浅谈对结构动力学的认识

浅谈对结构动力学的认识
浅谈对结构动力学的认识

浅谈对结构动力学的认识

摘要:简单地讲述了对结构动力学的整体认识,介绍了结构动力学的发展历程,结构动力问题的几大特点,结构动力问题的分类,结构系统的动力自由度及其离散方法(包括集中质量法、广义坐标法和有限单元法),建立运动方程的方法(包括利用达朗贝尔(d'Alermbert)原理的直接平衡法,虚位移原理建立振动方程,哈密顿(Hamilton)原理建立振动方程)。

关键词:结构动力学;质量;阻尼;运动方程

On understanding of structure dynamics Abstract: This paper simply tells the overall understanding of structure dynamics, and introduces the development course of structure dynamics, a few big characteristics of structure dynamic problem , the classification of structure dynamic problem, the structure of the system and its dynamic freedom discrete method (including focus on quality method, generalized coordinates method and finite element method), the method for establishing the equations of motion (including the use of d'Alermbert principle direct balance method, vibration equation with imaginary displacement principle, establish vibration equation with Hamilton principle).

Key words: structure dynamics; quality; damping; equations of motion

1结构动力学发展简介

结构动力学是研究结构体系的动力特性,及其在动力荷载作用下动力响应分析原理和方法的一门技术学科。该学科的根本目的在于为改善工程结构系统在动力环境中的安全和可靠性提供坚实的理论基础。根据结构的功能不同和所处环境的不同,工程结构的振动存在三种情况:线性振动、非线性振动和随机振动。相应地可以将结构动力学划分为线性振动理论、非线性振动理论和随机振动理论。

拉格朗日(Lagrange)在l8世纪出版了名著《分析力学》,此书奠定了线性系统动力分析的基础。由于18世纪科学技术的不断创新,各种动力机械开始应用于不同的工程结构,促进了结构动力学理论和方法的不断进步。自从蒸汽机应用于船舶推进系统以后,使得船舶向大型和高速化发展,引起船舶振动问题日益突出。20世纪60年代以来,随着以有限元为核心的计算理论和技术的发展以及电子计算机的问世,产生了计算结构动力学,这使得对于大型复杂结构的动力分析成为可能。如今,人们可以成功地进行具有成千上万个自由度的大型复杂结构体系的动力分析。

在结构动力响应计算中,人们已经注意到结构系统自身的非线性特性和非线

性干扰作用下结构的非线性振动响应。例如,在航天航空工程中机翼的振颤,船舶在海浪中的大幅运动和系泊系统中系泊力的问题,地震作用下地基与地面建筑物之间的相互作用问题等都属于非线性振动问题。非线性振动系统的主要特点是:系统的恢复力是系统空间位置的非线性函数,而阻尼力是系统运动或振动速度的非线性函数。研究非线性系统的任务是确定系统振动的幅值、相位和频率,分析系统周期振动的条件及其稳定性。只有极少数非线性振动方程可以得到精确解析解,大多数方程仅能得到其近似解。因此,在非线性振动理论发展的进程中,非线性方程求解方法的研究占有重要地位。1892年,庞加莱〔Poincare)研究大体运动时提出了振动法,也称为小参数法。为了消除周期近似解中的永年项,出现了L-P法(Lindstedt-Poincare) 。求解近似解的第二个方法是1926年范德波(Van de pol)提出的渐进法。前苏联学者克雷洛夫和巴戈留包夫系统研究了范德波的渐进法任意近似解的三级数法,即KEM方法。第三个方法是多尺度方法,出现于20世纪50年代,该方法适用于求解周期和非周期振动系统近似解。参数激励振动系统是非线性振动研究进程中的重要发现,参数激励研究表明,当弦或直梁受到二倍于横向固有频率的纵向激励时,可以引起直梁的横向振动,这些问题可以归结为马蒂厄(Mathieu)方程。只有少数低维非线性系统可以得到近似解析解。对于高维非线性系统,多采用数值计算方法,例如,采用龙格-库塔方法、威尔逊θ(Wilsonθ)法和纽马克β(Newmarkβ)法等。

2 结构动力问题的特点

结构动力学的内容之一是研究结构的动力响应。所谓动力响应是指结构在广义动力荷载作用下的结构位移和内力响应,而广义动力荷载包括动力激励和动位移激励。动力荷载指荷载的大小和方向(有时包括作用位置)随时间而变化的荷载。在动力荷载的作用下,结构的位移和内力随时间而不断变化,并且结构产生振动速度和加速度。

结构动力问题与结构静力问题比较有三个不同点:第一,由于结构动力问题中的荷载随时间变化,显然动力问题不像静力问题那样具有单一的解,而必须建立相应于响应历程中的全部时间的一系列解答。第二,如果梁仅承受静力荷载,则它的内力和位移仅仅依赖于给定的外荷载,其平衡关系是外力和恢复力之间的平衡。但是,如果结构作用动力荷载,则梁所产生的位移和加速度有关,这些加

速度产生与其反向的惯性力,于是梁的恢复力不仅要平衡外加动力荷载,还要平衡加速度引起的惯性力。第三,动力问题中结构响应的大小,与荷载的大小和荷载随时间的变化过程有关,如果荷载的干扰频率接近结构的固有频率,尽管荷载的幅值不大,也会引起结构很大的振动响应即共振。

工程结构是否作为振动系统分析,要看荷载是否激起结构较大的振动加速度。如果结构振动的加速度很小,则其惯性力仅仅是结构弹性力所要平衡的全部荷载中的较小部分,此时该动力荷载的作用与静力荷载的作用并没有显著差别,可以作为静力处理。一般而言,如果结构系统的固有频率和荷载干扰频率相差很大,则激起的结构的振动将会十分缓慢,其引起的惯性力可以忽略不计。一种随时间变化的荷载是否要作为动力荷载处理,需要根据结构系统自身的特征和荷载随时间的变化规律综合考虑。

3 结构动力问题的分类

根据结构自身的材料特性、构造特点及荷载类型,可以对结构动力问题进行分类。工程结构材料的物理特性一般为线性的,即应力-应变关系服从胡克定律,但是有些结构的材料如橡胶构建,其物理特性为非线性的,即其应力-应变关系不满足胡克定律。此外由线性材料制作的构件也可出现构造非线性,如用于减振的塔式弹簧,其变形与外力的关系为非线性关系的。在工程结构中,某些系统的恢复力和阻尼分别与结构振动位移和振动速度有关,则此种系统也属于非线性系统,如舰船在波浪中的运动、结构大挠度振动问题等。如果结构系统自身是非线性的,则不管荷载的形式如何,其振动响应均表现为非线性振动。但是,在工程结构中,大量的结构系统可能为线性系统,其振动的响应特性,将取决于荷载随时间的变化规律。一般可以将动力荷载分为确定性荷载和非确定性荷载。确定性荷载的变化规律是完全确定的,无论是周期的还是非周期的,它们均可以用确定性的函数来表达。常见的确定性荷载有:简谐荷载、周期荷载、冲击荷载和持续长时间的非周期荷载。

非确定性荷载又称为随机荷载,它随时间的变化规律是预先不可以确定的,而是一种随机过程,例如,地震荷载、风荷载和作用在船舶与海洋结构物上的波浪力等。随机过程虽然不可以表示为时间的确定性函数,但是它们受统计规律的制约,需要用概率统计的方法来研究随机荷载作用下结构振动。

此外,有些荷载具有明显的非线性性质,例如,作用在海洋结构物上的波浪力是非线性的,非线性的荷载将激起机构系统的非线性振动。

综上所述,可以将结构的动力问题划分为:

①线性确定性振动,即结构自身是线性的并且承受线性荷载的作用;

②线性随机振动,即结构自身为线性的,荷载为随机的;

③非线性确定振动,即结构系统自身性质或者荷载为非线性的;

④非线性随机振动,即结构系统自身性质为非线性的而荷载为随机的,或者为非线性随机荷载。

4 结构系统的动力自由度及其离散

动力问题的特点之一是要考虑结构体系的惯性力,所以在确定计算简图时,必须明确系统的质量分布及其可能发生的位移,以便全面合理地确定系统的惯性力。系统振动时,确定任一时刻全部质量位移所需要的独立的几何参变量的数目,称为结构系统的动力自由度。

一切结构系统都具有分布质量,因而都是无限自由度系统。但是除了某些简单的结构可以作为无限自由度处理以外,大多数的工程结构作为无限自由度计算将是极其困难的。在结构动力计算时,为了避免过于繁杂和数学上的困难,一般将结构处理为有限自由度系统,这一过程称为结构系统的离散:以下介绍几种常用的离散方法。

1)集中质量法

图4-1简支梁上有三个较重的质量,其质量远大于梁结构自身的质量。若将梁的质量也集中到这些质量块上,则转化为有若干个质量块的有限自由度系统。

对于在平面内振动的质量块,存在三个自由度即两个线位移和一个转角,相应地,每个质量块便有两个惯性力和一个惯性转矩。如果质量块的尺寸相对于梁的长度是较小的,则可以忽略质量块的尺寸效应,即不计惯性转矩,因而转角也就可以不作为动力自由度。如果忽略质量的水平位移,则图4-1中的简支梁系统共有二个竖向位移由度。

m x,也可以将其近某些情况下梁上没有较重的质量块,只存在分布质量()

似处理为有限自由度系统。例如,图4-2所示的非均匀断面梁,分为三段,每段的质量分布分别为:l1段位1m,l2段为2

m,l3段为3m,不计质量沿梁轴向的位移,

可以将其处理为仅有竖向位移的两个自由度系统。离散方法是将每段总质量的一半分别集中于各该段的两端。离散结果是: ()1211212m m l m l =

+,()

2322312m m l m l =+,见图4-2。如果想提高计算精度,可以增加分段的个数,简化后系统的白由度亦相应增加。

2) 广义位移法

对于梁上仅有分布质量的系统,为了提高计算精度,可以采用广义位移法。以图1-2中的简支梁为例,设在初始时刻梁的挠曲线为y(x,t 0),将其展开为三

角级数

()0013(,)sin

n n x y x t a t l

π∞==∑ (4-1) 此处t 为梁的长度。若给出系数a n (t 0),则初始的全部质点的位置随之确定。

一般来说,用有限个低频正弦波叠加来表达挠曲线的形状,可以具有足够的精度。如果取前三项,即

()010203023(,)sin ()sin ()sin x

x x y x t a t a t a t l l l

πππ=++ (4-2) 通过式(4-2),将无限自由度系统转化为三个自由度系统。此处,a 1(t 0),a 2(t 0),a 3(t 0)是确定梁的形状即全部质点位置的三个相互独立的坐标。

3) 有限单元法

与静力问题中的有限单元法一样,结构动力问题也可以采用有限单元法进行离散。有限单元法综合了集中质量法和广义坐标法的特点。用有限单元法分析动力问题,是以结构结点的位移表达结构上各个点的位移状态。首先将整体结构划分为一系列的单元,单元间以结点相连接,结点的位移便是决定结构系统中全部质点位置的独立坐标。

在采用有限单元法离散时,不在整个梁的范围内取有限个函数项的和作为全梁某时刻的挠曲线,而是在各个单元范围内假设两结点之间的挠曲线,该挠曲线

称为位移函数或者插值函,其确定了单元位移的形状,它的表达式包含若干个参数。位移函数在单元内部保持光滑连续,并且在单元两端满足支承和变形连续条件。根据这些条件,可以将位移函数中的参数通过结点位移来表达。因此,整个结构系统便转化为以结点位移为未知数的有限自由度系统了。

以上三种方法中,有的基本未知量是质点(结点)的位移,有明显的几何意义,

如图4-1中的y

1,y

2

,和y

3

,称其为几何坐标,有的基本未知量没有明显的几何意

义,如a

1(t

),a

2

(t

),a

3

(t

),但是,只要求出这些参数,则系统全部质点的空间

位置即可确定。因此,对能确定振动系统中全部质点(结点)几何位置的相互独立的参数,无论其量纲为何,常称其为广义坐标。

5 振动能量耗散与阻尼力

受到突然激励产生运动的船舶会逐渐静止下来,强烈的地震过后剧烈摇晃的建筑物会趋于静止,这些都是因为阻尼的作用消耗了系统振动的能量,或者说振动过程中具有能量的耗散,这种消耗振动的能量并使振动衰减的因素,称为阻尼力。如果系统的振动被激起后进入自由振动状态,则由于阻尼的作用振动将会衰减直至系统恢复到静止状态。引起振动能量耗散的因素很多,一般可以划分为内阻尼和外阻尼。内阻尼主要指和材料应变有关的阻尼,其由于材料的非弹性性质或者非弹性变形所引起。而外阻尼可能包含更多的复杂因素,如周围介质对振动的阻力和摩擦阻尼等。例如,船舶或海洋结构物在水中振动时,受到流体的摩擦作用消耗振动的能量,埋入土中的结构振动时与土壤摩擦耗散振动能量,此外结构的连接结点和支座与结构之间的摩擦也消耗振动的能量,这些都是外阻尼的成因。

对于内阻尼,一般假设与应变的速率成正比,而对于外阻尼,常常同时存在着几种阻尼因素,要想找出一种可以完善反映各种结构中阻尼作用的理论是不现实的,所以目前一般采用相当简化的阻尼模型。为了反映振动过程中能量的耗散,在建立振动方程时,引入造成能量消耗的阻尼力,目前多采用粘滞阻尼理论表达阻尼力。在线性振动理论中,总是把阻尼简化为粘滞阻尼,用.

R c x

=-表示阻尼力。式中:R为阻尼力,.x为振动速度,c为粘阻系数。c与介质的粘性、振动物体的形状大小及表面情况有关,通常用实验方法测定。实际存在的阻尼是复杂的,外阻尼中一般都存在非线性。如流体介质阻尼,当速度相当大时,阻尼不再与速度

成正比。此外,阻尼还与系统运动幅值的大小有关,如船舶微幅运动时,用横摇角速度的一次幂表达阻尼就够了,但是当大幅横摇运动时,需要用包括横摇角速度的五次幂在内的多项式表达横摇阻尼力矩。

对非线性阻尼系统,常按系统在一个周期内能量耗散与理想的粘性阻尼系统在一个周期内能量消耗相等的条件,推出“等效粘性阻尼系统”,仍按线性理论求解。

若考虑系统的阻尼,则系统称为“非保守系统”。反之,忽略阻尼影响不计振动能量的耗散,则系统称为“理想保守系统”。

6 建立运动方程的方法综述

结构动力分析的目的是求出动荷载作用下结构的动位移和动内力, 并研究它们随时间的响应历程。在大多数情况下,应用包含有限个自由度的近似分析方法,就足够精确了。这样,问题就变为求出这些选定位移分量的时间历程。描述结构系统动力位移的数学表达式称为结构的运动方程,而这些运动方程的解就提供了所求的位移历程。

动力体系的运动方程的建立,也许是整个分析过程中最重要(有时是最困难的)的方面。建立振动系统的运动方程有多种方法,但不管采用何种方法建立运动方程,其结果都是一致的。

1)利用达朗贝尔(d'Alermbert)原理的直接平衡法

任何动力体系的运动方程都可代表牛顿的第二运动定律,即任何质量m 的动量变化率等于作用在这个质量上的力。这个关系在数学上可用微分方程来表达,即

()()d dy t P t m dt dt ??= ???

(6-1) 式中:P(t)为作用力;y(t)为质量m 的位置。对于大多数的结构动力学问题,可

以认为质量是不随时间变化的,这时方程(1-3)可改写为

2..2()()()d y t P t m m y t dt

== (6-2) 其中圆点表示对时间求导数。式(1-4)也可改写为

..

()()0P t m y t -= (6-3)

此时第二项..

()m y t 被称为抵抗质量加速度的惯性力。

质量所产生的惯性力,与它的加速度成正比,但方向相反,这个概念称做达朗贝尔原理。由于它可以把运动方程表示为动力平衡方程,可以认为,力P(t)包括许多种作用于质量上的力,包括抵抗位移的弹性约束力、抵抗速度的粘滞力以及外部干扰力。因此,如果引人抵抗加速度的惯性力,则运动方程表示作用于质量上所有力的平衡关系。在许多简单问题中,最直接而且方便地建立运动方程的方法就是采用这种直接平衡的方法。

2)虚位移原理建立振动方程

如果结构体系相当复杂,而且包含许多彼此联系的质量点或有限尺寸的质量块,则直接写出作用于体系上所有力的平衡方程可能是困难的。但是在某些情况下,结构系统上的力可以方便地用位移自由度来表示,而它们的平衡规律则可能是不清楚的。此时,虚位移原理就可用来代替平衡规律建立方程。

虚位移原理可表述如下:如果一个平衡体系在一组力的作用下发生虚位移,即体系约束所允许的任何微小位移,则这些力所作的总功将等于零。按这个原理,在虚位移上所作的总功为零,是和作用于系统上的力的平衡是等价的。因此,在建立振动系统的运动方程时,首先对于质量施加包括惯性力在内的所有的力,然后引人相应于每个自由度的虚位移,并使所作的虚功等于零,这样即可以得到运动方程。此种方法的优点是:虚功为标量,可以按照代数规则计算,从而避免复杂的矢量计算。

3) 哈密顿(Hamilton)原理建立振动方程

采用哈密顿原理建立振动方程,也可以避免矢量的运算。哈密顿原理可以表达为 22

11

()0t t t t DC T V dt W dt δδ-+=?? (6-4) 式中:T 为体系的动能;V 为体系的位能,包括应变能及任何保守外力的势能;

DC W 为作用于体系上的非保守力(包括阻尼力及任何外荷载)所作的功;δ为在指定时间内所取的变分。

哈密顿原理说明:在任何时间区间t 1到t 2内,动能和位能的变分加上所考虑

的非保守力所做的功的变分必须等于零。这个原理的应用直接导出任何给定系统的运动方程。这个方法和虚功原理方法的区别在于:在这个方法中,不明显使用

惯性力和弹性力,而分别被动能和位能的变分项所代替。因此,这种建立运动方程的方法的优点是,它只和纯粹的标量即能量有关,而在虚功分析中,被用来计算功的力和位移却都是矢量。需要指出的是,根据哈密顿原理可以导出拉格朗日第二类方程。

参考文献

[1]毕学涛.高等动力学[M].天津:天津大学出版社,1994.

[2]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002.

[3](美)R.克拉夫,J.彭津王光远等译校.结构动力学.高等教育出版社,2006.

结构动力学 论文

《结构动力学》 课程论文

结构动力学在道路桥梁方面的应用 摘要:随着大跨径桥梁结构在工程中的应用日趋广泛,施工控制问题也越来越受重视。结构动力学在各方面都有极为重要的作用,其特性也被广泛应用于桥梁结构技术状态评估中。结构动力学在道路桥梁方面应用十分广泛,比如有限元模型、模态挠度法、桥梁结构(强度、稳定性等)、状态评估、结构模态、结构自由衰减响应及其在结构阻尼识别中的应用、结构无阻尼固有频率与有阻尼固有频率的关系及其应用等,尤其是结合桥梁的检测、桥梁荷载试验与状态评价。本文就其部分内容进行介绍。 关键词:结构动力学道路桥梁应用 如今,科学技术越发先进,结构动力特性越来越广泛地应用于桥梁结构抗震设计、桥梁结构故障诊断和桥梁结构健康状态监测等工程技术领域,由此应用而涉及到的一些动力学基本概念理解的问题应运而生。对于此类知识,我了解的甚少,上课期间,老师虽有讲过这相关内容,但无奈我学到的只是皮毛。我记忆最深的是老师给我们放的相关视频,有汶川地震的,有桥梁施工过程的,还有很多因强度或是稳定性收到破坏而倒塌的桥梁照片。老师还告诉了我们修建建筑物的原则:需做到小震不坏,中震可修,大震不倒。还有强剪弱弯,强柱弱梁,强结点强锚固。桥梁在静止不受外力扰动时是不会破坏的,大多时候在静止的荷载作用下也不会发生破坏,但当桥梁受到动力荷载时就很容易发生破坏了,所以我们在修建桥梁是必须事先计算好最佳强度等等需要考虑的量。下面简单介绍一下结构固有频率及其应用和弹性模量动态测试。 1.结构固有频率及其应用 随着对结构动力特性的深入研究,其被越来越广泛地应用于结构有限元模型修正、结构损伤识别、结构健康状态监测等研究领域.一般情况下,由于结构阻尼较小,因此在结构动力特性的计算分析中,往往不计及结构阻尼以得到结构的振型和无阻尼的固有频率fnj(j=1,2,∧∧);而在结构的动态特性的试验中,识别的却是结构有阻尼的固有频率fdj.理论上有[1,2]fdj

结构力学课程设计

一、 课程设计题目 一)矩阵方程 1. 利用全选主元的高斯约当(Gauss-Joadan )消去法求解如下方程组,并给出详细的程序注解和说明: ??? ?????? ? ????????=?????????????????????? ???????? ?? ???1536353424543214019753910862781071567554321x x x x x 2. 利用追赶法求解如下方程组,并给出详细的程序注解和说明。 ?? ? ?? ?? ?? ? ????????-=???????????????????????????????????862031234567891011121354321x x x x x 3. 利用全选主元的高斯约当(Gauss-Joadan )消去法如下求解大型稀疏矩阵的大型方程 组,并给出详细注解及说明。 ???? ?? ??????? ?????????????----=????????????????????????????? ??? ?????????????????????4292728642-0 1 -0 1 00001-0402003-0001050006000102-00034-000200000 6-00060020001-0087654321x x x x x x x x 二) 结构力学 1. 试求解图示平面桁架各杆之轴力图,已知各材料性能及截面面积相同, 27.90,210cm A Gpa E ==。(注:在有限元分析中,桁架杆的模拟只能选择Ansys 的Link 单元)。 2. 试求解图示平面刚架内力图(轴力图、剪力图和弯矩图),已知各材料性能及截面面

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

结构力学课程设计报告

一. 课程设计的目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要 功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2. 通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规 律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打 下坚实的基础 二. 课程设计的内容 (1).对图示两类桁架进行分析 在相同荷载作用下,比较各类桁架的受力特点; 讨论各种杆件(上弦杆,下弦杆,竖杆,斜杆)内力随 随高跨比变化的规律; 若增加杆件使其成为超静定桁架,内力有何变化。 (2).两种结构在静力等效荷载作用下,内力有哪些不同? 平行弦桁架 1/2 1 1 1 1 1 1/2 三角桁1/2 1 1 1 1 1 1/2

(3)、用求解器自动求解功能求a=2和a=1.0时的各杆内力。比较两种情况内力分布,试用试算法调整a 的大小,确定使弯矩变号的临界点a 0,当a=a 0时结构是否处于无弯矩状态? (4) 、图示为一个两跨连续梁,两跨有关参数相同(l =6m ,E =1.5*106kPa ,截面0.5*0.6m 2,线膨胀系数1.0*10-5)。第一跨底部温度升高60oC ,分析变形和内力图的特点。 (4) 、计算下支撑式五角形组合屋架的内力,并分析随跨高 比变化内力变化规律。当高度确定后内力随f 1,f 2的比例不同的变化规律(四个以上算例)。 1/4 11×(1/2) 1/4 1/2 1 1 1 1 1 1/2 a a a a 3 6m 6m

一. 课程设计的数据 1. 第(1)题数据 1) 平行弦桁架 a) 高跨比1:4(每小格比例2:3) 输出图形: 输出内力值: 内力计算 杆端内力值 ( 乘子 = 1) ----------------------------------------------------------------------------------------------- 3m 3m 3m 3m f 2 f 1 f =1.2m q =1kN/m

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

结构力学答案 李廉锟

第二章 作业参考答案 习题2-3 (b ) (a ) F A K 解:先计算计算自由度: 3(2)321(2303)0W m h r =?+=×?×+= 或者 2()212(213)0W j b r =?+=×?+=这表明体系具有几何不变所需最少的联系数目。 此体系的支座链杆只有三根,且不完全平行也不交于一点,若体系为一刚片,则他与地基是按两刚片规则组成的,因此只需分析体系本身是不是一个几何不变的刚片即可。 去掉M 和C 两个二元体。在b 图中,KFL 刚片、ABF 刚片和GEJ 刚片通过不共线的三个铰(Ⅰ,Ⅱ)、(Ⅱ,Ⅲ)和(Ⅰ,Ⅲ)两两连接,由三刚片规则可知,体系为几何不变体系,且无多余联系。 习题2-5 解:先计算计算自由度: 3(2)34(244)W m h r =?+=×?×+=0 这表明体系具有几何不变所需最少的联系数目。 大地作为刚片Ⅰ,ACE 和BDF 分别作为刚片Ⅱ和Ⅲ,此三刚片用不共线的三个铰(Ⅰ,Ⅱ)(或者A )、(Ⅱ,Ⅲ)和(Ⅰ,Ⅲ)(或者B )两两连接,如上图,由三刚片规则可知,体系为几何不变体系,且无多余联系。

K N M F J A 解:先计算计算自由度 3(2)328 (2200)4W m h r =?+=×?×+=>3 或者 2()216(280)43W j b r =?+=×?+=>这表明体系具有几何可变的(常变)。 注:如果分不清是常变还是瞬变,可以直接写可变也行。 习题2-9 解:先计算计算自由度: 3(2)311(2153)W m h r =?+=×?×+=0 或者 2()27(113)0W j b r =?+=×?+=这表明体系具有几何不变所需最少的联系数目。 此体系的支座链杆只有三根,且不完全平行也不交于一点,若体系为一刚片,则他与地基是按两刚片规则组成的,因此只需分析体系本身是不是一个几何不变的刚片即可。 按照上图,三个刚片ADE 、ECB 和FG 用不共线的三个铰(Ⅰ,Ⅱ)、(Ⅱ,Ⅲ)和(Ⅰ,Ⅲ)两两连接起来,按照三刚片规则可知,体系为几何不变体系,且无多余联系。

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构动力学振动理论在建筑结构 抗震中的应用研究 摘要:随着社会的不断发展,抗震功能在建筑结构设计中的要求日益提高。通过结构动力学振动理论的研究应用,抗震技术得到了很大发展。本文将运用单自由度无阻尼和有阻尼受迫振动的理论知识,通过对动力学中的结构动力特性、建筑结构设计中的抗震功能的分析,简要介绍装有粘弹性阻尼器的单自由度体系的应用实例。 关键词:建筑结构抗震结构动力学振动理论单自由度体系简谐荷载 一、综述 随着社会的不断向前发展,建筑结构形式日益多样化,结构设计中对于抗震功能的要求也越来越高。与此同时,各门学科的交叉发展使得建筑结构抗震技术的运用走上了一个新的阶段。 传统的结构抗震设计不仅仅使得结构的造价大大增加,而且由于地震的不确定性而往往难以达到预期效果。通过运用动力学的相关知识来分析隔震减震装置在地震作用下的反应可以发现,自振振动在结构的地震反应中经常占有主导地位,不能够忽略。那么运用动力学理论分析,找到结构反应的最大控制量,通过改进材料的性能参数,就能够使用最合适的材料来制造隔震减震装置,提高装置的使用效能,这样就有希望把被动控制技术推向一个新高度。

二、单自由度无阻尼受迫振动 当体系上作用的外荷载为简谐荷载,同时忽略体系的阻尼,单自由度体系的运动方程为: 式中:p0为简谐荷载的幅值;为简谐荷载的圆频率。 体系的初始条件为: 该方程的解为: 解的第一部分为结构的自振频率振动的部分,即伴生自由频率的振幅,记为: 其中,为自振频率的振幅: 解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中:为激振频率振幅: 比较两部分振动的振幅得到: 由上面的式子可以看出,结构自振的振幅与稳态振动部分的振幅的比值是成反比例的。当1 θ≥时,按自振频率部分的振幅大于按荷载频率的部分的振幅,尤其是当1 θ>时,自振部分在结构反应中将占相当重要的部分。 三、单自由度有阻尼受迫振动 在简谐荷载作用下,单自由度体系的运动方程和初始条件为: 该方程解为:

结构力学专题论文

结构力学专题论文 超静定梁的极限荷载分析与计算 一、 概述 弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。因此弹性设计法不能充分的利用结构的承载能力,是 不够经济的。 塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准: max []Pu P p u F F F k ≤= 其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。u k 是相应的安全系数。 对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。另外还要采用以下假设: (1) 材料为理想弹塑性材料。其应力与应变关系如图所示。(图1.1) 图1.1 (2) 比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载 现象。 (3) 结构的弹性变形和塑性变形都很小。 从应力与应变图中看出,一旦进入塑性阶段(AB 段),应力与应变不再是一一对应的关系,只有了解全部受力变形过程才能得到结构的弹塑性解答。但塑性分析法只考虑结构破坏状态时对应的极限荷载,所以比弹塑性分析法要简单的多。 值得注意的是,塑性分析只适用于延性比较好的弹塑性材料组成的结 D s σσ

构,而不适用于脆性材料组成的结构,也不适用于对变形条件要求较严的结构。 二、 相关概念 1、极限弯矩 (1)屈服弯矩 随着M 的增大,截面最外层纤维处的应力达到屈服应力s σ时,截面承受的弯矩称作弹性极限弯矩或者屈服弯矩。 e s M W σ= 式中,W 是弹性弯曲截面系数。 (2)极限弯矩 M 不断增大,整个截面的应力达到屈服应力s σ时,截面承受的弯矩称作极限弯矩。 u s s M W σ= s W 是塑性截面系数,其值为等截面轴上、下部分面积对该轴的静矩。 可见,纯弯曲时,M 只与材料的屈服应力s σ和截面的几何尺寸、形状 有关。剪力和轴力对M 的影响可以忽略不计。 2、塑性铰 2.1 概念 当整个截面应力达到屈服极限时,保持极限弯矩不变,两个无限靠近的截面可以发生有限的相对转动,这样的截面称为塑性铰。 2.2 塑性较的特点 (1)塑性铰可以承受极限弯矩。 (2)塑性铰是单向铰。 (3)卸载时塑性铰消失。 (4)随着荷载分布的不同,塑性铰可以出现在不同的位置。 3、破坏机构 结构在极限荷载作用下,由于出现足够多的塑性铰而形成的机构叫做破坏机构。 破坏机构可以在整体结构中形成,比如简支梁;也可以在结构上的某一局部形成,比如多跨连续梁。同一结构荷载不同时,破坏机构一般也不同。 静定结构在弯矩峰值截面形成一个塑性铰后,就形成破坏机构而丧失承载能力。对于超静定结构,因为有多余约束,要形成足够多的塑性铰才能丧失承载能力,这也是我们在做结构时,要设计成超静定结构的重要原因之一。 三、 判定极限荷载时的一般定理

结构力学钢结构课程设计

华北水利水电学院 课程设计 任务书及计划书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

课程设计任务书 教研室

课程设计计划书 注:指导老师在课程设计期间每天指导时间不少于2小时。 教学院长、教学主任:_________________ 教研室主任:__________________填表人:____________________填表时间:2012 年12月20日

结构力学与钢结构课程设计 钢吊车梁设计分组及设计参数 2、吊车采用大连重工起重集团有限公司2003年DSQD系列产品。

华北水利水电学院 课程设计 指导书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

结构力学与钢结构课程设计指导书 钢吊车梁设计概述 一、吊车梁所承受的载荷 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载和沿吊车梁纵向的水平荷载。如图1所示。 图1 吊车梁承受荷载 纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。 吊车沿轨道运行、起吊、卸载、以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应诚意动力系数。对悬挂吊车(包裹电动葫芦)及工作级别A1--A5的软钩吊车,动力系数可取1.05:对工作级别A6--A8的软钩吊车、硬钩吊车和其他种吊车,动力系数可取1.1。 吊车的横向水平荷载由小车横行引起,其标准值赢取横行小车重量与额定起重之和的下列百分数,并乘以重力加速度: (1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16--50吨时,应取10%;当额定起重量不小于75吨时,应取8%。

结构力学论文

结构力学论文

————————————————————————————————作者: ————————————————————————————————日期:

成绩 土木工程与建筑学院 结构力学论文 (2016—2017 学年度第一学期) 课程名称:结构力学 论文题目: 浅谈位移法 任课教师: 姓名: 班级: 学号: 2017 年 1 月 1

日 浅谈位移法 摘要位移法是超静定结构分析的基本方法之一,也称变位法或刚度法,通常以结点位移作为基本未知数。位移法有两种计算方式,一种是应用基本结构列出典型方程进行计算,另一种是直接应用转角位移方程建立原结构上某结点或截面的静力平衡方程进行计算。 关键词基本原理典型方程超静定结构 一、简介 位移法以广义位移(线位移和角位移)为未知量,求解固体力学问题的一种方法。位移法的思想是法国的C.-L.-M.-H.纳维于1826年提出的。 位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算,所以学习和掌握位移法是非常有必要的。 二、计算种类 1.典型方程法 位移法可按两种思路求解结点位移和杆端弯矩:典型方程法和平衡方程法。下面给出典型方程法的解题思路和解题步骤。 1.1位移法典型方程的建立: 欲用位移法求解图a所示结构,先选图b为基本体系。然后,使基本体系发生与原结构相同的结点位移,受相同的荷载,又因原结构中无附加约束,故基本体系的附加约束中的约束反力(矩)必须为零,即:R1=0,R2=0。 而Ri是基本体系在结点位移Z1,Z2和荷载共同作用下产生的第i个附加约束中的反力(矩),按叠加原理Ri也等于各个因素分别作用时(如图c,d,e所示)产生的第i个附加约束中的反力(矩)之和。于是得到位移法典型方程:

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

结构力学课程设计

结构力学课程设计报告 系别:() 专业:() 班级:() 姓名:() 指导教师:()

一、绪言 1、课程设计目的或意义: 1、通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2、通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打下坚实的基础 2、结构的工程应用背景简介: 此次设计的结构是桥梁结构,在生活中桥梁在交通运输中起着重要的作用,比如架在江湖、峡谷之间的桥梁起着连接两地的纽带作用。桥梁之上可以过行人、汽车、火车。极大的缩短了两地之间的距离,方便又快捷。 3、课程设计的主要内容: 一:了解明确课程设计的目的,查找工程实际中的桥梁结构 二:参考实际结构设计自己的桥梁结构。 三:估计轴力,初步选择桥梁的钢材。 四:做出内力图。 五:校核,再择钢材。 六:总结优化。

二、结构设计与荷载简化 1、结构简介 此结构形状主要由三角形组成的的下承式组合结构 2、结构参数: 本次设计的桥梁结构跨度为四十米,高二十米。结构中杆件间主要以铰接连接。根据桥梁及承载要求,材料为Q235刚,极限压应力为300MPa,E=210GPa 选择20b号工字型刚,截面面积为46.5平方厘米 3、荷载简化与分析: 设计的结构为火车通道,主要承受火车的质量。将火车看作质量分布均匀的,所受均布荷载为50KN/m

三、结构内力和变形分析 1、结构计算简图 2、内力分析 结构轴力图 结构剪力图 1 11

结构动力学:理论及其在地震工程中的应用

5章 动力反应的数值计算 如果激励[作用力)(t p 或地面加速度)(t u g ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。这类问题可以通过数值时间步进法对微分方程进行积分来处理。在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。 然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。 5.1 时间步进法 对于一个非弹性体系,欲采用数值求解的运动方程为 )(),(t p u u f u c u m s =++ 或者 )(t u m g - (5.1.1) 初始条件 )0(0u u = )0(0u u = 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i 到N 。时间间隔 i i i t t t -=?+1 (5.1.2)

图5.1.1 时间步进法的记号 通常取为常数,尽管这不是必需的。在离散时刻i t (表示为i 时刻)确定反 应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。假定这些值是已知的,它们在i 时刻满足方程 i i s i i p f u c u m =++)( (5.1.3) 式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。将要介绍的数值方 法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻 1111)(++++=++i i s i i p f u c u m (5.1.4) 对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,… 所有瞬时所需的反应。已知的初始条件)0(0u u =)0(0u u =和提供了起动该方法的必要信息。 从i 时刻到i +1时刻的步进一般不是精确的方法,许多在数值上可以实现的近似方法是可能的。对于数值方法,有三个重要的要求:(1)收敛性一随着时间步长的减少,数值解应逼近精确解;(2)稳定性一在存在数值舍入误差的情况下,数值解应是稳定的;(3)精度一数值方法应提供与精确解足够接近的结果。这些重要的问题在本书中均作简要的讨论,全面的论述可在着重微分方程数值解法的书中找到。 本章介绍三种类型的时间步进法:(1)基于激励函数插值的方法;(2)基于速度和加速度有限差分表达的方法;(3)基于假设加速度变化的方法。前两类中各

结构动力学论文

浅议“动力有限元法” 摘要:有限元法是目前应用最为广泛的一种离散化数值方法,其基本思想就是人为地将连续体结构分为有限个单元,规定每个单元所共有的一组变形形式,称之为单元位移模式或插值函数。该方法在工程中有着广泛的应用,比如:桥梁,建筑上部和建筑基础等。 关键词:有限元;动力;位移 Abstract: Finite element method is currently the most widely used as a discrete numerical method. Its basic idea is going to artificially continuum structure which is divided into a finite number of units. Each unit provids common to a group of deformed form, which is known as an unit displacement mode or interpolation function. This method works with a wide range of applications. Example: bridges, buildings and construction base and so on. Key words: Finite element; Force;Displacement 1 动力有限元法基本过程 有限元法是目前应用最为广泛的一种离散化数值方法,其基本思想就是人为地将连续体结构分为有限个单元,规定每个单元所共有的一组变形形式,称之为单元位移模式或插值函数[1]。动力学的有限元法同静力学问题, 是把物体离散为有限个单元体, 考虑单元的惯性力和阻尼力等动力因素的特性。在运动物体单位体积上作用的体力可以用下式表达: {}{}δδδνδρt t a -=22a - } Ps { P} { (1-1) 式中 {Ps}——静力; {δ}——位移; {}δρ22 a t a ——惯性力; {}δδδνt ——阻尼力。 用有限单元法求解动力问题的位移模式: {}e δ ] [N f} {= (1-2) 式中 [N]——形函数矩阵; {}e δ——单元节点位移矩阵。

结构力学设计

科学技术学院 课程设计报告 2012----2013学年第二学期 学生姓名: 学号: 专业班级: 时间: 17周(6.17-6.21) 理工学科部

一、课程设计目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2.通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打下坚实的基础。 二、课程设计内容 (一)对三类桁架进行受力分析 1、平行弦桁架分析 变量定义,h=1,l=6 变量定义,c=1/6,h=c*l 结点,1,0,0 结点,2,1/6l,0 结点,3,2/6l,0 结点,4,3/6l,0 结点,5,4/6l,0 结点,6,5/6l,0 结点,7,6/6l,0 结点,8,6/6l,h 结点,9,5/6l,h 结点,10,4/6l,h 结点,11,3/6l,h 结点,12,2/6l,h 结点,13,1/6l,h 结点,14,0/6l,h 单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0 单元,4,5,1,1,0,1,1,0 单元,5,6,1,1,0,1,1,0 单元,6,7,1,1,0,1,1,0 单元,7,8,1,1,0,1,1,0 单元,8,9,1,1,0,1,1,0 单元,9,10,1,1,0,1,1,0 单元,10,11,1,1,0,1,1,0 单元,11,12,1,1,0,1,1,0 单元,12,13,1,1,0,1,1,0单元,13,14,1,1,0,1,1,0 单元,14,1,1,1,0,1,1,0 单元,14,2,1,1,0,1,1,0 单元,2,13,1,1,0,1,1,0 单元,13,3,1,1,0,1,1,0 单元,3,12,1,1,0,1,1,0单元,12,4,1,1,0,1,1,0 单元,4,11,1,1,0,1,1,0 单元,4,10,1,1,0,1,1,0 单元,10,5,1,1,0,1,1,0 单元,5,9,1,1,0,1,1,0 单元,9,6,1,1,0,1,1,0 单元,6,8,1,1,0,1,1,0结点支承,1,3,0,0,0结点支承,7,1,0,0结点荷载,14,1,0.5,-90结点荷载,13,1,1,-90结点荷载,12,1,1,-90结点荷载,11, 1,1,-90结点荷载,10,1,1,-90结点荷载,9,1,1,-90结点荷载,8,1,0.5,-90

材料力学课程论文

问题一:许可载荷试验分析 在本学期材料力学的学习过程中,有幸继续在叶敏老师的班上学习,本学期中叶老师延续去年理论力学课通过设计试验来锻炼学生动手操作能力的教学方式,设计了“许可载荷试验”这样一个项目。 题目即用A4纸制作成如图形状 的,测试其许可载荷。并通过裁剪制 作出符合要求的纸形。 在制作过程中,为了使数据更有 规律性,同时制作起来更方便,我们 选取中间为正圆弧,并且两侧对称。 根据圣维南定理,可以推测中间 受力基本均匀,且中间最窄,应力最大,最先断。试验也得以验证。 数据分析,我认为误差20克是很难达到的。分析如下: 1.中间裁剪误差: 中间受力均匀,可假设中间的应力σ=m*g/S,S为中间的截面 面积,许可应力为固定值,S与宽度d成正比,所以所能承受 的质量m与d成正比。根据数据对应关系,d=2cm时,m至少 为4kg(实际值大概在7至8kg),根据正比关系,每毫米的 误差在200克以上,也就是说裁剪时误差超过一毫米,则误 差就会超过200克,相对于要扣除50分。而实际学生使用的 制图工具精确度为1毫米,所以可见,误差难以控制。

2.平行度误差 根据线性分析,所测质量为1Kg 时,纸条中间宽度在3毫米左右 (根据纸质不同),而两次受力 区域宽度为6cm,是中线宽度的 20倍。 及受力不是竖直方向,对于三毫 米的宽度,是非常容易出现撕裂 的现象,两侧不是同时断,即应力不均,使m偏小。纸质为 纤维,更容易出现内部结构变动,从而不满足材料力学连续 性、各项同性等的假设。 综上,容易出现误差的地方也是试验中必须控制的因素。为保证试验进行正常,需使两侧对称,尽量裁剪精细,同时两侧受力务必平行,否则影响会非常大。

结构力学小论文参考题目

结构力学小论文参考题目 1、不同结构型式主要内力及其特点分析 说明:相同跨度和相同荷载(全跨受均布荷载q),可以比较简支梁、伸臂梁、三角形三铰拱、抛物线三铰拱、梁式桁架、组合结构等。 2、各类平面桁架内力分布情况的比较。 说明:桁架的外形对桁架的内力分布影响很大,分析常见的平行弦桁架、三角形桁架、抛物线桁架、折线形桁架的内力分布情况。 3、桁架结构结点按铰接点计算的依据 说明:桁架结构的结点并不是理想铰,但是实际中可以按照铰接点来进行计算,原因、理由? 4、影响组合屋架内力的主要因素分析 说明:影响组合屋架(如:下撑式五角形组合屋架)内力状态的主要因素有高跨比f/l,已经高度f确定以后,f1与f2的比例不同影响结构内力 5、单位移动荷载是水平方向或者斜向时,做结构某个量值(内力或者支座反力)的影响线。分析其含义和做法与竖向移动单位荷载下影响线的异同。 6、含有均布荷载的移动荷载时确定荷载最不利位置 7、杆件截面对中性轴不对称,则对温度改变引起的位移的影响 说明:课本上再推导温度改变引起的位移计算时,是假设杆件截面对中性轴对称,而实际工程结构中杆件截面不一定是对称的,如果不对称,则对位移的计算有什么影响? 8、如何减小荷载作用引起的结构位移? 说明:比如,增加各杆刚度? 9、位移计算时忽略轴向变形和剪切变形时误差分析 说明:选取矩形截面细长杆(h/l=1/8~1/18),分析荷载作用下,忽略轴向变形和剪切变形对位移有多大的误差? 10、用力矩分配法求结点转角 说明:用力矩分配法计算出每根杆件的杆端弯矩,将该端各次所得分配力矩相加,再除以该杆的转动刚度,得结点角位移的渐进值。 11、支座移动和温度变化时,用力矩分配法计算的条件 12、对称性在结构内力计算中的应用 13、对称性在力法中的应用 14、对称性在结构力学中的应用 15、结构各杆刚度改变对静定结构和超静定结构内力的影响?

土力学桩基础课程设计

桩基础课程设计题目:某机械加工车间桩基设计指导教师: 班级: 姓名: 学号: 建筑工程学院 2010年7月21日

某机械加工车间桩基设计 一、设计资料 1、某机械粗加工车间上部结构(柱子300×400mm2)传至基础顶面的最大荷载为:轴力F k=4500KN,弯矩M k=200KN.m,剪力H k=35KN。 2、工程地质勘察报告引致课程指导书 3、土层名称及厚度如下图所示,地下水位为-0.50m

附表: 土的物理力学性质指标表 二、设计过程 1、确定桩形、截面 根据结构类型和层数,荷载情况、地质条件和施工能力等,选择预制桩,其截面尺寸为400?400mm2。 2、选择桩长 暂取桩顶伸入承台的长度为50mm,承台埋深1.5m,承台高度1.0m,钢筋保护层厚度70mm 则承台有效高度为:h0=1.0-0.070=0.93m 桩中间段长:h1=15-1.50 =13.5m 桩端进入持力层厚度:4.875d=4.875?400=1950mm 桩长为:h=0.05+13.5+0.5+1.95=16.00m

3、初步设定承台的地面标高,承台底面面积,选择桩和承台的混凝土强度等级 初定承台标高为:-1.5m,假定承台底面面积为8m2 为便于施工,桩和承台的混凝土强度等级均取C30

4、确定单桩承载力 KN l q u A q R i sis p p ps .27402.45)3704.919.35.012.5 2.6019.21.00.4(2040.414502a =?+?+?+?+??+?=+=∑ 5、确定桩数 根 根,暂取88.57.2 740)1764500(2.1)(2.1176.012.44105.12.4420a k =+?=+≥=???-???=-=R G F n KN Ah Ad G k w w G K γγ 6、桩的平面布置 初选承台尺寸 桩距:取桩距S=1200m, 承台长边:a=2×(0.6+0.4+0.4+0.3+0.3)=4m 承台短边: b=2×(0.4+0.3+0.3)=2m 7、单桩承载力验算 取承台及其上土的平均重度γG =20KN/m 3 桩顶平均竖向力: KN R KN n G F Q a k k k 2.74084.558 1764500=<=+= +=22max max min 2.142.1).0135200(84.55)(???+±=+±=∑i K K k x x h H M Q Q

相关文档
最新文档