *

∈N 的二项展开式中所有奇数项的二项式系数之和为128.

(1)求12n

x ??+ ? ???

的展开式中的常数项;

(2)在 (1+x )+(1+x )2+(1+x )3+(1+x )4+…+(1+x )2n + 的展开式中,求3x 项的系数.(

结果用数字作答) 【解析】解:

所有奇数项的二项式系数之和为128,

21282

n

∴=,解得8n =. (1

)8

1)2x

+的第1r +项为 8488318

811()()2

r

r r r r r

r T C C x x ---+==,

8403

r

-=,得2r ,

则常数项为2

386

17216

T C =?

=;

(2)234

10(1)(1)(1)(1)++(1)x x x x x ++++++++

展开式中3x 的系数为:

33343

3

34104410C C C C C C ++

+=++

+

43

3

5510C C C =+++

4

11330C ==.

30.(2020·辽宁高二期末)在①只有第八项的二项式系数最大,②奇数项二项式系数之和为74,③各项系数之和为144,这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.

设二项式33n

x ???,若其展开式中,______,是否存在整数k ,使得k T 是展开式中的常数项?

注:如果选择多个条件分别解答,按第一个解答给分.

【解析】若选填条件①,即只有第八项的二项式系数最大,即7

n C 最大,由二项式系数的性质可得,14n =; 若选填条件③,即各项系数之和为144,则1444n =,即14n =;

二项式14

33x ???

展开式的通项:1

217151

1

12

1414

333

k k k

k k k k T C C

x

x ------??

=?

?=?? ???

.

由2170k -=,得3k =.

即存在整数3k =,使得k T 是展开式中的常数项; 若选填条件②,即奇数项二项式系数之和为74, 则1714242n -==,∴15n =.

二项式15

33x ???

展开式的通项:1

227161

12

1515

31

3

3k k k

k k k k T C C

x

x ------??

=?

?=?? ???

.

由2270k -=,得22

7

k Z =

?. 即不存在整数k ,使得k T 是展开式中的常数项.

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

(完整word版)高考数学二项式定理专题复习专题训练)

二项式定理 1.二项式定理:)*()(011111100N n b a C b a C b a C b a C b a n n n n n n n n n n n ∈++???++=+---. 2.二项式定理的说明: (1)()n a b +的二项展开式是严格按照a 的降次幂(指数从n 逐项减到0)、 b 的升次幂(数从0逐项减到n )排列的,其顺序不能更改,且各项关于a 、b 的指数之和等于n 。所以()n a b +与()n b a +的二项展开式是不同的。 (3)二项式项数共有(1)n +项,是关于a 与b 的齐次多项式。 (4)二项式系数:展开式中各项的系数为1-r n C ,1,...,3,2,1+=n r . (5)二项式通项:展开式中的第r 项记作r T , )(1,...,3,2,11 11+==--+-n r b a C T r r n r n r ,共有(1)n +项。 (6)正确区分二项式系数与项的系数:二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ?????? 项的系数是a 与b 的系数(包括二项式系数)。 如:n n r r n n n n n n n n b C b a C b a C b a C a C b a )()()()()(----n r 2221110+???++???+++=---的 第2项的二次项系数为1n C ,而第2项的系数为1 n C -. (7)常见二项式: 令1,,a b x ==)*()1(111100N n x C x C x C x C x n n n n n n n n n ∈++???++=+--; 令1,,a b x ==-)*()1()1(221100N n x C x C x C x C x n n n n n n n n ∈-+???++-=-. 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等: 即k n n k n n n n n n n C C C C C C --=???==,,,110 .

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

高中数学完整讲义——二项式定理6.二项式定理的应用3近似计算或估计

高中数学讲义 1 思维的发掘 能力的飞跃 1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫 做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时, 其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系 数有时可为负. ④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系 知识内容 近似计算或者估计

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

专题26二项式定理(原卷版)

专题26 二项式定理(原卷版) 易错点1:混淆通项公式1r n r r r n T C a b -+=与展开式中的第r 项 易错点2:混淆二项式展开式中a,b 排列顺序设置陷阱 易错点3:混淆二项式系数和项的系数 易错点4:混淆二项式最大项与展开式系数最大项 考点1 求二项展开式中特定项或指定项的系数 题组一 1.10)21(x +的展开式的第4项是 . 题组二 2.(2016年全国I)5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 3.(2018全国卷Ⅲ)252()x x +的展开式中4 x 的系数为( ) A .10 B .20 C .40 D .80 4.6(42)x x --(x ∈R)展开式中的常数项是______. 题组三 5.(2019全国III 理4)24(12)(1)x x ++的展开式中x 3的系数为( ) A .12 B .16 C .20 D .24 6.(2017新课标Ⅲ)621 (1)(1)x x ++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 7.64(1)(1)x x -+的展开式中x 的系数是_____.(用数字作答). 题组四 8.25()x x y ++的展开式中, 52x y 的系数为_______.(用数字作答). 9.(2017新课标Ⅲ)5()(2)x y x y +-的展开式中33x y 的系数为

A .-80 B .-40 C .40 D .80 10.(2014新课标1)8 ()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案) 考点2 已知二项展开式某项的系数求参数 题组五 11.(2014新课标2)()10x a +的展开式中,7x 的系数为15,则a =___.(用数字填写答案) 12.()()511ax x ++的展开式中的系数为5, ______. 13.(2015新课标2)4()(1)a x x ++ 的展开式中x 的奇数次幂项的系数之和为32, 则a =______. 题组六 14.若n x x )2(-二项展开式的第5项是常数项,则自然数n 的值为______. 15.二项式1(n x -的展开式中含有x 4的项,则n 的一个可能值是( ). A .4 B .6 C .8 D .10 16.(13)(6)n x n N n +∈其中且≥的展开式中5x 与6x 的系数相等,则n =_____. 17.若)(13N n x x n ∈??? ? ?-的展开式中第3项为常数项,则展开式中二项式系数最大的是第____项. 18.若1()n x x +的展开式中第3项与第7项的二项式系数相等,则该展开式中 2 1x 的系数为___. 考点3 二项式各项系数的和与二项式系数的区别 题组七 19.5 12a x x x x ????+- ???? ???的展开式中各项系数的和为2,则该展开式中常数项为____

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

二项式定理10种题型的解法

二项式定理十种题型及解法 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n =叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴0213 n-1 n n n n C +C +=C +C + =2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

二项式展开式专题

二项式展开式专题 一、基础知识: 1、二项式()()n a b n N *+∈展开式 () 011222n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++,从恒等式中我们 可以发现这样几个特点 (1)()n a b +完全展开后的项数为()1n + (2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点。指数和为n (3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1n x +与()1n x +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列。如果是()n a b -,则视为()n a b +-????进行展开 (4)二项展开式的通项公式1r n r r r n T C a b -+= (注意是第1r +项) 2、二项式系数:项前面的01,,,n n n n C C C 称为二项式系数,二项式系数的 和为2n 二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项。对于()n a b +可看作是n 个()a b +相乘,对于n r r a b - 意味着在这n 个()a b +中,有()n r -个式子出a ,剩下r 个式子出b ,那么这种出法一共有r n C 种。所以二项式展开式的每一项都可看做是一个组合问题。而二项式系数便是这个组合问题的结果。

二项式定理试题类型大全

二项式定理试题类型大全 一.选择题 1.有多少个整数n 能使(n+i)4成为整数(B )A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1 B.0 C.1 D.2 3.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C ) A 0 B 3 C 5 D 8 4.已知(x - x a )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C )A.28 B.38 C.1或38 D.1或28 5.在3100(25)+的展开式中,有理项的个数是()A.15个B.33个.17个D.16个 6.在2431??? ? ??+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项 C .5项 D .6项 7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C ) A 、-5 B 、 5 C 、10 D 、-10 8.35)1()1(x x +?-的展开式中3x 的系数为( ) A .6B .-6 C .9D .-9 9.若x= 21,则(3+2x)10的展开式中最大的项为(B )A.第一项B.第三项 C.第六项 D.第八项 10.二项式431(2)3n x x - 的展开式中含有非零常数项,则正整数n 的最小值为( ) A .7 B .12 C .14 D .5 11.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C ) A .1440 B .-1440 C .-2880 D .2880 12.在51(1)x x +-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )11 13.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9 B.10 C.11 D.12 14.若多项式102x x +=10109910)1()1()1(++++???+++x a x a x a a ,则=9a ( ) (A ) 9 (B )10 (C )9- (D )10- 故选D 。 17.若二项式6)sin ( x x -θ展开式的常数项为20,则θ值为( B ) A. )(22Z k k ∈+ππ B. )(22z k k ∈-ππ C. 2π D. 2π- 18.5310 被8除的余数是( )A 、1 B 、2 C 、3 D 、7 19已知i x +=2,设444334224141x C x C x C x C M +-+-=,则M 的值为( ) A 4 B -4i C 4i D 20.数(1.05)6的计算结果精确到0.01的近视值是………………………( ) A .1.23 B .1.24 C .1.33 D .1.44

二项式定理常见题型

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项增到n ,是升幂排列。各项的次数和 等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和 ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n C -,12n n C +同时取得最 大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,从而解出r 来。

二项式定理练习题

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

(完整版)二项式定理学生讲义

二项式定理 【2013年高考会这样考】 1.二项式定理是高考重点考查内容之一.分值一般为5~9分.考查比较稳定,试题难度起伏不大;题目一般为选择、填空题. 2.高考主要考查二项展开式和通项的应用,具体会涉及到求特定的项或系数,以及二项式系数等问题,是高考的必考点之一。 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1.二项式定理 (a +b )n =C 0 n a n +C 1 n a n -1 b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的 .其中的系数C r n (r =0,1,…,n )叫 系数. 式中的C r n a n -r b r 叫二项展开式的 ,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为 . (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 _______ (3)字母a 按 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0 n ,C 1 n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数 .即C r n =C n -r n . (2)增减性与最大值:二项式系数C k n ,当k < n +1 2 时,二项式系数逐渐 .由对称性知它的后 半部分是逐渐减小的;当n 是偶数时,中间一项T 12 +n 二项式系数取得最大值;当n 是奇数时, 中间两项1 2 1 2 1n ,+++n T T 的二项式系数相等且最大。 (3)各二项式系数和:C 0 n +C 1 n +C 2 n +…+C r n +…+C n n =_____; C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=________.

相关文档
最新文档